Количество углерода содержащегося в сталях менее

Обновлено: 22.04.2024

Механические свойства стали

Механические свойства стали во многом определяют то, в каких сферах она применяется. Именно поэтому мы можем отнести их к наиболее важным. Такие качества, как высокая прочность и способность значительно изменять форму, дают возможность применять металл практически везде: от изготовления хирургических инструментов до космической отрасли.

Для определения данных параметров применяются различные методы. Кроме того, они учитывают механические свойства не только сталей, но и их сплавов, благодаря чему данные металлы можно с уверенностью назвать универсальными и удобными в работе. О том, какие параметры данных материалов позволяют применять их в самых разнообразных сферах, поговорим далее.

Состав стали

Основными компонентами стали являются железо и углерод, на долю последнего приходится до 2,14 %. Все существующие на данный момент подобные сплавы классифицируют, исходя из их химического состава.

В производстве используются два вида стали:

  • Углеродистая, в состав которой, помимо основных составляющих, входят фосфор, сера, марганец, кремний. Сырье может относиться к высоко-, средне- и низколегированным маркам в соответствии с долей углерода в материале. Такой металл подходит для любых нужд, в том числе для изготовления инструмента, эксплуатируемого в условиях высоких нагрузок под постоянным напряжением.
  • Легированная содержит в себе железо, углерод в сочетании с легирующими элементами (такими как кремний, бор, азот, хром, цирконий, ниобий, вольфрам, титан). От состава легированной стали зависят ее механические и иные свойства, цена, качество продукции, сферы возможного применения. Сегодня можно найти жаропрочные, цементуемые, улучшаемые стали. По структуре специалисты выделяют сырье доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.

Определить химические и механические свойства стали, а также область ее использования позволяет марка.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

В процессе производства в сталь вносят примеси. На основании их доли в составе сплава выделяются два типа продукции:

  • Обыкновенного качества, что предполагает наличие до 0,6 % углерода и соответствие металла ГОСТ 14637 и ГОСТ 380-94. Для маркировки подобной продукции используются буквы «Ст» – данное сокращение говорит о том, что сталь имеет стандартное качество. Такое сырье входит в число наиболее доступных по цене.
  • Качественная сталь, то есть легированная и углеродистая, которая производится по ГОСТ 1577. Маркировка обязательно содержит в себе особенности состава, количество углерода в сотых долях. Данный материал более дорогой, чем аналог обыкновенного качества, его ценят за высокую пластичность, способность противостоять механическому воздействию. Кроме того, подобный металл можно без труда варить.

Физические, химические и технологические свойства стали

Физические свойства:

  1. Плотность, которая определяется как масса металла на единицу объема. Высокий данный показатель стальных изделий, в том числе арматуры а500с, позволяет активно использовать их для строительных нужд.
  2. Теплопроводность, то есть способность стали обеспечивать распространение теплоты от более нагретых частей к менее нагретым.
  3. Электропроводность – способность материала пропускать электрический ток.

Физические, химические и технологические свойства стали

Химические свойства:

  1. Окисляемость, что предполагает возможность соединения металла кислородом. Данное свойство усиливается при нагревании стали. На сплавах, имеющих малую долю углерода, в процессе окисления под действием воды, влажного воздуха формируется ржавчина, то есть оксиды железа.
  2. Стойкость к коррозии – способность металла не вступать в химические реакции, не окисляться.
  3. Жаростойкость представляет собой отсутствие окислительных процессов на сплаве под воздействием высокой температуры, а также способность не образовывать окалину.
  4. Жаропрочность – сохранение сталью прочности в условиях высокой температуры.

Технологические свойства:

  1. Ковкость, то есть способность материала принимать заданную форму под действием внешних сил.
  2. Обрабатываемость резанием – важное свойство стали, которое упрощает производство металлопроката, так как данный металл хорошо поддается обработке режущим инструментом.
  3. Жидкотекучесть – способность расплава проникать в узкие зазоры, заполнять пространство.
  4. Свариваемость – позволяет осуществлять эффективные сварочные работы, формируя надежное неразъемное соединение, лишенное дефектов.

Механические свойства стали по ГОСТу

Прочность

От данной характеристики зависит, сможет ли металл не разрушиться под действием больших внешних нагрузок. Это механическое свойство стали измеряется количественно при помощи предела текучести и прочности:

  • Пределом прочности называют максимальное механическое напряжение, при превышении которого происходит разрушение сплава.
  • Предел текучести, то есть степень механического напряжения. Превышение данного показателя вызывает дальнейшее растяжение металла без дополнительной нагрузки.

Так, при небольших деформациях металлический стержень сохраняет упругость, возвращаясь к исходной длине после снятия приложенного напряжения. Если же напряжение оказывается выше предела текучести, наблюдается пластическая деформация изделия. Иными словами – происходит необратимое удлинение стержня, после которого он не способен вернуться к исходной длине.

Растяжение стержня до разрыва позволяет установить максимальное напряжение, то есть предел прочности материала на разрыв.

Пластичность

Данное механическое свойство стали позволяет ей под действием внешней нагрузки менять форму и потом сохранять ее. Для количественной оценки этого показателя измеряют удлинение при растяжении и угол изгиба. Если во время простого испытания на изгиб металл разрушается при большом пластическом прогибе, его признают пластичным. В противном случае речь идет о хрупком сплаве.

Механические свойства стали по ГОСТу

Хорошая пластичность проявляется при испытании растяжением в виде значительного удлинения заготовки либо ее сжатия. Под удлинением понимают увеличения длины в процентном выражении после разрушения до первоначальной длины. А сужение в процентах – это сокращение площади изделия в сравнении с исходным объемом.

Вязкость

Еще одно важное механическое свойство стали, которое подразумевает способность материала справляться с динамическими нагрузками. Его оценивают количественно как отношение работы, необходимой для разрушения образца, к площади его поперечного сечения. Чаще всего понятием «вязкость» обозначают уровень, при котором происходит нехрупкое разрушение металла.

Характер разрушения может быть хрупким или пластичным – разница между этими явлениями наиболее ярко прослеживается на примере ферритных стальных сплавов. Ферритные стали и все металлы, обладающие объемно-центрированной кубической атомной решеткой, имеют общую особенность: при низких температурах им свойственен хрупкий характер разрушения, а при высоких – пластичный. Температуру перехода из одного состояния в другое специалисты обозначают как температуру вязко-хрупкого перехода.

Маркировка сталей

В машиностроении высоко ценятся механические свойства конструкционной, то есть углеродистой и легированной стали, а также высоколегированных нержавеющих сталей. При обозначении марок конструкционной легированной стали (ГОСТ 4543) первые две цифры свидетельствуют о среднем содержании углерода, которое указывается в сотых долях процента.

Маркировка сталей

Буквы в маркировке имеют такую расшифровку:

  • Р – бор;
  • Ю – алюминий;
  • С – кремний;
  • Т – титан;
  • Ф – ванадий;
  • Х – хром;
  • Г – марганец;
  • Н – никель;
  • М – молибден;
  • В – вольфрам.

После буквы идут цифры, которые обозначают примерное содержание легирующего элемента в целых единицах процента. Если цифр нет, то доля конкретного вещества в металле не превышает 1,5 %. Буква «А» в конце маркировки является признаком высококачественной стали. Показателем особенно высококачественной стали является буква «Ш» через три тире.

Механические свойства нержавеющих высоколегированных сталей (ГОСТ 5632) зависят от перечисленных далее компонентов. При маркировке они обозначаются таким образом:

  • А – азот;
  • В – вольфрам;
  • Д – медь;
  • М – молибден;
  • Р – бор;
  • Т – титан;
  • Ю – алюминий;
  • Х – хром;
  • Б – ниобий;
  • Г – марганец;
  • Е – селен;
  • Н – никель;
  • С – кремний;
  • Ф – ванадий;
  • К – кобальт;
  • Ц – цирконий.

После букв идут цифры, отражающие долю легирующего элемента в составе сплава в процентах.

Для фиксации основных механических свойств сталей применяют следующие обозначения:

  • E – модуль упругости. Представляет собой коэффициент пропорциональности между нормальным напряжением и относительным удлинением.
  • G – модуль сдвига, также известный как модуль касательной упругости. Это коэффициент пропорциональности между касательным напряжением и относительным сдвигом.
  • μ – коэффициент Пуассона. Является абсолютным значением отношения поперечной к продольной деформации в упругой области.
  • σт – условный предел текучести, то есть напряжение, при котором после снятия нагрузки остаточная деформация находится на уровне 0,2 %.
  • σв – временное сопротивление, известное как предел прочности. Представляет собой такое механическое свойство металла, в том числе углеродистой стали, как прочность на разрыв.
  • δ – относительное удлинение. Это отношение абсолютного остаточного удлинения образца после разрыва к начальной расчетной длине.
  • HB, HRC, HV – твердость.

Таблица механических свойств сталей разных марок

Далее представлены механические свойства стали после термической обработки.

E = 200. 210 ГПа, G = 77. 81 ГПа, коэффициент Пуассона μ = 0,28. 0,31.

Наименование

Параметры термической обработки

Предел прочности σв, МПа

Предел текучести σт, МПа

Калибровка после отжига и отпуска

После отжига и отпуска

Пруток, закалка +860 °C, отпуск +500 °C в воде, масле

Пруток, закалка и отпуск

Пруток, закалка +1020…+1 100 °C на воздухе, в масле, воде

Влияние углерода на механические свойства стали

Механические свойства углеродистой стали определяются в первую очередь количеством углерода в составе сплава. При увеличении его доли возрастает объем цементита, сокращается величина феррита. Иными словами, повышаются прочность и твердость, снижается пластичность.

Влияние углерода на механические свойства стали

Стоит оговориться, что прочность становится выше при доле углерода в пределах 1 %, а при переходе этой отметки показатель уменьшается. Данная особенность объясняется тем, что по границам зерен в заэвтектоидных сталях образуется сетка вторичного цементита, которая негативно отражается на прочности материала.

Рост доли углерода приводит к увеличению количества цементита, а он является очень твердой и хрупкой фазой. Превосходит феррит по твердости примерно в 10 раз, имея показатель 800HB против 80HB. Вот почему увеличение содержания углерода позволяет повысить такие механические свойства стали, как прочность и твердость, и снизить пластичность, вязкость.

Когда количество углерода доходит до 0,8 %, возрастает доля перлита в сплаве от 0 % до 100 %, вызывая повышение твердости, прочности. Однако не стоит забывать, что последующий рост количества углерода вызывает образование вторичного цементита по границам перлитных зерен. Это явление мало влияет на твердость, но негативно сказывается на прочности, так как цементитная сетка очень хрупкая.

Повышение доли углерода отражается не только на механических, но и на физических свойствах стали. Снижается плотность, теплопроводность, магнитная проницаемость, тогда как удельное электросопротивление, коэрцитивная сила увеличиваются.

С ростом количества углерода происходит повышение порога хладноломкости, а именно: каждая десятая доля процента повышает t50 примерно на 20є. Поэтому сталь с долей углерода в 0,4 % при нулевой температуре становится хрупкой, из-за чего считается недостаточно надежной.

В железоуглеродистом сплаве содержится преимущественно связанный углерод в форме цементита. Тогда как в чугунах он присутствует в свободном состоянии в виде графита. Увеличение доли данного компонента приводит к изменению свойств металла: возрастает твердость, прочность, снижается пластичность.

Рекомендуем статьи

Количество углерода влияет как на механические, так и на технологические свойства стали. Чем выше содержание данного вещества, тем тяжелее металл режется, сваривается и деформируется. Последняя характеристика наиболее ярко проявляется в холодном состоянии.

От механических и химических свойств стали зависит сфера применения материала – ее можно узнать по маркировке. Металл, обладающий высокой жаропрочностью, подходит для использования при постоянных высоких температурах. Это же правило распространяется на марки стали с хорошей свариваемостью и стойкостью к образованию ржавчины.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Углерод в металле

Углерод в металле

Содержание углерода в металле определяет свойства углеродистых сталей, в частности, механические характеристики. Благодаря изменению процентного соотношения углерода можно сделать материал более пластичным или твердым, вязким или прочным.

Такие стали называются углеродистыми и классифицируются по своему составу, степени окисления, а также методам производства и применения. Металлы с разной степенью цементита используются в разных сферах. Как же углерод в металле способствует повышению ее востребованности?

На что влияет углерод в металле

В процессе производства невозможно полностью удалить примеси из стали, поэтому они остаются в небольшом процентном содержании во всех углеродистых соединениях. Также их наличие зависит от выбранного метода плавки.

На основании доли углерода в металле принято выделять углеродистую и легированную сталь. Интересующий нас компонент позволяет скорректировать технические и механические характеристики материала.

В стали присутствуют:

  • железо – в пределах 99 %;
  • углерод – до 2,14 %;
  • кремний – не более 1 %;
  • марганец – до 1 %;
  • фосфор – максимум 0,6 %;
  • сера – до 0,5 %.

Также сталь содержит небольшую долю водорода, кислорода, азота.

Для чего нужен углерод в металле? В сталеплавильных процессах он играет такие роли:

  1. Присутствует в большинстве марок стали, поскольку позволяет получить материал с широким диапазоном механических свойств. А именно: влияет на соотношение феррита и перлита в структуре твердого металла, расширяет диапазон температур, при которых железо остается в устойчивом состоянии.
  2. Считается вредной примесью в сталях специального назначения, таких как электротехнические, жаропрочные, стойкие к коррозии, пр.
  3. Забирает на свое окисление основную долю кислорода, вдуваемого в ванну с целью избавления от примесей. Например, в кислородно-конвертерном и мартеновском скрап-рудном процессах уходит более 75–80 % кислорода. Поэтому основной задачей управления окислительным рафинированием считается регулировка удаления углерода в металле.
  4. Является единственной примесью при изготовлении стали, во время окисления которой выделяются газы CO и CO2. Объем последних многократно превосходит объема металла – если говорить точнее, то окисление килограмма углерода при +1 500 °C приводит к образованию более 10 м3 CO. Газ удаляется из ванны в форме пузырей, благодаря чему металл перемешивается со шлаком, возрастает скорость протекания тепло- и массообменных процессов. В результате на плавку уходит меньше времени.
  5. Пузыри оксида углерода проходят через расплав, параллельно избавляя его от газов, неметаллических включений при плавке и вакуумировании.
  6. Реакция окисления углерода сопровождается нагревом ванны, что важно для протекания кислородных процессов. Так, на кислородно-конвертерном этапе обработки металла тепло реакции окисления углерода обеспечивает 20–25 % приходной части теплового баланса плавки. Так сплав достигает температуры выпуска при значительной доле лома в шихте.
  7. От количества углерода в металле и его постоянного окисления зависит содержание кислорода в стали и оксидов железа в шлаке. Окисленность ванны влияет на потери железа со шлаком в виде оксидов, остаточное содержание прочих примесей, угар раскислителей и легирующих добавок, пр.
  8. Благодаря окислению интересующего нас элемента во время затвердевания металла в изложницах удается формировать слитки стали разных видов. Речь идет о кипящем, спокойном и полуспокойном типе данного металла.

Углерод в металле

Увеличение доли углерода в металле провоцирует такие изменения:

  • повышение электросопротивления;
  • увеличение коэрцитивной силы;
  • ухудшение проницаемости магнитов;
  • снижение плотности индукции магнитов.

Свойства металла (стали) с разным содержанием углерода

Говоря о том, что такое углерод в металле, важно понимать, что свойства углеродистых сталей определяются сложным молекулярным строением. Структура цементита такова, что каждая ее ячейка имеет форму октаэдра.

Углерод в металле

Данная особенность обеспечивает ряд таких важных технико-экономических показателей сплавов, как:

  • высокая прочность, несущая способность;
  • твердый поверхностный слой в сочетании с мягкой сердцевиной, что объясняется плохой прокаливаемостью – данная характеристика компенсирует хрупкость металла;
  • большой срок службы, достигающий 50 лет при нормальных условиях, либо применении средств, призванных защитить материал от появления очагов ржавчины;
  • низкая стоимость технологии выплавки, которая используется с конца XIX века – именно тогда были созданы мартеновские печи.

От количества углерода в металле зависит определенный вид стали:

  • Низкоуглеродистая сталь имеет в составе до 0,25 % данного компонента, отличается пластичностью, однако легко поддается деформации. Такой металл может обрабатываться в холодном виде либо при высоких температурах.
  • Среднеуглеродистая сталь содержит 0,3–0,6 % углерода, является пластичной, текучей, имеет средний уровень прочности. Данный процент углерода в металле позволяет использовать его как материал для деталей и конструкции, эксплуатируемых в нормальных условиях.
  • Высокоуглеродистая сталь предполагает долю углерода в 0,6–2 %. Отличается хорошей стойкостью к износу, низкой вязкостью, а также она прочная и дорогостоящая. Для проведения сварных работ металл необходимо предварительного разогреть до +225 °C.

Стоит отметить, что первые два вида проще поддаются обработке, свариванию.

Каждая марка стали имеет свою сферу применения и отличается от других методом изготовления:

Конструкционные стали

Обладают большой долей углерода в металле, для их производства используются мартеновские печи и специальные конвертеры. В маркировке конструкционных сталей применяют первые три буквы алфавита и цифры. По буквам можно определить принадлежность сплава к определенной группе, тогда как цифровое значение говорит о количестве углерода.

Если в металле присутствует марганец, обозначение дополняется буквой «Г». Группа А разделяет сплавы по механическим характеристиками, Б – по доле примесей, В – сразу по двум показателям. Так, при производстве группы А отталкиваются от необходимых качеств, тогда как в группе Б опираются на соответствие нормам.

Инструментальные стали

Производят в мартеновской или электрической печи, которая стала наиболее распространена в последнее время. Марки сплава имеют различную вязкость, степень раскисления. Кроме того, среди инструментальных сталей принято выделять качественные и высококачественные.

Технология изготовления углеродистых сталей

Зная содержание углерода в металле, важно также понимать, что это позволяет использовать в металлургии различные методы производства углеродистых сталей, для каждого из них используется особое оборудование.

Углерод в металле

Специалисты выделяют несколько типов печей, применяемых для этих нужд:

  • конверторные плавильные;
  • мартеновского типа;
  • электрические.

Конверторные печи расплавляют все компоненты сплава, после чего смесь проходит обработку техническим кислородом. В горячий металл вносят известь, чтобы удалить присутствующие примеси, превратив их в шлак. Процесс производства сопровождается активным окислением металла, из-за чего выделяется большое количество угара.

Использование конверторных печей для изготовления углеродистых сталей требует установки дополнительных фильтровальных систем, поскольку во время работы образуется много пыли. А монтаж дополнительного оборудования всегда чреват значительными финансовыми затратами.

Однако этот недостаток не мешает конверторному методу активно использоваться на металлургических производствах, так как специалисты ценят его за высокую производительность.

Печи мартеновского типа обеспечивают высокое качество различных марок стали. Здесь производство металла с содержанием углерода состоит из таких этапов:

  1. в отдельный отсек печи загружают чугун, стальной лом, пр.;
  2. металл нагревается до значительной температуры;
  3. составляющие будущего сплава превращаются в однородную горячую массу;
  4. происходит химическая реакция между компонентами в процессе плавления;
  5. готовый металл поступает из печи.

Электрические печи предполагают совершенно иной подход к производству: отличается способ нагрева материалов. Благодаря использованию электричества снижается окисляемость металла в процессе разогрева, из-за чего в сплаве сокращается доля водорода. Это позитивно отражается на структуре и качестве готовой стали.

Области применения углеродистых сталей

Производство деталей машин

Прежде чем приступить к изготовлению определенной детали из углеродистых сталей, оценивают режим ее дальнейшей работы.

Углерод в металле

Марки металла, в которых содержится малая доля углерода, подходят для изделий, защищенных от серьезных нагрузок, воздействия вибрации, ударов. К таким элементам относятся:

  • дистанционные кольца;
  • втулки;
  • крышки;
  • колпаки;
  • маховики;
  • стаканы для подшипников;
  • прихваты, планки.

В качестве отдельной категории выделяют сварные каркасные конструкции, корпусные изделия, поскольку в этом случае низкая прочность данного вида сталей компенсируется толщиной несущего сечения. Тогда как податливость материала обработке сваркой обеспечивает более высокий уровень общей технологичности.

Для деталей, которые ожидают большие нагрузки в процессе эксплуатации, выбирают среднеуглеродистые стали для дальнейшей закалки. Либо могут использоваться марки металла с низким содержанием углерода при условии цементации.

Данные требования распространяются на следующие виды продукции:

  • шкивы ременных передач;
  • звездочки цепных передач;
  • зубчатые колеса, шестерни, валы-шестерни;
  • валы, оси;
  • шпиндели;
  • рычаги;
  • ролики;
  • штока, поршни цилиндров.

Углерод в металле

В первую очередь, производят заготовку – на этом этапе осуществляется резка проката, отливка, штамповка или поковка. После чего переходят к механической и температурной стадии.

В конце приступают к доводочным, отделочным операциям при помощи абразива, то есть к шлифовке, хонингованию, притирке, суперфинишированию. Нужно учитывать, что невозможно эффективно обработать незакаленные стали абразивным инструментом, так как процесс сопровождается засаливанием режущих зерен.

Высокоуглеродистые рессорно-пружинные разновидности стали применяют лишь в особых случаях, поскольку такой металл с углеродом в составе предполагает значительно более сложную обработку. Кроме того, любые промахи трудно устранить, например, заварить дефект.

Обычно подобные стали выбирают для навивки спиральных пружин, производства рессор, цанг, направляющих скольжения и прочих элементов, от которых требуется упругость в сочетании с твердостью.

Производство инструмента

Назначение углеродистых инструментальных сталей очевидно уже из названия. Ограничением в их применении является повышенная температура: при превышении +250…+300 °C закаленный металл отпускается, утрачивает прочность, твердость.

Также важно учитывать, что углеродистые стали уступают легированным по функциональности. Ими нельзя резать или давить материалы, имеющие более высокие показатели прочности.

Из-за всех названных особенностей такие металлы используют для изготовления ручного инструмента, позволяющего осуществлять холодную обработку дерева, пластика, мягких цветных металлов.

Углерод в металле

В производстве задействуются исключительно кованые заготовки, а не литье. Среди проката выбирают упрочненный сортамент, созданный непосредственно для изготовления инструмента.

Далее металл с необходимой долей углерода в составе точат, сверлят, фрезеруют, закаляют, после чего доводят до нужного состояния при помощи абразива. Стоит отметить, что шлифовка является наиболее трудоемким этапом изготовления, так как именно в это время инструменту сообщаются требуемые параметры.

Кроме того, эти операции позволяют удалить с металла поверхностный слой, содержащий дефекты, которые остались после термической обработки.

Производство крепежа

ГОСТ 1759.4-87 содержит в себе требования к механическим свойствам резьбового крепежа. В соответствии с этим документом, болты, винты, шпильки могут изготавливаться из таких углеродистых сталей:

  • 10 и 20 – для классов прочности 3.6, 4.6, 4.8, 5.8 и 6.8, не предполагающих проведение термической обработки;
  • 30, 35, 45 – для классов прочности 5.6 и 6.6 с термической обработкой;
  • 35 – для классов прочности 8.8, 9.8, 10.9 и 12.9, где термическая обработка является обязательным этапом.

Массовое и крупносерийное производство метизов из металла, в составе которого есть углерод, предполагает использование технологии горячей или холодной штамповки и высадочных автоматов. После чего на заготовки нарезают либо накатывают резьбу.

Если речь идет о мелкой серии, доступен заказ нестандартного крепежа – партия изготавливается на универсальном оборудовании для металлорезки.

Для производства крепежа нередко используют особую группу углеродистых сталей. Речь идет о марках, отличающихся повышенной обрабатываемостью – у них в начале маркировки стоит буква «А». Такие металлы отличаются от всех остальных максимальной однородностью структуры и химического состава по всему объему проката.

Поэтому при обработке на станках-автоматах отсутствует риск перепада нагрузки на инструмент, что обычно возможно из-за разной твердости сплава, присутствия микродефектов в виде неметаллических включений.

Углеродистые стали подходят для решения большей части технических задач от производства элементов машин до сборки несущих металлоконструкций. Такие марки отличаются долей углерода в металле, что позволяет легко понять область их использования.

Углеродистые стали


Углеродистыми сталями называют сплавы железа с углеродом с процентным содержанием C менее 2%. Изменением содержания углерода можно в значительной мере управлять свойствами сплава. Углеродистые стали классифицируют по количеству углерода, технологии раскисления, назначению и качеству.

Классификация углеродистых сталей по количеству углерода

  • Низкоуглеродистые. Содержат C в диапазоне 0,05-0,3%. Эти сплавы мягкие, пластичные, что очень затрудняет механическую обработку резанием. Основное применение углеродистых сталей с малым содержанием C – производство лент, проволоки, листов.
  • Среднеуглеродистые. С ростом содержания углерода (до 0,6%) увеличиваются твердость и прочность, но снижаются показатели пластичности, свариваемости, повышается хрупкость. Для марок углеродистой стали с содержанием C 0,3-0,6% характерна хорошая обрабатываемость механическими способами. Для ее дополнительного улучшения в сплав добавляют марганец и кремний.
  • Высокоуглеродистые. Эти сплавы содержат углерод в пределах 0,6-1,0% и повышенное количество марганца для роста закаливаемости. Упрочняются различными видами термообработки. Применяются в производстве инструмента, режущих лезвий, проволоки, пружин.
  • Ледебуритные. Содержание углерода – до 2%. Из-за высокой хрупкости не подвергаются холодной обработке. Основные свойства ледебуритной углеродистой стали: чувствительность к термообработке, высокая износостойкость, хорошая обрабатываемость резанием.

Другие классификационные признаки

По способу раскисления

Различают три вида сталей: кипящие, полуспокойные, спокойные. При равном содержании углерода эти сплавы имеют одинаковые характеристики прочности и разные – пластичности.

  • Для раскисления кипящих сталей (кп) применяют марганец. Для них характерны: значительная химическая и структурная неоднородность слитка. Благодаря малому содержанию кремния, стали поддаются холодной штамповке. Не применяются для создания изделий для эксплуатации в холодных климатических условиях.
  • Полуспокойные (пс). Раскисляются марганцем, в ковше – алюминием.
  • Спокойные (сп). Для раскисления применяются кремний, марганец, алюминий. Выход годного составляет примерно 85%. Для слитка характерна плотная однородная структура.

По качеству

  • Углеродистые стали обыкновенного качества – их маркировка осуществляется по ГОСТу 380-2005. Они обозначаются индексом Ст и цифрой – номером марки. Чем больше номер, тем выше содержание углерода, больше твердость и меньше пластичность. В конце ставится обозначение способа раскисления: кп, пс, сп. Используются в изготовлении неответственных строительных конструкций, крепежных элементов, труб, листов, фланцев.
  • Качественные углеродистые конструкционные стали обозначают двузначными числами, равными количеству углерода в сотых долях процента. В конце указывается индекс раскисления (кроме спокойных сталей).

По назначению


В зависимости от того, какие функции будут выполнять углеродистые стали, их разделяют на конструкционные и инструментальные. Инструментальные сплавы используются в производстве режущего и ударного инструмента. По качеству их разделяют на качественные (У8, У10, У12, У13) и высококачественные (У8А, У10А, У12А), где буква «У» означает углеродистая, число – сотые доли процента.

Материаловедение: сталь

Что такое сталь? Каковы плотность, температура плавления и другие характеристики стали? В чем роль стального проката в производстве, и как объяснить неуклонный рост цен на сталь в последние годы? Обо всем этом и не только – в нашей новой статье.

СТАЛЬ ЭТО СПЛАВ КАКИХ МЕТАЛЛОВ.jpeg

Сталь – сплав железа (Fe) с углеродом (C). При этом доля углерода в составе мала: до 2,14% в теории и обычно не более 1,5% на практике. Как и в любых других сплавах, в сталях всегда присутствуют примеси (сера, фосфор, кремний), а для улучшения свойств могут вводиться легирующие элементы.

В силу высокой прочности, жесткости, а также из-за дешевизны сталь используется повсеместно и считается ключевым продуктом черной металлургии. Что важно в свете «зеленых» трендов: сталь можно перерабатывать практически бесконечно. По данным Всемирной ассоциации стали, 75% стальных изделий, выпущенных с момента появления мартеновской плавильной печи в 1864 году, до сих пор в обиходе.

ЧЕМ СТАЛЬ ОТЛИЧАЕТСЯ ОТ ЧУГУНА.jpeg

Эти железосодержащие сплавы похожи и по составу, и способом получения. Принципиальное различие в доле углерода. Если его меньше 2,14% от состава, то это сталь; если больше – чугун. Во многом отсюда и разница в свойствах. Так, сталь легче в обработке, тверже и прочнее, ее не разбить ударом. Чугун же хрупче, тяжелее, но более теплоемкий (дольше держит тепло) и в отличие от стали подходит для литья, в том числе художественного. Отметим также, что чугун часто используется для передела в сталь.

ФИЗИЧЕСКИЕ ХИМИЧЕСКИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ.jpeg

Отметим, что у стали высокая температура плавления – это не ЦАМ, не свинец и уж тем более не олово, которые можно плавить у себя на кухне. Сами по себе стальные изделия увесистые – в 2,5 раза тяжелее аналогичных алюминиевых (плотность сплавов алюминия – 2400-2900 кг/м³). Ну и очевидное: все черные стали реагируют на магнит. Причем чем меньше в них углерода, тем лучше магнитные свойства.

Коррозия стали.jpeg

Все знают: железо и его сплавы ржавеют. Сталь не исключение. Главная причина появления ржавчины – повреждение оксидной пленки. У тех же алюминия, хрома и никеля она тонкая, но плотная и прочная – настолько, что атомы кислорода не в состоянии диффундировать через нее. У сталей же оксидная пленка хоть и плотная, но непрочная и в любых условиях быстро растрескивается.

Для предотвращения окисления и развития ржавчины сталь покрывают химическим способом – например, оцинковкой, погружая заготовку в бак с расплавленным цинком. В этом случае молекулы цинка реагируют с молекулами железа, и на поверхности образуется защитный слой. Для закрепления эффекта его покрывают дополнительными слоями цинка. Идея способа основана на том, что отрицательный потенциал цинка выше, чем у железа, и в такой паре железо будет восстанавливаться, а цинк отважно послужит щитом для коррозии.

Нержавеющая сталь.jpeg

Чтобы металлические конструкции не ржавели, применяют стали, легированные хромом (12-20%) и некоторыми другими металлами, такими как никель, титан и молибден. Защита от ржавчины здесь заключается в формировании инертного слоя оксида хрома, способного к самовосстановлению.

Сразу развеем расхожий миф, что нержавеющая сталь якобы не магнитится. По факту это справедливо для хромникелевых и хромомарганцевоникелевых сталей, к которым относится всем известная пищевая нержавейка. В то же время техническая нержавеющая сталь, из которой делают клапаны, фитинги и трубы, на магнит вполне себе реагирует.

Закаленная сталь и термообработка.jpeg

Впрочем, термообработка не ограничена одной закалкой. Есть еще как минимум отжиг, нормализация и отпуск. Отжигу сталь подвергают для улучшения обработки (принося в жертву твердость); нормализации – для выравнивания структуры и устранения зернистости. Отпуск нужен для снятия внутренних напряжений и снижения хрупкости (пусть, опять же, и в ущерб твердости). Отметим, что отпуск выполняется после закалки и считается важным этапом термообработки, тогда как без отжига и нормализации зачастую можно обойтись.

ПРИМЕСИ И ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ СТАЛИ.jpeg

В любой марке стали есть примеси, пусть и в микроскопическом количестве. Некоторые, такие как кремний, даже улучшают свойства сплава. Однако вредных примесей больше; среди них сера, фосфор, а также газы: кислород, азот и водород.

• Хром (Cr). Придает износостойкость, способность к закаливанию и устойчивость к коррозии. Стали с содержанием хрома от 12% относят к нержавеющим.

• Марганец (Mn). Может присутствовать в виде примесей. Дополнительная присадка марганца улучшает прокаливаемость стали и нивелирует вредное воздействие серы.

• Молибден (Mo). Одна из главных упрочняющих легирующих добавок в жаропрочных сталях. Доля в составе незначительна: 0,15-0,8%.

• Ванадий (V). С ним сталь становится прочнее и устойчивее к износу. Содержание: 1,0-1,5% в штамповых сталях, 0,2-0,8% в специальных.

Углеродистые стали.jpeg

Содержат только железо, углерод и примеси. Определяющий элемент – углерод: чем его больше, тем сталь жестче и тверже. Чем меньше – тем сталь пластичней, ударопрочней, удобнее в обработке и сварке.

Легированные стали.jpeg

Легированные – это стали, которые кроме основных компонентов и примесей содержат специально вводимые легирующие добавки. По типу легирования такие стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромо-никель-кремний-марганцовистые и др. По доле легирующих элементов в составе – на низко- (<5% С), средне- (5-10% C) и высоколегированные (>10% C).

КЛАССИФИКАЦИЯ СТАЛЕЙ ПО КАЧЕСТВУ.jpeg

Качество стали определяется спецификой производственных процессов, перерабатываемым сырьем, видом плавки и другими факторами. Все это, в свою очередь, напрямую зависит от состава сплава и содержания в нем примесей.

Стали обыкновенного качества. Рядовые углеродистые стали, где углерода менее 0,6%, серы – в диапазоне 0,045-0,060%, фосфора – 0,04-0,07%. Являясь самыми дешевыми, такие стали уступают сталям остальных классов по всем ключевым свойствам.

Качественные стали. Могут быть углеродистыми (марки 08, 10, 15…) или легированными (0,8кп, 10пс…). Нормативы по примесям: серы – не более 0,04%, фосфора – 0,035-0,04%.

Высококачественные стали. Углеродистые или легированные. Содержание примесей: серы – не более 0,02%, фосфора – не более 0,03%. Примеры марок: стали 20А, 15Х2МА.

Особовысококачественные стали. Эти стали только легированные и содержат не более 0,015% серы и не более 0,025% фосфора. Примеры марок: 20ХГНТР-Ш, 18ХГ-Ш.

Конструкционные стали.jpeg

Идут на изготовление сварных строительных конструкций, узлов механизмов, деталей машин. Могут быть углеродистыми или легированными. Примеры марок: Ст1, Ст2, Ст3; 05, 10, 15; 15Г, 20Х, 45 ХН и др.

Инструментальные стали.jpeg

Из них делают режущие и ударные инструменты – от лезвия топора и губок плоскогубцев до напильника и сверла. Само собой, такие стали должны быть твердыми, поэтому содержание углерода в них не менее 0,7%. Примеры марок: У7, У8ГА, У10А (У – углеродистая; число – усредненное содержание углерода, выраженное в десятых долях процента; Г – повышенное содержание марганца; А – высококачественная сталь).

Специальные стали.jpeg

По большому счету, это те же конструкционные стали, но со специфическим составом, особым способом производства или обработки. Нержавеющие, жаропрочные, электротехнические, кислотостойкие стали – все они относятся к специальным.

КЛАССИФИКАЦИЯ СТАЛЕЙ ПО СПОСОБУ РАСКИСЛЕНИЯ.jpeg

Речь о том, сколько кислорода было выведено из жидкого металла при производстве стали и сколько его по итогу осталось. В целом: чем меньше в сплаве остается кислорода, тем чище состав и однородней структура.

Кипящие стали (кп). Раскисляются только марганцем. Обычно это низкоуглеродистые стали с большим количеством оксидов углерода – отсюда просадка в прочности и пластичности. Как следствие, кипящие стали склонны к разрушению, растрескиванию, плохо свариваются и поэтому идут в ход лишь в простых конструкциях. Из плюсов: кипящая сталь самая дешевая.

Спокойные стали (сп). Раскисляются в плавильных печах и ковшах алюминием, марганцем, кремнием. В отличие от кипящих, спокойные стали стабильны: содержат мало остаточного кислорода и затвердевают спокойно, без выделения газообразных примесей. Применение: конструкции ответственного назначения.

Полуспокойные стали (псп). Частично насыщенные кислородом стали, раскисляемые марганцем и алюминием. Всегда углеродистые. Среднепрочные, применяются в строительстве.

ЦЕНЫ НА СТАЛЬ .jpeg

Нет более неудобного вопроса, чем «сколько стоит сталь»? Во-первых, какая и где – на бирже или у местных трейдеров металлопроката? Во-вторых, эта статья написана в марте 2022 года, когда экономику России (да и других стран мира) засосало в турбулентную фазу. Мы можем лишь констатировать, что в ближайшие год-два стоимость стали будет расти. Причем расти кратно, если сравнивать с допандемийным уровнем. Связано это с несколькими причинами:

• Первая волна коронавируса, во время которой приостанавливался сбор лома и ограничивалась работа сталеплавильных заводов. К осени 2020 года из-за лавины отложенного спроса и промедления трейдеров это привело к общемировому дефициту стали.

• Конфликт России с Украиной, последующие санкции, разрыв производственных и логистических цепочек. Это уже ускорило девальвацию рубля, а в перспективе может привести и к гиперинфляции, если конфликт окажется затяжным.

• Зеленые тренды в соответствии с определенными ООН целями в области устойчивого развития (ЦУР). Страны, включая мировую фабрику под названием Китай, уже сокращают выплавку стали ради снижения углеродного следа. Это в каком-то смысле парадоксально, ведь именно сталь – один из важнейших материалов для производства ветрогенераторов и электрокаров, так агрессивно насаждаемых на Западе.

СТАЛЬ И ЕЕ РОЛЬ В ПРОИЗВОДСТВЕ ДВЕРНОЙ ФУРНИТУРЫ .jpeg

В России фурнитуру для входных и межкомнатных дверей производят по большей части из низкоуглеродистой конструкционной стали. Одна из самых ходовых марок – Ст3 и ее аналоги. Из ее листов изготавливают дверные петли, корпуса и планки замков, розетки дверных ручек, задвижки и, например, крепеж. Подчеркнем: мы говорим о видимых элементах конструкции. Для тех же петельных подшипников есть инструментальные подшипниковые стали (например, ШХ-15). Для возвратных пружин в ручках и замках – средне- и высокоуглеродистая пружинная сталь.

(+) Прочность и антивандальность. Сталь крепче цветных металлов вроде алюминия, латуни и ЦАМ и дольше пилится. Вспомните корпуса гаражных навесных замков – там сплошь и рядом либо сталь, либо чугун.

(+) Дешевизна. Просто приценитесь, сколько стоят стальные дверные петли, а сколько – аналогичные по размерам латунные. Подсказка: первые дешевле в 3-5 раз.

(+) Магнитные свойства. Благодаря этому мы имеем счастье пользоваться такими чудесами инженерной мысли, как магнитные защелки и магнитные дверные стопоры.

(-) Низкие литейные качества. Снова обратимся к дверным петлям. В то время как латунные петли получают литьем под давлением, стальные – гибкой и штамповкой. Отсюда «побочные эффекты»: заметные швы и стыки, зазоры от 2 мм, неровные края, несоразмерность.

(-) Коррозия. Антикоррозийное покрытие рано или поздно повредится, и изделие начнет ржаветь. Кто-то возразит: но как же, есть же, скажем, дверные ручки из нержавеющей стали. А мы и не спорим. Но именно в России в частном секторе они не в ходу из-за дороговизны и ограниченности дизайна, продиктованной опять же низкими литейными качествами.

(-) Вес. Если вы подбираете небольшой и удобный в переноске навесной замок для багажа или противоугонного троса, то, возможно, есть смысл предпочесть алюминий. При одинаковых габаритах алюминиевый замок окажется в 2,5 раза легче стального. Тем более что упрочнение тела замка в данном случае неоправданно: в маленьких замках куда проще перекусить дужку, чем водить пилой по корпусу.

Химический состав сталей

Химический состав сталей — тема практически неисчерпаемая, но оттого ее важность не становится меньшей. Любой потребитель обязан четко представлять себе классификацию сталей по составу. Особенно актуально обратить внимание на состав стали 3 и 45, 20Х и 20ХНЗА, 45Х и 35, 40ХНМА и У9А.



Как влияет на свойства?

Ценность изучения химического состава сталей в том и состоит, что каждое вводимое в них вещество воздействует определенным образом. Совершенно обязательный углерод обеспечивает во многом твердость и упругость. Отвечает он также за прочность материала. Однако тот же карбоновый компонент делает сталь менее вязкой, затрудняет ее сварку и механическую обработку. Польза кремния для металлургов несомненна. Они используют его как раскислитель. По умолчанию этот элемент содержится в незначительном количестве. Существенного воздействия на параметры сплава он не оказывает. Но если кремния будет свыше 2%, хрупкость стали заметно возрастет. Ковать ее нельзя, потому что она будет разрушаться.

Сера и фосфор — однозначно вредные компоненты. Только в автоматных сталях допускается относительно высокое их содержание, но и там оно жестко нормируется. Значительная концентрация серы приводит к красноломкости. При попытке ковать подобный металл в разогретом состоянии он будет трескаться. Фосфор ведет к появлению эффекта хладноломкости. Но надо понимать, что фосфористые стали чуть лучше обрабатываются (отделение стружки улучшается).

Марганец по умолчанию присутствует в объеме 0,3-0,8%. Этот элемент не оказывает серьезного воздействия на свойства. Он отчасти компенсирует вредные воздействия серы и кислорода. Легируя сплав марганцем, металлурги добиваются лучшей твердости. Немного вырастает пригодность его для режущих инструментов, сокращается риск появления красноломкости, улучшается и прокаливаемость. Однако сопротивляемость ударной нагрузке понизится.

Хромированный продукт менее вязок и имеет низкую теплопроводность. Но все же такие сплавы весьма популярны. Введение хрома улучшает способность стали закаливаться.



Металл:

  • станет прочнее;
  • приобретет большую жаростойкость;
  • улучшит пригодность для режущих инструментов;
  • не будет преждевременно истираться.

В простых сортах стали доля хрома составляет не более 2%. В специальных марках его может быть до 1/4. Такие добавки точно исключат коррозию. Полезен в антикоррозийном плане и титан. Его применяют, чтобы сделать сталь прочнее и плотнее. При введении титановых добавок растет ее пластичность и упрощается производство готовых изделий на станках. Молибден увеличивает прочность и твердость одновременно. Благодаря нему сокращается вероятность поломки при горячей ковке. Молибденовые стали мало подвержены коррозии. Они достаточно теплоустойчивы, чтобы подходить для конструкций в сфере энергетического машиностроения. Такой металл имеет высокую несущую способность даже под воздействием ударных нагрузок и значительных температур. Правда, его сварка встречает затруднения.

Ниобий вводят, чтобы повысить стойкость к кислотам. Косвенно он помогает сократить коррозию сварного шва. От никеля зависят вязкие свойства и упругость, однако он немного понижает теплопроводность. Вольфрам, реагируя с углеродом, наращивает твердость и понижает красноломкость сплава. Его примесь способствует росту работоспособности сталей, оптимизирует их способность к прокаливанию. Стоит вкратце охарактеризовать и влияние других базовых элементов. Ванадий способствует образованию мелких зерен. Пригодность для сваривания повышается. Раскисляющий эффект позволяет добиться большей плотности.

Кобальт помогает увеличить жаропрочность. Кобальтовые стали имеют более высокие магнитные характеристики. Алюминий используют в производстве стали в качестве раскислителя. Он способствует выработке мелкозернистой структуры. После добавления такого компонента штамповая обработка будет идти проще.

Медь не сказывается на пригодности для сваривания, но благодаря ней растет стойкость к коррозии и улучшается текучесть.



Классификация сталей по составу

Сплавы могут быть разными по своему составу.

Углеродистые

Стали подразделяются не только по тем свойствам, которые определяют элементы по отдельности. Углеродистые стали имеют низкую концентрацию добавок. Свыше 70% всего проката в мире относится именно к такому типу. Решающее значение имеет концентрация углерода. За счет ее варьирования технологи научились влиять на:

  • текучесть;
  • общую твердость;
  • плотность материала;
  • уровень его пластичности.

Среди углеродистых сталей бывают частные виды:

  • феррит и перлит образуются при количестве карбонового компонента меньше 0,8%;
  • при точном содержании в 0,8% типична перлитная структура;
  • если концентрация вырастает более 0,8%, там появляется цементит.

Конструкционную углеродистую продукцию, сообразно названию, используют для получения арматуры и иных частей строительных конструкций. Доля углерода при этом составляет не более 0,65%. Принято делить такой металл уже по степени качества: на обыкновенный, качественный и специальный разряды. Для строительства применима сталь всех групп по качеству, с учетом требований. Инструментальная продукция существенно отличается и к ней предъявляют иные запросы.



Легированные

В них, в отличие от углеродистых, содержится больше марганца и кремния. Добавляется также как минимум один легирующий (улучшающий) компонент. Такие сплавы классифицируются именно по концентрации оптимизирующих добавок. Низколегированный продукт подходит для инструмента с низкими практическими характеристиками.

Высоколегированная сталь ценится за улучшенные технологические параметры, привлекательную закаливаемость и способность прокаливаться, за то, что она меньше коробится. Еще больше легирующих элементов в быстрорежущих сталях.

Маркировка и обзор марок

Уже традиционно стоит напомнить, что в большинстве случаев первые 2 цифры в марке стали — это десятые доли процента углерода. При отсутствии таких цифр можно считать его концентрацию равной или большей 1%. Прочие элементы обозначаются уже цифрами перед буквенным символом. Сталь 3 вообще никаких букв не содержит. В ней есть от 0,14 до 0,22% углерода, на долю марганца приходится от 0,4 до 0,6%. Качественная углеродистая сталь 45 более богата углеродом. Его концентрация может достичь 0,5%. Для марганца это минимальная планка, максимально же его бывает 0,8%. У сплава 45Х доля углеродного компонента может достичь 0,41-0,49%, при этом туда вводят еще не менее 0,8% хрома и не более 0,8% марганца. Не менее любопытной может оказаться сталь №5.

Это классический углеродистый металл обыкновенного качества. При содержании того самого углерода от 0,28 до 0,37% в нем присутствует еще:

  • минимум 0,5% марганца;
  • 0,15-0,3% кремния;
  • до 0,3% меди.

Сталь 20Х — это хромистый сплав с содержанием не более 0,3% никеля. Концентрация меди в нем ограничена той же планкой, а вот углерода не менее 0,17%. Среди конструкционных углеродистых сплавов выделяется еще и сталь 35. Разброс содержания углерода — от 0,32 до 0,4%. Сопротивление разрыву в краткосрочной перспективе составляет 530 МПа. Вариант 25Г2С оптимально подходит для сварных конструкций. Хрома там содержится максимум 0,3%, а вот марганца может быть в 5 раз больше. Содержание кремния втрое выше, чем хрома.

Среди легированных сталей стоит упомянуть 40ХНМА. При концентрации углеродной добавки от 0,37 до 0,44% присутствует заметно больше никеля (допускается свыше 1,4%).



Хорошим легированием отличается также сплав 20Г, однако в нем явно меньше углерода (строго максимум 0,24%), а тем более никеля. Основной упор делается на марганец, которого может оказаться до 1%. Если нужно выбрать богатый никелем сплав, то это будет 18Х2Н4МА (4,4%) при содержании углерода максимум 1/5 процента и марганца не более 0,55%. В составе 20ХН содержится от 1 до 1,4% никеля и до 3/4 процента хрома. А закаливаемый при 860 градусах в масле металл 38Х2Н2МФА включает около 95% железа. Допустимый разброс никеля – от 1,3 до 1,7%, молибдена будет максимум 0,3%.

Марка У9А красноречиво говорит про углеродистость на уровне 0,9%. Концентрация главного улучшителя (марганца) при этом достигает 0,28%. В случае 20ХГСА нормировано строгое вхождение кальция (максимум 3/1000 процента). При этом марганца может быть до 1,1, а кремния – даже до 1,2%. Что касается других марок:

Читайте также: