Как при закалке изменяются свойства низкоуглеродистых сталей

Обновлено: 19.05.2024

Низкоуглеродистая сталь получила широкое распространение в промышленной и строительной отраслях. Её высокая популярность связана с физико-химическими характеристиками и доступной ценой. Сегодня подробнее поговорим об этом сплаве.

Что это такое?

Сплав железа с углеродом получил название «углеродистая сталь». Включение углеродных компонентов позволяет многократно усилить жесткость готового материала. Эта сталь обладает прочностью и твердостью, но при этом утрачивает свою пластичность. Варьируя количество углерода, можно модулировать свойства металла в соответствии с технической необходимостью. Минимальная концентрация этого элемента в сплаве не превышает уровня в 0,25% — такие составы классифицируются как малоуглеродистые. Низкоуглеродистые стали не изменяются при закалке.

Благодаря пластичности и мягкости их швы с легкостью свариваются сваркой любых типов. К тому же заготовки могут обрабатываться ковкой.



В соответствии с действующими ГОСТ 3800-2005 и 1050-9, помимо железа и углерода, структура низкоуглеродистой стали может включать дополнительные компоненты.

  • Кремний — до 0,3%, повышает физико-механические параметры, особенно прочность, а также ударную вязкость. Повышение концентрации кремния в составе способствует лучшей свариваемости материала.
  • Марганец — до 0,8%, относится к категории полезных добавок. Молекулярное строение марганца напоминает кислород, поэтому он вступает с ним в химическую реакцию и тем самым препятствует формированию окислов железа, то есть ржавчины. Сплавы, подвергнутые легированию марганцем, легче справляются с высокими динамическими нагрузками и проявляют податливость к тепловому воздействию.
  • Сера — до 0,6%, это вредная примесь. Она существенно усложняет обработку сплава прокаткой, ковкой и другими техниками. К тому же материал получается красноломким и плотным, сера ухудшает параметры отпускной хрупкости и понижает плотность сварного шва.
  • Фосфор — до 0,08%, способен искажать кристаллическую структуру связей. Добавка уменьшает выносливость и плотность металла, понижает параметры ударной вязкости. В отдельных случаях включение такой примеси оправдано, поскольку фосфор способствует повышению податливости металлических изделий резанию. Но даже в этом случае его доля не должна превышать 0,1%, иначе происходят нежелательные изменения структуры.
  • Кислород — самая вредная добавка, нежелательный элемент в составе любого металлического сплава. Введение всего лишь 0,001% кислорода может вызвать уменьшение прочности стали на 50%. К тому же кислород препятствует резанию материала.
  • Азот — при включении в сплав формирует нитриты железа. Это довольно хрупкое соединение, которое способно вызвать ухудшение технологических и прочностных характеристик металла.

Из-за своей мягкости низкоуглеродистая сталь не позволяет выполнять точную обработку поверхностей. Однако благодаря вязкости и пластичности материал можно включать в производственный цикл по созданию цементируемых заготовок и элементов для дальнейшей сварки.

Обрабатываемость такой стали низка — поверхности содержат много шероховатостей.



Основные свойства

Основное свойство низкоуглеродистой стали — это пониженный предел прочности, при этом вязкость и пластичность материала, напротив, довольно высоки. Некоторые марки такой стали могут использоваться для создания цементируемых конструкций, которые требуют дополнительной герметизации с целью получения определённой степени твердости и придания заготовкам стойкости к износу в результате дальнейшей обработки. Именно поэтому изделия из низкоуглеродистой стали хорошо куются и легко свариваются.

Технико-эксплуатационные характеристики такого сплава не позволяют проводить с ним полноценную обработку. Однако если воспользоваться техникой холодного волочения и нормализации — можно оптимизировать структуру материала и улучшить параметры обрабатываемости металлической поверхности. Благодаря пластичности низкоуглеродистые составы успешно подвергаются холодной деформации, не утрачивая при этом своих технико-механических характеристик. Это связано с тем, что локальное перенапряжение распределяется по всей поверхности равномерно и предотвращает растрескивание. Такую сталь можно подвергать сварке и закаливанию.

В то же время, в соответствии с диаграммой растяжения, низкоуглеродистые сплавы имеют свои недостатки:

  • пониженная прочность Те = от 330 до 460 мПа, Сто, 2 = от 200 до 280 мПа;
  • низкая ударная вязкость;
  • высокая чувствительность к механическому старению металла.

При любых, даже минимальных поворотных нагрузках, низкоуглеродистая сталь ощущает концентрацию напряжения. Именно поэтому изделия, подвергающиеся подобным воздействиям, из нее не изготавливают.



По качеству

По качественному признаку выделяют два типа стали.

  • Обыкновенного качества — к подобному сплаву не предъявляют жестких требований, это относится и к шихте, и к процессам плавки. Присутствие фосфора в таком материале не должно выходить за отметку 0,08%, серы — 0,06%. Этот материал разливают в габаритные слитки, потому для них типично возникновение зональной ликвации.
  • Качественная машиностроительная — такие стали выполняются в жестких условиях. Их отличает минимальное присутствие вредных примесей, доля серы и фосфора не должна подниматься выше уровня в 0,04%. Обычно такой материал маркируется словом «сталь», а также цифрами, которые обозначают долю карбидов, измеренную в сотых долях процентов.

Так сталь 08 и 10 широко востребована в ответственных узлах машино- и станкостроения. Из нее выполняют прокладки, втулки, змеевики и другие элементы. Перед работой такие детали в обязательном порядке подвергают термохимическому отверждению, чаще всего цементации. Сталь 15, 20 и 25 востребована для создания работающих на износ узлов, которые не связаны с повышенными механическими нагрузками — толкатели, клапаны, всевозможные рычаги и шестерни.



По способу получения

Цикл производства низкоуглеродистой стали состоит из нескольких шагов:

  • погрузка чугуна и лома в печь;
  • термовоздействие до достижения плавления;
  • удаление вредных добавок.

Далее производится дополнительная обработка инертными газами либо вакуумом. Если необходимости в ней как таковой нет, то выполняется разливка стали.

Выделяют три основных технологии создания низкоуглеродистой стали.

  • Мартеновские печи — наиболее распространённый метод получения сплава. В данном случае плавка производится на протяжении нескольких часов. Столь длительный период работы позволяет контролировать качество получаемого металлического состава.
  • Конвекторные печи — подобный сплав получается благодаря подведению кислорода. Полученные подобным методом материалы содержат значительную долю примесей, потому не могут похвастаться высоким качеством.
  • Электрические и индукционные печи — в процессе производства таких сталей используется шланг. На выходе получаются специализированные сплавы самого высокого качества.




По условиям проведения раскисления

По данному критерию все типы низкоуглеродистых сплавов разделяются на три категории.

  • Спокойные — содержат минимальную концентрацию оксидов железа, благодаря чему выплавка производится без интенсивного выделения углекислоты. Такая реакция достигается за счёт введения в структуру стали марганца, кремния и алюминия, выполняющих роль раскислителя. В результате все выделяющиеся газообразные вещества накапливаются в осадочной раковине. Это позволяет получить плотный металл с однородной структурой.
  • Кипящие — такие сплавы раскисляются только марганцем. Для них типична повышенная концентрация окислов железа в структуре. Плавка сопровождается активным выделением углекислоты, благодаря чему складывается впечатление, словно металл кипит. Эти сплавы имеют менее однородный состав, их прочность невысока, но при этом и цена их на порядок ниже остальных.
  • Полуспокойные — для нейтрализации кислорода в состав подобных сплавов включают марганец и алюминий. Этот сплав по своим эксплуатационным характеристикам представляет «золотую середину» между спокойным и кипящим составами.



Марки и сферы применения

Маркировка малоуглеродистой стали включает набор букв и цифр. Буквенное обозначение представлено символами «СТ» — первые две буквы от слова «сталь». Следующее за ним числовое значение нужно разделить на 100. Получившееся частное укажет на процентную долю углерода в структуре. К примеру, маркировка СТ20 означает, что в этом составе содержится 0,2% углерода. Для справки: В некоторых случаях обозначение «СТ» не используют.

Далее идет кп/пс — они указывают на кипящий либо полуспокойной сплав. Если подобное обозначение отсутствует, это значит, что сталь спокойная. Следом идут буквы и числовые обозначения, которое указывают на присутствие добавок и их концентрацию. Так, Г – марганец, Ю – алюминий, Ф – ванадий. Также может использоваться цветовой маркер. Низкоуглеродистый сплав 10 часто имеет выраженный белый колер. Для сталей специализированного назначения используются дополнительные символы: К — востребована в производстве котлов; ОсВ – востребована при создании вагонных осей и подобных изделий.

С учетом маркировки варьируется и направление применения сталей.

  • 05кп, 08, 08кп, 08ю — нужны для производства арматурной проволоки. Этот материал проявляет высокую эластичность, благодаря чему нашел применение в холодной вытяжке и штамповании. Из него изготавливают также некоторые топливные котлы, змеевики, фрагменты сварных конструкций и кузовные детали для автомобилестроения.
  • 10 и 15 — востребованы для создания заготовок изделий, не подвергающихся повышенным нагрузкам. Это бывает штамповка, болты, винты, муфты и трубы для котлов.
  • 18кп — применяется при производстве конструкций методом сварки.
  • 20 и 25 — получили распространение при создании крепежей, в частности клапанов, толкателей и прочих элементов сельхозтехники.
  • 30-35 — идут на создание звёздочек, шестерней и других осей, испытывающих низкие нагрузки.
  • 40, 45 и 50 — подходят для элементов, которые в ходе эксплуатации сталкиваются с нагрузками средней величины. Сюда относятся фрикционные диски и коленвалы.
  • 60-85 — такие стали подвергаются самой сильной нагрузке. Из них делают рессоры, колёса для кранов и даже рельсы для нужд железной дороги.

Таким образом, ассортимент продукции, изготавливаемой из малоуглеродистой стали, очень обширен — начиная от простой проволоки до сложных механизмов.



Сварка

Сварка низкоуглеродистых сплавов имеет свои особенности. Так, электроды, их размеры и техника сваривания подбираются с учетом основных технических требований.

  • Соединение должно быть как можно более крепким.
  • Не допускается наличие дефектов шва.
  • Химический состав и структура шва должны производиться в точном соответствии с действующими нормативами.
  • Качество сварочных соединений должно отвечать эксплуатационным условиям. От них требуется стойкость к температурному режиму, вибрационным колебаниям и механическим воздействиям.

При этом для низкоуглеродистой стали могут использоваться самые разнообразные типы сварки, начиная от простейшей газовой и ручной дуговой до сварки плавящимся электродом в углекислоте.

При выборе методики учитывают повышенную плавкость низколегированных и малоуглеродистых составов.

Как при закалке изменяются свойства низкоуглеродистых сталей?

Данное описание некоторых общих механических и физических свойств при закалке низкоуглеродистых сталей предоставит информацию, которая даст возможность понять, что:

Низкоуглеродистые стали подходят для использования с безводными жидкостями, такими как углеводородные растворители, или химическими потоками с низким содержанием воды (например, порядка 1 части на миллион или меньше).

Низкоуглеродистые стали, как правило, непригодны для использования с водными химическими потоками, если в поток не добавлен ингибитор коррозии.

Существуют также ситуации, когда приемлемый срок службы низкоуглеродистых сталей в водных потоках достигается за счет увеличения толщины стенок оборудования.

Низкоуглеродистая сталь обычно не подвергается термообработке перед использованием, а содержание углерода выше 0,15% контролируется и регулируется.

Закалка позволяет получить сплав с высокой прочностью и износостойкостью. Однако закалка также увеличивает хрупкость и не подходит для инженерных применений.

Низкоуглеродистые стали можно легко сваривать контактной сваркой всеми способами, чистая сталь для глубокой вытяжки обычно считается превосходной в этом отношении.

Так же тут не стоит гадать, когда стоит вопрос об отношениях пластичности и прочности низкоуглеродистых сталей…

Пластичность – это способность материала пластически деформироваться (то есть растягиваться) без разрушения и сохранять новую форму при снятии нагрузки. Например, можно подумать об этом, когда возникает вопрос о том, как растянуть данный металл в проволоку.

Пластичность часто измеряют с помощью испытания на растяжение в процентах от удлинения или уменьшения площади поперечного сечения образца перед его применением. Испытание на растяжение также можно использовать для определения модуля упругости, важного соотношения напряжения и деформации, используемого во многих проектных расчетах. Тенденция материала сопротивляться растрескиванию или разрушению под нагрузкой делает пластичные материалы подходящими для других процессов металлообработки, включая прокатку или волочение. Некоторые другие процессы, такие как холодная обработка, делают металл менее пластичным, но в то же время и более хрупкими.

Ковкость, - физическое свойство, описывает способность металла формироваться без разрушения. Давление или сжимающее напряжение используется для прессования или раскатывания материала в более тонкие листы. Таким образом, материал с высокой пластичностью сможет выдержать более высокое давление без разрушения.

Теперь, что касаемо прочности.

Здесь можно рассмотреть несколько основных свойств металлов:

Прочность на растяжение

Одним из наиболее распространенных показателей свойств металлов является предел прочности при растяжении. Прочность на растяжение относится к величине нагрузки, которую секция металла может выдержать, прежде чем она сломается. При лабораторных испытаниях металл удлиняется, но возвращается к своей первоначальной форме через область упругой деформации. Когда он достигает точки постоянной или пластической деформации (измеряемой как предел текучести), он сохраняет удлиненную форму даже при снятии нагрузки. А в точке растяжения, нагрузка приводит к окончательному разрушению металла. Эта мера помогает отличить хрупкие материалы от более пластичных. Прочность на растяжение или предел прочности при растяжении измеряется в ньютонах на квадратный миллиметр (мегапаскалях или МПа).

Прочность на удар

Ударопрочность – это мера способности материала противостоять удару. Эффект удара — столкновение, которое происходит за короткий период времени — обычно больше, чем эффект более слабой силы, оказываемой в течение более длительного периода времени. Таким образом, некоторые металлы могут приемлемо работать при статической нагрузке, но разрушаться при динамических нагрузках или при столкновении. В лаборатории удар часто измеряется с помощью обычного теста Шарпи, когда утяжеленный маятник ударяет по образцу, расположенному напротив обработанного V-образного надреза. По Шарпи, аналогичного сопротивлению удару, ударная вязкость представляет собой способность материала поглощать удары без разрушения при заданной температуре. Поскольку ударопрочность часто ниже при низких температурах, материалы могут стать более хрупкими. Значения Шарпи обычно назначаются для ферросплавов, где при применении существуют возможности низких температур (например, морские нефтяные платформы, нефтепроводы и т. д.) или где рассматривается мгновенная нагрузка (например, баллистическая защита в военных или авиационных технологиях).

Из всего вышеизложенного следует, что при закалке низкоуглеродистых сталей учитываются все параметры, чтобы всестороннее применение материалов из таких сталей было как можно универсальной с учетом не только пластичности и прочности, но и: коррозионной стойкости, плотности, эластичности, жесткости, твердости, износоустойчивостью, силой, усталостью металла. Над этими и многими другими физическими свойствами металлов постоянно работают, поэтому с каждым годом их совершенствуют и улучшают.

Какую сталь можно закалить


Закалкой называют вид термической обработки металлов, который заключается в нагреве выше критической температуры с последующим резким охлаждением (обычно) в жидких средах. Критической называют температуру, при которой происходит изменение типа кристаллической решетки, то есть осуществляется полиморфное превращение. Она определяется она по диаграмме «железо-углерод».


Свойства стали после закалки

После закалки увеличивается твердость и прочность стали, но при этом повышаются внутренние напряжения и возрастает хрупкость, провоцирующие разрушение материала при резких механических воздействиях. На поверхности изделия появляется толстый слой окалины, который необходимо учитывать при определении припусков на обработку.

Внимание! Некоторые изделия закаляются частично, например, это может быть только режущая кромка инструмента или холодного оружия. В этом случае на поверхности изделия можно наблюдать четкую границу, разделяющую закаленную и незакаленную части. Закаленную часть на клинках называют «хамон», что в переводе на современный язык металлургии означает «мартенсит».

Определение! Мартенсит – основная составляющая структуры стали после закалки. Вид этой микроструктуры – игольчатый или реечный.

Для уменьшения внутренних напряжений и роста пластичности осуществляют следующий этап термообработки – отпуск. При отпуске происходит некоторое снижение твердости и прочности.

При закалке для переохлаждения аустенита до температуры мартенситного превращения требуется быстрое охлаждение, но не во всём интервале температур, а только в пределах 650—400 °C, то есть в том интервале температур, в котором аустенит менее всего устойчив и быстрее всего превращается в ферритно-цементитную смесь. Выше 650 °C скорость превращения аустенита мала, и поэтому смесь при закалке можно охлаждать в этом интервале температур медленно, но, конечно, не настолько, чтобы началось выпадение феррита или превращение аустенита в перлит.

Механизм действия закалочных сред (вода, масло, водополимерная закалочная среда, а также охлаждение деталей в растворах солей) следующий. В момент погружения изделия в закалочную среду вокруг него образуется плёнка перегретого пара, охлаждение происходит через слой этой паровой рубашки, то есть относительно медленно. Когда температура поверхности достигает некоторого значения (определяемого составом закаливающей жидкости), при котором паровая рубашка разрывается, то жидкость начинает кипеть на поверхности детали, и охлаждение происходит быстро.

Читать также: До скольки часов можно сверлить

Первый этап относительно медленного кипения называется стадией плёночного кипения, второй этап быстрого охлаждения — стадией пузырькового кипения. Когда температура поверхности металла ниже температуры кипения жидкости, жидкость кипеть уже не может, и охлаждение замедлится. Этот этап носит название конвективного теплообмена.

Технология закалки

Режим закалки определяется температурой, временем выдержки, скоростью охлаждения, используемой охлаждающей средой.

Способы закалки стали:

  • в одном охладителе – применяется при работе с деталями несложной конфигурации из углеродистых и легированных сталей;
  • прерывистый в двух средах – востребован для обработки высокоуглеродистых марок, которые сначала остужают в быстро охлаждающей среде (воде), а затем в медленно охлаждающей (масле);
  • струйчатый – обычно востребован при частичной закалке изделия, осуществляется в установках ТВЧ и индукторах обрызгиванием детали мощной струей воды;
  • ступенчатый – процесс, при котором деталь остывает в закалочной среде, приобретая во всех точках сечения температуру закалочной ванны, окончательное охлаждение осуществляют медленно;
  • изотермический – похож на предыдущий вид закалки стали, отличается от него временем пребывания в закалочной среде.

Типы охлаждающих сред

От правильного выбора охлаждающей среды во многом зависит конечный результат процесса.

    Для поверхностной закалки и работы с изделиями простой конфигурации, предназначенными для дальнейшей обработки, применяется в основном вода. Она не должна содержать соли и примеси моющих средств, оптимальная температура +30°C.

Внимание! Использовать этот способ охлаждения для деталей сложной конфигурации не рекомендуется из-за риска появления трещин.

Внимание! Для работы с изделиями из углеродистых сталей со сложным химическим составом используют комбинированное охлаждение. Оно состоит из двух этапов. Первый – охлаждение детали в воде, второй, после +200°C, – в масляной ванне. Перемещение из одной охлаждающей среды в другую должно производиться очень быстро.

Что такое закалка металлов и ее виды

Под закалкой понимают вид термообработки металла, состоящий из его нагрева до температуры, при достижении которой наступает изменение структуры кристаллической решетки (полиморфное превращение) и дальнейшего ускоренного охлаждения в воде или масляной среде. Целью такой термообработки является повышение твердости металла.

Какую сталь можно закалить

Применяется также закалка, при которой температура нагрева металла не дает состояться полиморфному превращению. В этом случае фиксируется его состояние, которое свойственно металлу при температуре нагрева. Это состояние называют пересыщенным твердым раствором.

Технологию закалки с полиморфным превращением используют в основном для изделий из стальных сплавов. Цветные металлы подвергают закалке без достижения полиморфного изменения.

После такой обработки стальные сплавы становятся тверже, но при этом они приобретают повышенную хрупкость, теряя пластичность.

Чтобы снизить нежелательную хрупкость после нагрева с полиморфным изменением, применяется термообработка, называемая отпуском. Она проводится при более низкой температуре с постепенным дальнейшим охлаждением металла. Таким способом снимается напряжение металла после процесса закаливания, и уменьшается его хрупкость.

При закалке без полиморфного превращения нет проблемы с излишней хрупкостью, но твердость сплава не достигает требуемого значения, поэтому при повторной термической обработке, называемой старением, ее наоборот повышают за счет распада пересыщенного твердого раствора.

Особенности закалки стали

Закаливаются в основном нержавеющие стальные изделия и сплавы, предназначенные для их изготовления. Они имеют мартенситную структуру и характеризуются повышенной твердостью, приводящей к хрупкости изделий.

Какую сталь можно закалить

Если провести термообработку таких изделий с нагревом до определенной температуры с последующим быстрым отпуском, то можно добиться повышения вязкости. Это позволит использовать такие изделия в различных сферах.

Виды закаливания сталей

В зависимости от предназначения нержавеющих изделий, можно провести закалу всего предмета или только той его части, которая должна быть рабочей и иметь повышенные прочностные характеристики.

Поэтому закалку нержавеющих изделий подразделяют на два способа: глобальный и локальный.

Охлаждающая среда

Достижение необходимых свойств нержавеющих материалов во многом зависит от выбора способа их охлаждения.

Разные марки нержавеющих сталей подвергаются охлаждению по-разному. Если низколегированные стали охлаждают в воде или ее растворах, то для нержавеющих сплавов для этих целей применяют масляные растворы.

Какую сталь можно закалить

Важно: При выборе среды, в которой проводят охлаждение металла после нагрева, следует учитывать, что в воде охлаждение проходит быстрее, чем в масле! Например, вода температурой 18°C способна охладить сплав на 600°C за секунду, а масло всего на 150°C.

Для того, чтобы получить высокую твердость металла, охлаждение проводят в проточной холодной воде. Также для повышения эффекта закалки для охлаждения готовят соляной раствор, добавляя в воду около 10% поваренной соли, или используют кислотную среду, в которой не менее 10% кислоты (чаще серной).

Кроме выбора охлаждающей среды немаловажным является режим и скорость охлаждения. Скорость снижения температуры должна быть не меньше 150°C за секунду. Таким образом, за 3 секунды температура сплава должна снизиться до 300°C. Дальнейшее снижение температуры может проводиться с любой скоростью, т. к. зафиксированная в результате быстрого охлаждения структура при низких температурах уже не разрушится.

Важно: Слишком быстрое охлаждение металла приводит к его излишней хрупкости! Это следует учитывать при самостоятельной закалке.

Различают следующие способы охлаждения:

  • С использованием одной среды, когда изделие помещают в жидкость и держат там до полного охлаждения.
  • Охлаждение в двух жидких средах: масле и воде (или солевом растворе) для нержавеющих сталей. Изделия из углеродистых сталей сначала охлаждают в воде, т. к. она является быстро охлаждающей средой, а потом в масле.
  • Струйным методом, когда деталь охлаждается струей воды. Это очень удобно, когда требуется закалить определенную область изделия.
  • Методом ступенчатого охлаждения с соблюдением температурных режимов.

Читать также: Сечение кабеля для электроплиты 220

Температурный режим

Правильный температурный режим проведения закалки нержавеющих изделий является важным условием их качества. Для достижения хороших характеристик их равномерно прогревают до 750-850°C, а потом быстро проводят охлаждение до температуры 400-450°C.

Важно: Нагрев металла выше точки рекристаллизации приводит к крупнозернистому строению, ухудшающему его свойства: излишней хрупкости, приводящей к растрескиванию!

Для снятия напряжения после нагрева до нужной температуры упрочнения металла, иногда используют поэтапное охлаждение изделий, постепенно снижая температуру на каждом из этапов нагрева. Такая технология позволяет полностью снять внутренние напряжения и получить прочное изделие с нужной твердостью.

Какие стали можно закаливать?

Процедурам закалки и отпуска не подвергается прокат и изделия из него, изготовленные из малоуглеродистых сталей типа 10, 20, 25. Этот вид термообработки эффективен для углеродистых сталей (45, 50) и инструментальных, у которых в результате твердость увеличивается в три-четыре раза.

Таблица режимов закалки и областей применения для некоторых видов инструментальных сталей

Марка стали Для какого инструмента используется Температура закалки, °C Температура отпуска, °C Охлаждающая среда для закалки Охлаждающая среда для отпуска
У7 Молотки, кувалды, плотницкий инструмент 800 170 Вода Вода, масло
У7А Зубила, отвертки, клейма, топоры 800 170 Вода Вода, масло
У8, У8А Пуансоны, матрицы, стамески, пробойники, ножовочные ручные полотна 800 170 Вода Вода, масло
У10, У10А Деревообрабатывающий инструмент, керны, резцы строгальные и токарные 790 180 Вода Вода, масло
У11 Метчики 780 180 Вода Вода, масло
У12 Надфили 780 180 Вода Вода, масло
Р9 Метчики, ножовочные полотна станочные, сверла по металлу, фрезы 1250 580 Масло Воздух в печи
Р18 Ножовочные полотна станочные, сверла по металлу, фрезы 1300 580 Масло Воздух в печи
ШХ6 Напильники 810 200 Масло Воздух
ШХ15 Ножовочные полотна станочные 845 400 Масло Воздух
9ХС Плашки, сверла спиральные по дереву 860 170 Масло Воздух

Как закалить сталь в домашних условиях?

Закалку и отпуск желательно осуществлять в производственных условиях с использованием специального оборудования и приборов. Однако домашние умельцы часто практикуют это в собственных мастерских. Для нагрева изделия используют электроплиты, духовки, раскаленный песок, паяльные лампы, костер. Самостоятельная термообработка оправдана в случае необходимости упрочнения режущей кромки инструмента.

Как сделать закаленную сталь:

  • перед термообработкой изделие необходимо очистить от масла и ржавчины;
  • равномерно разогреть;
  • охладить и произвести отпуск в соответствии с режимами, рекомендованными для конкретной марки стали.

При необходимости проведения термообработки в домашних условиях в отсутствии приборов температуру металла ориентировочно определяют по цветам побежалости. Условие – помещение не должно быть освещено солнцем.

Определение! Цветами побежалости называют оксидные пленки, образующиеся без участия молекул воды на сплавах на основе железа во время нагрева. Каждому интервалу температур соответствует определенный цвет:

Краткие теоретические сведения. Под прокаливаемостью понимают способность стали закаливать­ся на определенную глубину

Прокаливаемость — способность стали приобретать мартенситную или троосто-мартенситную структуру на определенную глубину при закалке. Прокаливаемость стали зависит от критической скорости охлаждения, которая зависит от химического состава стали. Так, например, если фактическая скорость охлаждения в сердцевине детали при закалке будет выше критической для этой марки стали, то деталь будет иметь сквозную прокаливаемость. При этом за глубину закаленной зоны принимают расстояние от поверхности металла до полумартенситной структуры. Полумартенситной называют структуру, которая состоит из 50% мартенсита и 50% троостита. Ширина до полумартенситной зоны в цилиндрическом образце называется критическим диаметром или размером сечения, прокаливающимся насквозь.

Прокаливаемость стали тем выше, чем меньше критическая скорость закалки, т.е., чем выше устойчивость переохлажденного аустенита.

Прокаливаемость стали определяется по ГОСТ 5657-69 “Сталь. Методы испытания на прокаливаемость”. (документ откроется в новом окне) В ГОСТе описан так называемый метод торцевой закалки. Результаты эксперимента выражают графически в координатах “твердость — расстояние”. Т.е. график отображает изменение твердости по сечению после закалки. Прокаливаемость стали, даже в пределах одной и той же марки может существенно колебаться. Так происходит из-за того, что прокаливаемость зависит от состава стали, размера зерна, геометрии изделия и т.д. В связи с этим прокаливаемость стали характеризуют не кривой, а полосой прокаливаемости. Необходимо учитывать, что даже гостированные полосы прокаливаемости не всегда будут соответствовать фактической прокаливаемости изделия.

Как закалить сталь в домашних условиях

Решение о том, как калить металл, принимается исходя из нескольких параметров:

  • марки стали;
  • требуемой твердости;
  • режима работы детали;
  • габаритов.

Не все способы термообработки доступны любителям. Следует выбирать наиболее простые. Чаще всего в домашних условиях приходится закаливать нержавейку при изготовлении ножей и другого домашнего режущего инструмента.

Температура закалки хромсодержащих сталей 900–1100⁰C. Проверять нагрев следует визуально. Металл должен иметь светло оранжевый – темно желтый цвет, равномерный по всей поверхности.

Окунать тонкую нержавейку можно в горячую воду, поднимая на воздух и вновь опуская. Чем выше содержание углерода, тем больше времени сталь проводит на воздухе. Один цикл длится примерно 5 секунд.

Простые свариваемые стали греют до вишневого цвета и охлаждают в воде. Среднелегированные материалы должны перед окунанием в воду иметь красный цвет. После 10–30 секунд перекладываются в масло, затем укладываются в печь.

Прокаливаемость сталей: полосы прокаливаемости


Закалка в домашних условиях

Оборудование

Нагрев металла производится различными способами. Нужно только помнить, что температура горения дерева не может обеспечить нагрев металла.

Если требуется улучшить качество 1 детали, достаточно развести костер. Его надо по периметру обложить кирпичами и после укладки заготовки частично закрыть сверху, оставив щели для доступа воздуха. Лучше жечь уголь.

Отдельный участок и небольшую по размерам деталь греют газовой и керосиновой горелкой, постоянно водя пламенем и прогревая со всех сторон.

Изготовление муфельной печи требует много времени и ресурсов. Ее целесообразно строить при постоянном использовании.








Охлаждающая жидкость может находиться в ведре и любой другой емкости, которая обеспечит полное погружение детали с толщиной масла в 5 наибольших сечений детали:

  • одна часть под закаливаемым изделием;
  • две сверху.

Деталь необходимо медленно двигать в охлаждающей жидкости. В противном случае образуется паровая рубашка.

Самостоятельное изготовление камеры для закаливания металла

Наипростейшее подобие муфельной печи делается из огнеупорного кирпича, шамотной глины и асбеста:

Высыхать все материалы должны при комнатной температуре. На это уйдет несколько дней. Затем можно укладывать деталь на изоляционный материал и греть.

Закаливаемость стали

Закаливаемость — способность стали повышать твердость в результате закалки. Эта характеристика зависит в большей степени от содержания углерода в мартенсите и в меньшей от содержания легирующих элементов. [цитата из книги "Материаловедение”, М.Ю. Лахтин, 1990 г.]

Также есть альтернативный вариант определения закаливаемости стали. Закаливаемость — способность стали воспринимать закалку, т.е. образовывать мартенситную структуру. Такая трактовка закаливаемости основывается на определении закалки стали и определении критической скорости охлаждения: закалка — нагрев стали до температуры выше критической или температуры растворения избыточных фаз, выдержка и охлаждение со скоростью выше критической. Критическая скорость охлаждения — минимальная скорость охлаждения аустенита в области его минимальной устойчивости, при которой подавляется распад аустенита на феррито-цементитную смесь и при которой обеспечивается структура мартенсита.

Оборудование для термообработки сталей

  • муфельные термопечи;
  • устройства индукционного нагрева;
  • установки для нагрева в расплавах;
  • газоплазменные установки;
  • аппараты лазерной закалки.

Первые три вида могут выполнять прогрев всего объема изделия до требуемой температуры, а последние — только поверхностного слоя металла. Кроме того, выпускаются и широко используются печи для закалки металлов, в которых нагрев осуществляется в вакууме или в среде инертного газа.
Закалочные ванны представлены стальными емкостями-охладителями для различных жидкостей, а также специальными тиглями из графита и печами для расплавов солей или металлов. В качестве закалочных жидкостей чаще всего используют минеральное масло, воду и водополимерные смеси. Для расплавов металлов обычно применяют свинец или олово, а для расплавов солей — соединения натрия, калия и бария. Закалочные ванны для жидких сред имеют системы нагрева и охлаждения рабочей жидкости до требуемой температуры, а также мешалки для равномерного распределения жидкости и разрушения паровой рубашки.

Все, что нужно знать о закалке стали

Организовывать металлообрабатывающее или машиностроительное производство, не выяснив все, что нужно знать о закалке стали, о режимах и структуре закаленной стали, весьма опрометчиво. Ряду людей будет интересно выяснить, как закалять ее в домашних условиях. Также придется разобраться с температурой и видами закалки, с закаливаемостью сталей 20, 45 и других марок.

Какие стали подлежат закалке?

Несмотря на важность этого метода обработки, он может быть применен не ко всем сплавам железа с углеродом. Возможность такой манипуляции специалисты называют закаливаемостью. Установлено, что закалить и отпустить можно только такой металл (прокат), который содержит мало углерода. Сталь 20, а также сплав 10 и 25 не подвергают закаливанию. А вот углеродистый металл вполне может быть обработан таким образом.

Речь идет про сталь:

Свойства закаленных материалов

Правильное закаливание обеспечивает такие характеристики металла, как:

  • повышенная твердость на поверхности;
  • наращивание суммарной прочности;
  • минимизация пластичности до оправданных техническими требованиями показателей;
  • сокращение массы металлургической продукции при поддержании исходной прочности и твердости.

В процессе обработки изменяется структура закаливаемой стали. При этом происходит ряд фазовых изменений. При критической температуре, равной 723 градусам, металл еще тверд, но в нем уже разворачивается распад цементита. Вместо него появляется постепенно аустенит. Если дальше металл охлаждать плавно, то аустенит распадается, и эффект от закаливания, по сути, пропадает.

Но вот при быстром остужении распад не происходит, и сталь приобретает те самые характеристики, которые так нужны заказчикам. Закаливаемая до мартенситного состояния сталь оказывается наиболее тверда. Это позволяет использовать готовый продукт в режущих инструментах. Закалка на троостит позволяет сбалансировать твердость и упругостные показатели, что ценно в ударном инструменте и пружинных амортизаторах. Если сталь закалена до сорбитного состояния, то она окажется:

  • упругой;
  • вязкой;
  • стойко переносящей изнашивающие воздействия.

В одной среде

Такой способ внешне прост. Деталь прогревают строго до заданной температуры. Затем ее погружают в жидкость и держат там, пока она не достигнет полного охлаждения. Углеродистую и малолегированную сталь принято остужать в технической воде. Легированный металл традиционно закаливают в масле. Технологи стремятся к одинаковой прочности заготовки по всей поверхности. Это достигается за счет относительного движения конструкции в той среде, куда она помещена.

При механизированной закладке такое перемещение обеспечивается путем циркуляции. При ручной обработке передвигать придется заготовку. Темп перемещения и другие нюансы манипуляции подбираются таким образом, чтобы материал не подвергался короблению.

Описываемая методика ценна для легированной стали, остужаемой начиная с высокой температуры.

Ступенчатая

В этом случае металл также прогревают до закалочной температуры. Но дальше уже начинаются отличия — охлаждение ведется в относительно горячей среде, при 180-250 градусах чаще всего. Стремятся при этом, чтобы прогрев был немного сильнее, чем нужно для мартенситного превращения. В такой ситуации разогрев поверхности детали и охладительного вещества быстро выравнивается. Если охлаждение продолжается, появляется уже мартенсит.

Превращение идет по всей массе заготовок синхронно. Как результат, опасность появления напряжений сводится к минимуму. Последующее остужение можно производить уже даже просто на воздухе. Минусом ступенчатой методики оказывается ее заведомая неприменимость для крупных конструкций. Для них потребовалась бы слишком долгая выдержка, что создает опасность нежелательных структурных изменений.

Изотермическая

Методически такой подход мало отличается от ступенчатого закаливания. Цель — добиться распада аустенита и формирования нижнего бейнита. Углеродистые стали закаливают изотермически не слишком часто, потому что такой подход дает мало преимуществ в сравнении с иными вариантами. А вот для легированного металла – это возможность достичь сбалансированного уровня прочности и вязкости. Предел выносливости у стали окажется в итоге выше, чем при обработке по мартенситному сценарию.

Однако массовое использование изотермической закалки задерживается по нескольким причинам:

  • необходимость использовать дорогостоящее оборудование;
  • повышенная длительность и трудоемкость манипуляций (то есть рост издержек производства);
  • необходимость применения высокотоксичных закаливающих сред — впрочем, эта проблема отчасти решается вертикальными элеваторными печами с интенсивным проветриванием закалочной емкости.

С самоотпуском

После прогрева при таком подходе конструкции помещают в охладительную среду. Там их надо держать до неполного охлаждения. Когда заготовка вынута, наружные слои вновь начинают повышать температуру. Необходимое тепло поступает из внутренней части детали. Такой режим и называют самоотпуском. К нему прибегают, если надо обеспечить одновременно повышенную твердость поверхностного слоя и значительную вязкость сердцевинной области.

Подобное сочетание свойств крайне ценно для молотков, зубил и иных инструментов, которые совершают ударную обработку. Закалка с самоотпуском успешно проводится даже в условиях современного поточного производства. Нередко она сочетается с местной термообработкой. Длительностью самоотпуска выступает промежуток, разделяющий остановку закалочного понижения температуры и начало повторного охлаждения.

Светлая

Техническая литература такой термин не употребляет, но знать, что это за метод, очень важно. Суть состоит в том, что закаливание обычного металла сопровождается потемнением. А вот легированные стали в вакуумной или инертной среде при этом расцветку не меняют. Очевидно, что такие методы защиты металла весьма дороги и трудоемки. К ним прибегают только при массовом выпуске однородных изделий, когда работает эффект масштаба и издержки размазываются по всем экземплярам.

Для работы используют вертикальные печи. Нагрев заготовки проходит в индукторе. Оттуда она перемещается в ванну со специальными солями или селитрой. Весь объем установки должен быть полностью герметичен. Откачка воздуха проводится после завершения каждого цикла.

Поверхностная

Поверхностная закалка, как следует уже из названия, призвана упрочнить наружные слои металла. Для этой цели используют ТВЧ (токи высокой частоты), производящие эффект индукционного нагрева. Чаще к подобной методике прибегают при обработке углеродистых сталей. Температура должна быть более высокой, чем при традиционной объемной методике закаливания. В некоторых случаях прибегают к газопламенному или даже лазерному разогреву сплава – они позволяют, соответственно, уменьшать издержки и повышать точность манипуляций.

Необходимое оборудование

О некоторых его разновидностях — вертикальных печах — речь уже заходила. Однако требуются порой и другие приспособления, технические системы. Кроме печей, обязательно понадобится специальная закалочная ванна. Она оснащается таким образом, чтобы можно было постоянно контролировать тепловые режимы и точно оценивать их соблюдение. Конструктивная схема ванн практически не отличается у разных фирм, по большей части разница касается только габаритов.

Функциональный отсек ванны преимущественно выполняется в прямоугольной форме, но также могут встретиться и цилиндрические модели. Толщина варьируется с учетом планируемой наивысшей продолжительности обработки. Важную роль играет вентиляционный контур, без которого было бы невозможно удаление токсичных веществ. Благодаря теплообменнику исключается хаотическое изменение температуры жидкости для закаливания и поддерживается стабильный ход всего процесса. Теплообменник может принудительно обдуваться вентилятором, однако иногда отвод теплоты от него ведут при помощи циркуляции, поддерживаемой компрессором.

Закалка токами высокой частоты подразумевает использование продвинутой индукционной машины. Индуктор представляет собой катушку, обвиваемую медной трубкой. Геометрия индуктора определяется только конфигурацией и габаритами детали. Предусматривается вращение заготовки в центрах, что требует наличия как зажимов, так и двигателя, и контролирующего процесс механизма.

Разумеется, независимо от способа закалки придется постоянно вести термометрию удаленными средствами наблюдения.

Температура

Выбор режимов и степени нагрева во многом индивидуален — но это не означает, что все требования можно игнорировать. Чаще всего подразумевается первоначальный прогрев стали до аустенитного состояния. Чтобы гарантированно, несмотря на вероятные примеси, произвести соответствующее превращение, нужен нагрев на 30-50 градусов выше расчетной точки. Перегрев существенно более Ac3 также нецелесообразен, потому что разрастание аустенитных зерен ведет к хрупкости материала. Инструментальные углеродистые стали доводить до аустенитной фазы не имеет смысла и даже вредно.

Легированный металл закаливают опять же учитывая критические точки. Однако большое количество улучшающих компонентов сильно затруднит отбор наилучшего рабочего режима. Если легированная сталь содержит много карбидов, ее надо прогревать существенно выше критических точек, иногда до 1000 градусов и более. Только при расплавлении карбидов и переходе заключенных в них легирующих добавок в аустенит можно получить хороший результат. Температура при неполной закалке составляет такую величину, при которой сохраняется избыточный цементит. Этот режим показан для заэвтектоидных сталей, но может использоваться и для других сплавов.

Как закалять в домашних условиях?

Технология в этом случае существенно не отличается от той, что практикуется на больших заводах. Точно так же надо разогреть металл, а затем охладить. Но ограниченное оборудование, даже в продвинутых домашних мастерских, не позволяет воспроизвести промышленные методики точь-в-точь. Процесс в любом случае должен происходить равномерно и плавно. На поверхности нельзя допускать появления черных или синих пятен. Чтобы сделать все правильно, используют термопечи. Иногда их заменяют на электропечи или даже на открытый огонь. Струйное закаливание проводится, если надо работать точечно. Время выдержки при погружении предмета в масляную ванну не превышает 3 секунд, но эту процедуру проводят многократно и быстро. Судить о температуре образца приходится по окраске поверхности или по степени побежалости.

Открытое пламя — как костра, так и горелки — позволяет прогреть лишь относительно небольшие металлические изделия. Минус открытого огня состоит еще и в опасности обезуглероживания поверхности. Наддувать кузнечный горн возможно мощным промышленным феном. Простые временные печи для такой работы создают из шамотных кирпичей. Закалочные жидкости помещают в емкости подходящей величины, изготавливаемые из несгораемых веществ. Держать заготовки помогут щипцы либо крючья подходящей величины. Охлаждение металла в домашних условиях возможно при помощи воды и воздуха, водных растворов и минерального масла. Если какое-то изделие состоит из частей с разной целевой твердостью, прибегают к последовательному остужению в двух средах.

Конкретные параметры и режимы подбирают сообразно параметрам определенного сплава. Изготовив импровизированную камеру, можно будет повысить температуру до 1200 градусов, что гарантирует обработку легированного металла.

Дефекты после закаливания

Иногда закаливаемая сталь приобретает слишком низкую твердость. Это бывает связано с чрезмерно низкой температурой или с несоблюдением временных рамок процедуры. Проблема также часто обуславливается малыми темпами охлаждения. Источником сложностей может стать и чрезмерный нагрев образца (выше допустимых температур). Из-за роста зерен в перегретой детали металл становится несообразно хрупок.

О пережоге говорят, когда сталь нагрели практически до температуры плавления. Чтобы компенсировать такую опасность, нужно использовать атмосферу, не имеющую окислительных свойств. Также вероятны:

Читайте также: