Как отличить углеродистую сталь

Обновлено: 05.05.2024

Углеродистые стали подразделяют на три основные группы: углеродистые стали обыкновенного качества, качественные углеродистые стали и углеродистые стали специального назначения (автоматная, котельная и др.).

Стали углеродистые обыкновенного качества соответствуют ГОСТ 380–2005. Их поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях народного хозяйства.

Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6.

Цифры — это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.

В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы справа от номера марки означают:

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Между индексом и номером марки может стоять буква Г, это означает повышенное содержание марганца. Вобозначениях марок слева от букв Ст указаны группы (Б и В) стали. Стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления. Например, Ст5Гпс3 означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. Сталь первой категории пишется без указания номера последней, например Ст4пс.

Химический состав сталей группы А не регламентируют, а гарантируют их механические свойства, определяемые соответствующим государственным стандартом. Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).

Сталь группы Б поставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют. Сталь группы Б поставляют по механическим свойствам, соответствующим нормам для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы Б используют, в основном, для сварных конструкций.

2. Стали углеродистые качественные конструкционные

Стали углеродистые качественные конструкционные соответствуют ГОСТ 1050–88. От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и в большинстве случаев — более высоким содержанием кремния и марганца.

Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств. Буква Г в марках этих сталей также указывает на повышенное содержание марганца (до 1%). Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка). К сталям углеродистым специального назначения относят стали (ГОСТ 1414–75) с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены, в основном, для изготовления деталей массового производства.

Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок — селена, свинца, теллура. Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12, А20, А30, А40Г. Из стали А12 изготовляют неответственные детали, из сталей других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений.

Стали листовые (котельные, ГОСТ 5520–79 и ТУ) для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450°С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К с содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов толщиной до 200 мм и поковок в состоянии после нормализации и отпуска. Свойства и назначение качественных конструкционных сталей приведены в табл. 1.

3. Влияние легирующих элементов. Маркировка легированных сталей

Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Таблица 1. Механические свойства качественной конструкционной стали

прочности

при растяжении

Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его.

Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель — элементы с решеткой, отличающейся от решетки -Fe. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают ударную вязкость (за исключением никеля). При содержании до 1% марганец и хром повышают ударную вязкость. Свыше этого содержания ударная вязкость снижается, достигая уровня нелегированного феррита при 3% Сr и 1,5% Мn.

Повышению конструктивной прочности при легировании стали способствует увеличение прокаливаемости. Улучшение прокаливаемости стали достигается при ее легировании несколькими элементами, например Сr + Мо, Cr + Ni, Cr + Ni + Mo и другими сочетаниями различных элементов.

Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает разрушение стали.

Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.

Никель — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.

Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает ее чувствительной к перегреву. Всвязи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.

Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.

Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2…0,4% и вольфрам в количестве 0,8…1,2% в комплексно легированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.

Ванадий и титан — сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.

Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002…0,005%).

Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения (ГОСТ 4543–71):

  1. хром (X),
  2. никель (Н),
  3. марганец (Г),
  4. кремний (С),
  5. молибден (М),
  6. вольфрам (В),
  7. титан (Т),
  8. алюминий (Ю),
  9. ванадий (Ф),
  10. медь (Д),
  11. бор (Р),
  12. кобальт (К),
  13. ниобий (Б),
  14. цирконий (Ц).

Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%.

В качественных конструкционных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные — Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9…1,0% углерода; 17…19% хрома, 0,030% фосфора и 0,015% серы. Легированные конструкционные стали делят на цементуемые, улучшаемые и высокопрочные.

4. Цементуемые, улучшаемые и высокопрочные стали

Цементуемые стали — это низкоуглеродистые (до 0,25 С), низко- (до 2,5%) и среднелегированные (2,5…10% суммарное содержание легирующих элементов) стали. Они предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки.

Стали марки 15ХА с пределом прочности σв МПа предназначены для изготовления небольших деталей, работающих в условиях трения при средних давлениях и скоростях. Для изготовления ответственных деталей, работающих при больших скоростях, высоких давлениях и ударных нагрузках, используется сталь марок 18ХГ и 25ХГМ. Для крупных, ответственных, тежелонагруженных деталей применяются стали 20ХН и 20Х2Н4А.

При изготовлении крупных, особо ответственных, тяжелонагруженных деталей, работающих при больших скоростях с наличием вибрационных и динамических нагрузок, используется сталь с пределом прочности в МПа марки 18Х2Н4МА.

Работоспособность таких деталей зависит от свойств сердцевины и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка обеспечивает высокую поверхностную твердость (HRC 58…63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.

Улучшаемые легированные стали — среднеуглеродистые (0,25…0,6% С) и низколегированные стали. Для обеспечения необходимых свойств (прочности, пластичности, вязкости) эти стали термически улучшают, подвергая закалке и высокому отпуску (при 500…600°С).

Улучшаемые и цементуемые стали после термической обработки дают прочность до σв МПа и вязкость до КС= 0,8…1,0 МДж/м 2 . Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочности σв МПа. Для этих целей применяют комплексно легированные и мартенситостареющие стали. Свойства таких сталей и их назначение показаны в табл. 2.

Таблица 2. Улучшаемые легированные стали

прочности

при

растяжении

вязкость

Комплексно легированные стали — это среднеуглеродистые (0,25…0,6% С) легированные стали, термоупрочняемые при низком отпуске или подвергающиеся термомеханической обработке.

Мартенситостареющие стали — это новый класс высокопрочных легированных сталей на основе безуглеродистых (не более 0,03% С) сплавов железа с никелем, кобальтом, молибденом, титаном, хромом и другими элементами. Мартенситостареющие стали закаливают на воздухе от 800…860°С с последующим старением при 450…500°С.

5. Углеродистые инструментальные стали

Инструментальные стали — это особая группа сталей, обладающих специфическими свойствами. Эти стали предназначены для изготовления режущего и измерительного инструмента, штампов.

По условиям работы инструмента к углеродистым инструментальным сталям предъявляют следующие требования:

  1. стали для режущего инструмента (резцы, сверла, метчики, фрезы и др.) должны обладать высокой твердостью, износостойкостью и теплостойкостью;
  2. стали для измерительного инструмента должны быть твердыми, износостойкими и длительное время сохранять размеры и форму инструмента;
  3. стали для штампов (холодного и горячего деформирования) должны иметь высокие механические свойства (твердость; износостойкость, вязкость), сохраняющиеся при повышенных температурах;
  4. стали для штампов горячего деформирования должны обладать устойчивостью против образования поверхностных трещин при многократном нагреве и охлаждении.

Инструментальные углеродистые стали (ГОСТ 1435–99) выпускают следующих марок: У7, У8, У8Г, У9, У10, У11, У12 и У13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г, например У8Г, после цифры означает, что сталь имеет повышенное содержание марганца, что обеспечивает большую твердость сплава.

Марка инструментальной углеродистой стали высокого качества имеет букву А, например У12А: инструментальная углеродистая сталь высокого качества, содержащая 1,2% С. Инструменты, применение которых связано с ударной нагрузкой, например зубила, бородки, молотки, изготовляют из сталей У7А, У8А. Инструменты, требующие большой твердости, но не подвергающиеся ударам, например сверла, метчики, развертки, шаберы, напильники, изготовляют из сталей У12А, У13А. Стали У7—У9 подвергают полной, а стали У10— У13 — неполной закалке.

Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурах нагрева. При нагреве выше 200°С инструмент из углеродистых сталей теряет твердость, т.е. при повышенных температурах нужно применять инструменты из других сталей.

6. Легированные инструментальные стали

Легированные инструментальные стали имеют ГОСТ 5950– 2000. Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам). По сравнению с углеродистыми легированные инструментальные стали имеют преимущества:

  1. хорошая прокаливаемость;
  2. большая пластичность в отожженном состоянии;
  3. значительная прочность в закаленном состоянии, более высокие режущие свойства.

Низколегированные инструментальные стали содержат до 2,5% легирующих элементов, имеют высокую твердость (HRC 62…69), значительную износостойкость, но малую теплостойкость (200…260°С). Их используют для изготовления инструмента более сложной формы. В низколегированных сталях X, 9ХС, ХВГ, ХВСГ основной легирующий элемент — хром. Сталь X легирована только хромом. Повышенное содержание хрома увеличивает ее прокаливаемость. Сталь X прокаливается в масле полностью в сечении до 25 мм, сталь У10 — только в сечении до 5 мм.

Применяют сталь X для изготовления токарных, строгальных и долбежных резцов. Сталь 9ХС, кроме хрома, легирована кремнием. По сравнению со сталью X она имеет большую прокаливаемость — до 35 мм; повышенную теплостойкость — до 250…260°С (сталь X — до 200…210°С) и лучшие режущие свойства. Из стали марки 9ХС изготовляют сверла, развертки, фрезы, метчики, плашки. Сталь ХВГ легирована хромом, вольфрамом и марганцем; имеет прокаливаемость на глубину до 45 мм. Сталь ХВГ используют для производства крупных и длинных протяжек, длинных метчиков, длинных разверток и т.п.

Сталь ХВСГ — сложнолегированная и по сравнению со сталями 9ХС и ХВГ лучше закаливается и прокаливается. При охлаждении в масле она прокаливается полностью в сечении до 80 мм. Она менее чувствительна к перегреву. Теплостойкость ее такая же, как у стали 9XС. ХВСГ применяют для изготовления круглых плашек, разверток, крупных протяжек и другого режущего инструмента.

Высоколегированные инструментальные стали содержат вольфрам, хром и ванадий в большом количестве (до 18% основного легирующего элемента); имеют высокую теплостойкость (600…640°С). Их используют для изготовления высокопроизводительного режущего инструмента, предназначенного для обработки высокопрочных сталей и других труднообрабатываемых материалов. Такие стали называют инструментальными быстрорежущими (ГОСТ 19265–73). Быстрорежущие стали обозначают буквой Р, цифра после которой указывают содержание вольфрама. Содержание хрома (4%) и ванадия (2%) в марках быстрорежущих сталей не указывают. В некоторые быстрорежущие стали дополнительно вводят молибден, кобальт и большое количество ванадия. Марки таких сталей содержат соответственно буквы М, К, Ф и цифры, указывающие их количество. Для изготовления измерительных инструментов применяют X, ХВГ и другие стали, химический состав которых приведен в ГОСТ 5950–2000.

Для измерительного инструмента большое значение имеет изменение размеров закаленного инструмента с течением времени. Поэтому при термической обработке измерительного инструмента внимание уделяется стабилизации напряженного состояния. Это достигается режимом низкого отпуска — при температуре 120…130°С в течение 15…20 ч и обработкой при температурах ниже нуля (до –60°С).

Штампы холодного деформирования небольших размеров (сечением 25…30 мм), простой формы, работающие в легких условиях, изготовляют из углеродистых сталей У10, УН, У12. Штампы сечением 75…100 мм более сложной формы и для более тяжелых условий работы изготовляют из сталей повышенной прокаливаемости X, ХВГ. Для изготовления инструмента с высокой твердостью и повышенной износостойкостью, а также с малой деформируемостью при закалке используют стали с высокой прокаливаемостью и износостойкостью, например высокохромистую сталь Х12Ф1 (11…12,5% Сr; 0,7…0,9% V).

Для инструмента, подвергающегося в работе большим ударным нагрузкам (такого как пневматические зубила, режущие ножи для ножниц холодной резки металла), применяют стали с меньшим содержанием углерода, повышенной вязкости — 4ХС, 6ХС, 4ХВ2С и др.

Молотовые штампы горячего деформирования изготовляют из сталей 5ХНМ, 5ХГМ, 5ХНВ. Эти стали содержат одинаковое количество (0,5…0,6%) углерода и легированы хромом. Такое содержание углерода позволяет получить достаточно высокую ударную вязкость; хром повышает прочность и увеличивает прокаливаемость сталей. Никель вводят в эти стали с целью повышения вязкости и улучшения прокаливаемости. Вольфрам и молибден повышают твердость и теплостойкость, уменьшают хрупкость, измельчают зерно и уменьшают склонность стали к перегреву. Марганец как более дешевый легирующий элемент является заменителем никеля. Для сталей молотовых штампов характерна глубокая прокаливаемость.

7. Коррозионно-стойкие стали

Коррозионно-стойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионно-стойкие стали получают легированием низкои среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.

Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. Наибольшая коррозионная стойкость сталей достигается после термической и механической обработки (табл. 3).

Таблица 3. Химический состав (%) некоторых нержавеющих сталей

Чем отличаются углеродистые стали от легированных?

Определение сталь объединяет сплавы на основе железа и углерода с другими веществами. При очистке железной руды получают чугун, содержащий 2,14-6,67% углерода. Этот элемент отвечает за твердость, при этом металл хрупок и не пластичен. Уменьшение углеродной составляющей изменяет структуру, делает материал ковким, повышает его ударную вязкость.

Чем отличается углеродистая сталь от легированной?

Углеродистая сталь состоит из тех же элементов, что первоначальное сырье: железо, углерод, кремний, марганец и вредные примеси: сера, фосфор. Легированными (ligare-связывать) называют сплавы, усиленные другими металлами: хромом, никелем, медью, молибденом.


Характеристики легированной стали

Для легирования применяют металлы, способные образовывать устойчивые соединения с железом и углеродом. Из карбидов, интерметаллидов и дисперсных частиц под воздействием температур формируется сложная кристаллическая решетка. При уменьшении углеродной доли каркас структуры создают хром, никель, марганец и другие элементы, а карбидные соединения вытесняются к границам зерен. Активное железо находится в связанном состоянии и не может реагировать с агрессивными веществами.

Легированные стали классифицируют по количеству присадок:

  • Низколегированные — до 2,5%;
  • Среднелегированные — 2,5-10%;
  • Высоколегированные — выше 10%.

И различают по назначению:

  • Инструментальные — применяют в производстве измерительных и режущих инструментов, штамповой оснастки;
  • Конструкционные — для изготовления агрегатов и механизмов, корпусов автомобилей и оборудования, конструкций;
  • Специальные — коррозионно-стойкие, жаростойкие, жаропрочные и др.

Для определения марок создана буквенно-цифровая система. Легирующие элементы обозначают русскими буквами. В составе большей части сплавов не более 1% углерода, но эта характеристика одна из самых важных, поэтому ее указывают в начале маркировки в сотых долях процента. Числовые значения, округленные до единиц опускают.

● Буква А в конце значит, что сталь высококачественная.

Если содержание углерода 1% и более, первую цифру не пишут, например ХВГ, ХВСГ, ШХ15СГ. Для некоторых групп применяют обозначения перед маркировкой: А — автоматные, Ш — подшипниковые, Р — быстрорежущие, Э — электротехнические, Е — магнитно-твердые. Сплавы выпускаемые одним предприятием имеют свои названия, например ЭИ417 (Электросталь), ЧС 116-ИД (Челябинская сталь), ВНС-65 ВИЭМ).

Разработано более тысячи легированных стальных сплавов с различными уникальными свойствами: устойчивые к охрупчиванию на холоде, стойкие к кислотам и щелочам, кавитационным нагрузкам. В сравнении с углеродистыми они обладают меньшей теплопроводностью, твердостью. При термической обработке, в том числе сварке, необходимо учитывать свойства всех металлов в составе.

Характеристики углеродистой стали

Качества сплавов зависят от степени обработки. На первых этапах железную руду подвергают раскислению, восстанавливают окись железа до металла. По количеству оставшихся в расплаве атмосферных газов установлены классы:

В зависимости от наличия вредных примесей определяют качество:

Так как от углерода зависит твердость и одновременно ударная хрупкость, предусмотрена следующая классификация сталей:

● Низкоуглеродистые — до 0,25%;

● Высокоуглеродистые — выше 0,6%.

Действует деление по областям применения:

● Конструкционные — большая группа, объединяющая несколько видов: строительные, автоматные, термоупрочняемые, повышенной прочности и др. Маркировка начинается с цифр, обозначающих углерод в сотых долях процента: от 08 до 85. Если увеличено содержание марганца, в конце добавляют Г

● Инструментальные — для изготовления инструмента, не подвергающегося нагреву: зубила, молотки, топоры. Группу сталей относят к качественным и обозначают буквой У в начале, высшее качество дополнительно маркируют знаком А в конце.

● Общего назначения — недорогие сплавы для изготовления труб, прутков, швеллеров, ковки и литья. Предусмотрено несколько подгрупп. К группе А относят стали со стабильными механическими свойствами (Ст1кп, Ст6сп), первую букву не пишут. У группы Б регламентирован химический состав (БСт4сп, БСт6пс), у В стабильны состав и свойства (ВСт3сп, ВСт5).

Углеродистые стали предназначены для изготовления нагруженных деталей и конструкций: рельсов, валов, тяг, осей, пружин рессоров, деталей турбин. Они отлично свариваются, поддаются резанию, ковке, но требуют защиты от коррозии.

Разница между легированной и углеродистой сталью

Различие в химическом составе определяет характеристики материалов.

Легированные стали отличаются коррозионной стойкостью.

В зависимости от элементов, связанных с железом, они могут работать в морской воде, кислотных средах даже при высоких температурах, но плохо справляются с ударными нагрузками, имеют малую несущую способность. Производство сплавов и конечных продуктов сопряжено с применением десятков сложных технологий.

Углеродистые стали без антикоррозийных покрытий подвержены быстрому разрушению.

Их области применения: все металлоемкие производства. Экономическая целесообразность большого расхода сырья коррелирует с простотой обработки.

Углеродистая сталь: состав, свойства

При выплавке железной руды сначала получают чугун, в химическом составе которого не менее 2,14% углерода. Процедура науглероживания превращает сырье в сталь. Металл становится пластичнее, но обладает меньшей твердостью. Так как углеродная массовая доля по-прежнему считается высокой, такие сплавы называют углеродистыми. В зависимости от этого показателя, определяют три группы:


  • Высокоуглеродистые (0,6-1,4%) — особо твердые сплавы. Из них изготавливают канатную проволоку, дробь для дробеструйной обработки, штампы для деформации металлов. В группу входят некоторые пружинные марки.
  • Среднеуглеродистые (0,3-0,6%) — наряду с прочностью повышается пластичность, что крайне важно для технологической обработки. Область применения: конструкции, работающие в нормальных условиях.
  • Низкоуглеродистые (до 0,25%) — мягкие сплавы с хорошей формообразующей способностью. Детали обычно подвергают отжигу для увеличения прочности.

Углерод образует карбидные соединения, находящиеся в состоянии цементита и обуславливает следующие свойства углеродистых сталей:

  • Прочность;
  • Упругость;
  • Износостойкость.

Наряду с этим цементит неустойчив к изменениям внешних условий, подвержен распаду с образованием свободного графита, хрупок. Причиной может быть избыточная кинетическая энергия, увеличение нагрузок. В ходе разрушения кристаллической решетки образуются графитные хлопья и вкрапления, вследствие чего изделие утрачивает первоначальные свойства.


Характеристики углеродистых сталей объясняются прежде всего сложным молекулярным строением. Ячейка структуры цементита приобретает форму октаэдра.

В результате сплавам присущи следующие технико-экономические показатели:

  • Высокая прочность и несущая способность;
  • Из-за плохой прокаливаемости формируется твердый поверхностный слой и мягкая сердцевина, это свойство компенсирует хрупкость;
  • Долговечность, в нормальных условиях или с использованием способов защиты от коррозии срок службы достигает 50 лет;
  • Низкая цена. Технологический процесс выплавки доступен с момента появления мартеновских печей в конце XIX века.

Углеродистая сталь — незаменимый конструкционный материал, а невысокая стоимость позволяет использовать ее в строительстве масштабных сооружений: трубопроводов, зданий, мостов.

Выдающиеся механические параметры применяют при изготовлении инструментов и крепежей, деталей, испытывающих повышенные нагрузки.


Химический состав


Классификация по качеству и способу производства

В рудах содержится большое количество неметаллических включений, минералов и газов, влияющих на физико-химические свойства. К полезным относятся кремний и магний, к вредным, фосфор и серу. Выплавка производится в следующей последовательности:

  • Плавление: осуществляется при максимальной температуре с активным окислением железа, марганца, кремния, фосфора и других элементов.
  • Окисление: при распаде карбидов образуется углекислый газ, в состоянии кипения массовая доля углерода уменьшается до 2%.
  • Раскисление: оксиды восстанавливают до железа ферромарганцем, ферросилицием и другими реагентами. При плохой раскисленности материал склонен к трещинообразованию.

Температура доменных печей не позволяла выплавлять стали. Сегодня произвести эти операции можно несколькими способами:

  • Мартеновские печи. Пьер Мартен дополнил кузнечные печи регенератором, который не позволял рассеиваться тепловой энергии продуктов горения, таким образом удалось получить достаточную температуру. Снижение углеродной составляющей достигалось в основном выгоранием карбидов. Последняя печь в России работала до 2018 года на Выксунском заводе.
  • Конвертеры. Расплавленную массу продувают кислородом снизу и сверху. В ходе химической реакции окисления выделяется дополнительная энергия. Контакт воздушного потока с расплавом увеличивают перемешиванием.
  • Электроплавка. Электрометаллургия позволяет заменить реагенты электролизом, в частности на этапе восстановления из окиси не требуется уголь, что снижает количество примесей и вредные выбросы в атмосферу. Кроме этого предусмотрены возможности получения температур до 20 тыс С⁰ с помощью эффекта электротермии и вакуумная плавка.

В результате проведенной работы получают углеродистые стали разного качества. Этот параметр указывают в технической документации, так как от маркировки зависит область применения.

  • Обыкновенные — самый распространенный материал для производства металлопроката, конструкций, термоупрочняемых деталей: валов, осей, втулок. Вредные примеси: до 0,05%.
  • Качественные — характеристики указывают в отраслевых стандартах. Общее содержание примесей: до 0,035%.
  • Высококачественные — загрязненность до 0,025%. В основном применяются для изготовления инструментов.
  • Особо высококачественные — концентрации серы и фосфора ниже 0,015%. В обозначении употребляют букву «Ш».

Получение сталей с малым содержанием примесей возможно только методом электроплавки. Они используются для производства некоторых механизмов и деталей оборудования специального назначения, например в атомной энергетике.

Классификация по уровню раскисления и количеству углерода

На этапе окисления расплав насыщается водородом, азотом, углекислотой, а железо превращается в окись. Восстановление металла осуществляется до нужных параметров, так как дополнительная очистка приводит к удорожанию. В связи с этим действует следующая классификация:

  • Кипящие (кп) — раскисление осуществляют марганцем, структура неоднородная и насыщенная пузырьками воздуха, характеристики отличаются от слитка к слитку. КП ценят за низкую стоимость и пластичность, их используют для производства плит, подставок, неответственных элементов, работающих при температуре не ниже -20 С⁰.
  • Полуспокойные (пс) — окись восстанавливают марганцем и алюминием, если процедура проведена правильно, то газы концентрируются в верхней части слитка. При обработке прокаткой дефекты устраняются.
  • Спокойные (сп) — газы удалены практически полностью, структура однородная и плотная. Применяются для изготовления сортового и фасонного проката.

Индекс раскисления указывают только для обыкновенных и частично для качественных сталей, в других маркировках он не используется, так как требования к химическому составу устраняют эту необходимость.

Чем больше углерода, тем выше прочность, но из-за снижения пластичности и ударной вязкости материал становится хрупким. При превышении установленных нагрузок вместо пластической деформации образуются трещины и сколы.


По его массовой доле углерода определяют назначение:

  • Обыкновенные (от 0,06 до 0,49%) — в зависимости от группы поставки механические свойства или состав могут быть стабильны.
  • Конструкционные — понятие включает в себя сплавы разного качества со средним содержанием (0,25-0,6%), применяется в машиностроении и строительстве.
  • Инструментальные — марки с самой высокой твердостью (от 0,7), из них изготовляют ударные инструменты, группа включает в себя только качественные и высококачественные стали У7,У8 — У11А, У12а.

Характеристики и структуру металла изменяют термообработкой. Таким образом достигается баланс прочности и пластичности стальных изделий, повышается коррозионная стойкость. В ряде случаев закаливанию подвергаются лишь поверхностные слои, а сердцевина остается пластичной.

Маркировка углеродистых сталей

Обозначение указывает на класс, чистоту и назначение. В России и СНГ приняты регламенты ГОСТ и ОСТ, устанавливающие нормы химического состава, механических свойств и методов испытаний. В каждой стране разработана своя система: DIN(Германия), EN (Евросоюз), JIS (Япония). Свои нормативы действуют даже в небольших государствах, таких как Чехия, Югославия, Бельгия, в США работает сразу несколько организаций стандартизации, которые создали 8 спецификаций.

Всё об углеродистой стали – от состава до применения

Центральное место во всем промышленном материаловедении занимает сталь. С ее помощью успешно решают большинство технических задач. К услугам инженера — огромный диапазон вариантов: начиная от самой простой строительной арматуры и заканчивая хромоникелевой нержавейкой, способной работать в условиях открытого космоса.

Наибольшего внимания заслуживает углеродистая сталь и ее марки. Они лишены значимых легирующих добавок и потому представляют собой исключительно композицию железа и углерода в чистом виде. Познакомиться с углеродистыми сталями поближе — значит понять основополагающие принципы, как ведут себя все сплавы из категории «черных» и от чего зависят их рабочие характеристики.

Классификация и марки

Лишь у некоторых уникальных промышленных материалов есть полноценные имена — в честь их изобретателей или каких-то особенных свойств. Остальные довольствуются условным обозначением — т.н. маркой, внутри которой зашифрована ключевая информация. Марку можно сравнить с разновидностью, чей состав и структура жестко определены и неизменны.

Условно все углеродистые стали делят на несколько категорий, используя два определяющих параметра: химсостав материала или его функциональное применение. Причем марки, соседствующие в одной группе по первому делению, с большой долей вероятности станут коллегами и при оценке рабочих свойств.

Металлургический ковш с жидкой сталью

По химическому составу

Ключевым параметром, на который обращают внимание при знакомстве с любой маркой стали, становится процент содержания углерода. Различают три вида:

05кп, 08кп, 10, 15, 20, Ст0, Ст1, Ст2

25, 35, 45, 55, Ст3, Ст4, Ст5, Ст6

58, 60, 65, 70, 75, 80, 85, У9, У12, У13

Низкоуглеродистые стали предназначены преимущественно для изготовления сварных изделий — за счет малой доли углерода они очень податливы к любым процессам сварки, не склонны к образованию флокенов и трещин, легко поддаются механическому резанию и изгибу. В целом, они вязкие и с низкой прочностью.

Термическое упрочнение (закалка, улучшение) не дают ощутимого эффекта по росту прочности или твердости. Зато собственное низкое содержание углерода позволяет применить к материалу особый вид химико-термической обработки — цементацию. Поверхностные слои насыщаются углеродом из внешнего источника, после чего реакция на закалку становится уже совершенно иной. Твердость поверхности зашкаливает, а сердцевина по-прежнему остается мягкой и может работать как гаситель напряжений.

Среднеуглеродистые стали — наиболее ходовые и популярные благодаря своей «серединности» и универсальности. Они лишены недостатков остальных граничных групп и обладают собственными достоинствами.

В частности, такие марки стабильно и уверенно реагируют на закалку, набирая нужную прочность и твердость без дополнительных ухищрений. Но сварку следует вести с осторожностью — увеличенная доза углерода может приводить к развитию трещин при кристаллизации шва.

Их используют для производства деталей машин и механизмов, которые постоянно испытывают рабочие нагрузки. Это разнообразные шестерни, рычаги, колеса, шкивы ременных передач, валы и оси. Углеродистые стали всегда дешевле любых легированных, поэтому марки со средним содержанием углерода предпочтительны, если конечное изделие не испытывает негативного воздействия коррозии, нагрева или охлаждения. Тяжелая работа в обычных условиях — это пример применения таких сплавов.

Высокоуглеродистые стали вообще не рекомендуется варить: они очень склонны к образованию трещин, флокенов и остаточных напряжений в зоне шва. За счет высокой доли углерода на закалку реагируют лучше всех остальных. Результатом становится очень высокая твердость и прочность, вплоть до возникновения пружинящих свойств.

Такие марки закладывают для изготовления специальных деталей машин, пружин различной конфигурации (плоские, витые, тарельчатые), режущего и слесарного инструмента.

По области применения

С учетом химического состава, «круг обязанностей» каждой марки уже предопределен, как и сфера, где ее можно использовать максимально эффективно. Поэтому все углеродистые стали разделили на три категории по области применения:

Категория Группа Примеры марок
Конструкционные Общего назначения Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст5
Качественные 05кп, 08кп, 10, 15, 20, 35, 45, 50, 55, 60
Повышенной обрабатываемости А11, А20, А30, А35
Инструментальные - У8, У10, У11, У12А
Специальные Рессорно-пружинные 65, 70, 75, 80, 85
Для строительных конструкций С235, С285, С590К
Подшипниковые ШХ4
Для крановых рельс К63

Конструкционные углеродистые стали предназначены для изготовления деталей машин и металлоконструкций. Их активно используют во всех сферах промышленности — начиная от металлообработки и заканчивая возведением атомных электростанций.

Среди них выделяют три основных группы:

  • общего назначения — марки со стандартной степенью очистки от постоянных примесей. Нужно преимущественно для сварных строительных конструкций, корпусных деталей и ненагруженных элементов;
  • качественные — повышенной степени очистки и с улучшенными механическими свойствами. Применяются для производства деталей машин и крепежа;
  • повышенной обрабатываемости — с максимально стабильной структурой и постоянством физико-механических свойств по всему объему. Такой материал идет в работу на автоматические линии.

Сварка конструкции из углеродистого проката

Инструментальные углеродистые стали могут похвастать куда большим содержанием углерода, чем все остальные «родственники» — от 0,66 до 1,35%. Такие сплавы используют для производства:

  • режущего инструмента — для работ по дереву, пластику, мягким цветным сплавам и незакаленной стали;
  • мерительного инструмента;
  • слесарного инструмента;
  • оснастки для холодной штамповки;
  • вспомогательной станочной оснастки.

Главное преимущество инструментальных марок — очень сильная реакция на закалку, увеличенная износостойкость, твердость и прочность.

Углеродистая сталь для строительных конструкций идет на массовый выпуск фасонного проката: швеллера, тавровой и двутавровой балки, уголков. В сплавах этого типа заложено мало углерода и ощутимое количество примесей кремния и марганца (до 0,5..0,8%), чтобы обеспечить необходимую вязкость, устойчивость и хорошее восприятие сварочных процессов.

Очень интересна марка ШХ4, случайно попавшая в группу подшипниковых как единственная нелегированная сталь. Ее используют для производства колец железнодорожных подшипников. Содержание углерода там изрядное — в пределах 0,95 до 1,05% — и присутствует щепотка хрома — 0,35..0,5%.

Марку К63 (или просто 63) применяют исключительно для горячей прокатки специального сортамента — рельс крановых путей. Этот сплав обеспечивает необходимый баланс между прочностью, износостойкостью и стрессоустойчивостью. Материал постоянно работает с высокими нагрузками и фрикционным износом от катания колес.

Свойства углеродистых сталей

При рассмотрении той или иной марки, инженера интересует химический состав не сам по себе, а как прямое указание на возможные физико-механические свойства. А те, в свою очередь, отражают диапазон функций, которые характерны для материала.

И с оглядкой на такую взаимосвязь можно сделать утверждение, что каждая марка углеродистой стали по-своему уникальна, потому что обладает собственным, неповторимым набором характеристик.

Прочностные характеристики

Первым параметром, на который ориентируются при проектировании любой конструкции, становится умение материала сопротивляться действующим нагрузкам. Это комплексная характеристика, в которую войдут:

  • предел прочности — размер силовой нагрузки, при которой металл разрушается;
  • предел текучести — размер силовой нагрузки, при которой металл начинает деформироваться;
  • ударная вязкость — способность сопротивляться внезапным силовым воздействиям;
  • относительное удлинение при разрыве — насколько металл будет удлиняться перед тем, как окончательно «порваться» под действием радикальной силовой нагрузки, превышающей предел прочности;
  • твердость — способность сопротивляться внедрению иного твердого тела.

Все эти показатели тесно связаны между собой. И по их оценке можно легко предсказать, как материал поведет себя в работе.

Связь между отдельными механическими характеристиками сплава не всегда прямая. Например, предел прочности всегда в 1,7..2,2 раза больше предела текучести. Зато, чем выше предел прочности сплава — тем зачастую меньшую величину относительного удлинения при разрыве он покажет.

Механические характеристики углеродистых сталей растут вместе с содержанием углерода. Этот элемент — главный признак всех возможностей сплава.

Ниже в таблице приведены ориентировочные показатели разных категорий сталей в «сыром» состоянии.

Маркировка и классификация сталей

Сталь — это сплав железа с углеродом (до 2% углерода). По химическому составу сталь разделяют на:

По качеству сталь разделяют на:

  • сталь обыкновенного качества;
  • качественную;
  • повышенного качества;
  • высококачественную.

Сталь это сплав железа с углеродом

Сталь углеродистую обыкновенного качества подразделяют на три группы:

  • А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
  • Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);
  • В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).

Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Стбпс, Стбсп.

Буквы Ст обозначают «Сталь», цифры — условный номер марки в зависимости от химического состава, буквы «кп», «пс», «сп» — степень раскисления «кп» — кипящая, «пс» — полуспокойная, «сп» — спокойная).

Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на:

  • горячекатаную и кованую;
  • калиброванную;
  • круглую со специальной отделкой поверхности, серебрянку.

Легированную сталь по степени легирования разделяют:

  • низколегированная (легирующих элементов до 2,5%);
  • среднелегированная (от 2,5 до 10%);
  • высоколегированная (от 10 до 50%).

В зависимости от основных легирующих элементов различают сталь 14 групп.

К высоколегированным относят:

  • коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
  • жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 °C, работающие в ненагруженном и слабонагруженном состоянии;
  • жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Сталь легированную конструкционную в зависимости от химического состава и свойств делят:

  • качественная;
  • высококачественная А;
  • особо высококачественную Ш (электрошлакового переплава).

По видам обработки при поставке различают сталь:

  • горячекатаная;
  • кованая;
  • калиброванная;
  • серебрянка.

По назначению изготовляют прокат:

  • для горячей обработки давлением и холодного волочения (подкат);
  • для холодной механической обработки.

2. Классификация углеродистых сталей

Стали подразделяются на углеродистые и легированные. По назначению различают стали конструкционные с содержанием углерода в сотых долях процента и инструментальные с содержанием углерода в десятых долях процента. Наибольший объем сварочных работ связан с использованием низкоуглеродистых и низколегированных конструкционных сталей.

Основным элементом в углеродистых конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные. Стали углеродистые обыкновенного качества подразделяются на три группы:

  • группа А — по механическим свойствам;
  • группа Б — по химическому составу;
  • группа В — по механическим свойствам и химическому составу.

Изготавливают стали следующих марок:

  • группа А — Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6;
  • группа Б — БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6;
  • группа В — ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5.

По степени раскисления сталь обыкновенного качества имеет следующее обозначение:

  • кп — кипящая,
  • пс — полуспокойная,
  • сп — спокойная.

Кипящая сталь, содержащая кремния (Si) не более 0,07%, получается при неполном раскислении металла марганцем. Сталь характеризуется резко выраженной неравномерностью распределения вредных примесей (серы и фосфора) по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах.

Спокойная сталь получается при раскислении марганцем, алюминием и кремнием, и содержит кремния (Si) не менее 0,12%; сера и фосфор распределены в ней более равномерно, чем в кипящей стали. Эта сталь менее склонна к старению и отличается меньшей реакцией на сварочный нагрев.

Полуспокойная сталь по склонности к старению занимает промежуточное место между кипящей и спокойной сталью. Полуспокойные стали с номерами марок 1—5 выплавляют с нормальным и с повышенным содержанием марганца, примерно до 1%. В последнем случае после номера марки ставят букву Г (например, БСтЗГпс).

Стали группы А не применяются для изготовления сварных конструкций. Стали группы Б делятся на две категории. Для сталей первой категории регламентировано содержание углерода, кремния марганца и ограничено максимальное содержание серы, фосфора, азота и мышьяка; для сталей второй категории ограничено также максимальное содержание хрома, никеля и меди.

Стали группы В делятся на шесть категорий. Полное обозначение стали включает марку, степень раскисления и номер категории. Например, ВСтЗГпс5 обозначает следующее: сталь группы В, марка СтЗГ, полуспокойная, 5-й категории. Состав сталей группы В такой же, как сталей соответствующих марок группы Б, 2-й категории. Стали ВСт1, ВСт2, ВСтЗ всех категорий и степеней раскисления выпускаются с гарантированной свариваемостью. Стали БСт1, БСт2, БСтЗ поставляют с гарантией свариваемости по требованию заказчика.

Углеродистую качественную сталь выпускают в соответствии с ГОСТ 1060—74. Сталь имеет пониженное содержание серы. Допустимое отклонение по углероду (0,03—0,04%). Стали с содержанием углерода до 0,20%, включительно, могут быть кипящими (кп), полуспокойными (пс) и спокойными (сп). Остальные стали — только спокойные. Для последующих спокойных сталей после цифр, буквы «сп» не ставят.

Углеродистые стали в соответствии с ОСТ 14-1-142—84 подразделяются на три подкласса:

  • низкоуглеродистые с содержанием углерода до 0,25%;
  • среднеуглеродистые с содержанием углерода (0,25—0,60%);
  • высокоуглеродистые с содержанием углерода более 0,60%.

В сварных конструкциях в основном применяют низкоуглеродистые стали.

В сварочном производстве очень важным является понятие о свариваемости различных металлов.

Свариваемостью называется способность металла или сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.

По свариваемости углеродистые стали условно подразделяются на четыре группы:

  • I — хорошо сваривающиеся;
  • II — удовлетворительно сваривающиеся, т. е. для получения качественных сварных соединений деталей из этих сталей необходимо строгое соблюдение режимов сварки, специальные присадочные материалы, определенные температурные условия, а в некоторых случаях — подогрев, термообработка;
  • III — ограниченно сваривающиеся, для получения качественных сварных соединений необходим дополнительный подогрев, предварительная или последующая термообработка;
  • IV — плохо сваривающиеся, т. е. сварные швы склонны к образованию трещин, свойства сварных соединений пониженные, стали этой группы обычно не применяют для изготовления сварных конструкций.

Все низкоуглеродистые стали хорошо свариваются существующими способами сварки плавлением. Обеспечение равнопрочности сварного соединения не вызывает затруднений. Швы имеют удовлетворительную стойкость против образования кристаллизационных трещин. Это обусловлено низким содержанием углерода. Однако в сталях, содержащих углерод по верхнему пределу, вероятность возникновения холодных трещин повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях, для предупреждения появления трещин, применяют предварительный подогрев до 120—200 °C.

В табл. 1. приведено обозначение химических элементов в марке легированной стали, а в табл 2 — состав некоторых марок сталей. В табл. 3 приведено примерное назначение различных марок сталей.

Таблица 1. Обозначение химических элементов в марке легированной стали

Таблица 2. Массовая доля химических элементов в различных марках стали в %

Читайте также: