Легированная сталь марки шх9

Обновлено: 16.05.2024

1) Расшифруйте состав, определите группу стали по назначению, назовите детали, изготавливаемые из этой стали.

Шарикоподшипниковая сталь, содержащая 0,9 % хрома

Химический состав в % материала ШХ9

C Si Mn Ni S P Cr Cu
0.95 - 1.05 0.17-0.37 0.2-0.4 до 0.3 до 0.02 до 0.027 0.7 - 1.05 до 0.25

Назначение: шарики диаметром до 150 мм, ролики диаметром до 23 мм, кольца подшипников с толщиной стенки до 14 мм, втулки плунжеров, плунжеры, нагнетательные клапаны, корпуса распылителей, ролики толкателей и другие детали, от которых требуется высокая твердость, износостойкость и контактная прочность.

2) Назначьте и обоснуйте режим термической обработки, опишите структуру и свойства стали после термообработки.

Закалка 830 0 С охлаждающая среда – масло

Отпуск 280 0 С охлаждающая среда – воздух

В закалённом состоянии сталь обладает большой твёрдостью, но вместе с тем и хрупкостью. Чтобы придать ей вязкость, производится отпуск стали после закалки. Для этого её нагревают до температуры 220-300°С и медленно охлаждают в воздухе. Твёрдость стали при этом несколько уменьшается, структура её изменяется, и она становится более вязкой. Меняя температуру отпуска, можно получить разные механические свойства.

Механические свойства в зависимости от температуры отпуска

Закалка 810 °С, масло.

Закалка 830 °С, масло.

3) Объясните влияние легирующих элементов на точки и линии диаграммы Fe - Fe 3 C , на термическую обработку и свойства стали

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15. 20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей.

По применимости для легирования можно выделить три группы элементов. Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.

· V, Ti, Nb, W, Zr и др.

Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:

· влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;

· образование интерметаллидов (интерметаллических соединений) с железом - 7Мо6; Fe3Nb и др.

В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.

По характеру влияние на полиморфные превращения легирующие элементы можно разделить на две группы:

· элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);

· элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.

Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность.

Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости.

Легированный аустенит парамагнитен, обладает большим коэффициентом теплового расширения. Легирующие элементы, в том числе азот и углерод, растворимость которого в аустените при нормальной температуре достигает 1%, повышают его прочность при нормальной и высокой температурах, уменьшают предел текучести.

Легированный аустенит является основной составляющей многих коррозионностойких, жаропрочных и немагнитных сплавов. Он легко наклепывается, то есть быстро и сильно упрочняется под действием холодной деформации.

Легирующие элементы (исключение кобальт), повышая устойчивость аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Для многих аустенитных сплавов критическая скорость закалки снижается до 20°С/с и ниже, что имеет большое практическое значение.

Карбидообразующие элементы: Fe - Mn - Cr - Mo - W - Nb - V - Zr - Ti (за исключением марганца) препятствуют росту зерна аустенита при нагреве. Сталь, легированная этими элементами, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность.

Интерметаллиды образуются при высоком содержании легирующих элементов между этими элементами или с железом. Примером таких соединений могут служить Fe7Mo6, Fe3Nb2 и др. Интерметаллиды, как правило, отличают повышенные твердость и хрупкость.

Сталь ХВГ инструментальная легированная

Сталь ХВГ относится к группе инструментальных легированных сталей повышенной прокаливаемости. Инструмент из этой стали закаливается в масле и как правило прокаливается насквозь. Данная сталь характеризуется повышенным содержанием марганца (при нормальном содержании кремния). Это приводит при закалке к увеличению количества остаточного аустенита и уменьшению деформации; поэтому эту сталь также называют инструментальной малодеформирующейся [2].

Карбидной фазой этой стали является легированный цементит (M3C), коагуляция которого происходит медленее, чем простого нелегированного. Поэтому эта сталь размягчается медленее при повышении температуры отпуска, чем простые углеродистые инструментальные стали и обычная температура отпуска инструмента намного выше.

Микроструктура горячекатаной, кованой металлопродукции предназначенной для холодной механической обработки (обточки, строжки, фрезерования и др.), калиброванной и со специальной отделкой поверхности стали ХВГ диаметром или толщиной до 60 мм должна соответствовать:
— зернистый перлит — баллам от 1 до 6 (приложение Г, ГОСТ 5950-2000)

Сталь ХВГ применяется для изготовления измерительного и режущего инструмента, для которого повышенное коробление при закалке недопустимо (протяжки и другой инструмент с большим отношением длины к диаметру или толщине), резьбовых калибров, длинных метчиков, длинных разверток и другого вида специального инструмента, холодновысадочных матриц и пуансонов, технологической оснастки.

Примерное назначение инструментальной легированной стали ХВГ (ГОСТ 5950-2000)

Для измерительных и режуших инструментов, для которых повышенное коробление
при закалке недопустимо;

  • резьбовых калибров,
  • протяжек,
  • длинных метчиков,
  • длинных разверток,
  • плашек и другого специального инструмента,
  • холодновысадочных матриц и пуансонов,
  • технологической оснастки.

Химический состав, % (ГОСТ 5950-2000)

Марка
стали
Массовая доля элемента, %
углерода кремния марганца хрома вольфрама наладим молибдена никеля
ХВГ 0,90-1,05 0,10-0,40 0,80-1,10 0,90-1,20 1,20-1,60

Фазовый состав, % по массе

Температура критических точек, °C [3]

Режимы термической обработки стали ХВГ [2]

Отжиг Закалка Отпуск
температура, °C твердость,
HB
температура, °C среда
охлаждения
твердость,
HRC
(не менее)
температура, °C твердость,
HRC
770-790 255-207 800-830 Масло 62 140-160 65-62

ПРИМЕЧАНИЕ. Твердость после закалки гарантируется по — ГОСТ, твердость после отпуска — в обычных пределах колебания

Режимы окончательной термической обработки [4]

Закалка
tп, °C tн, °C среда HRC
650-700 830-850 Масло 62-63
Отпуск
t, °C среда HRC
150-200
200-300
Воздух 63-62
62-58

Рекомендуемые режимы закалки [5]

Вариант Температура, °C Охлаждение Охлаждение до 20 °C HRC Структура или балл
мартенсита
по шкале № 3
ГОСТ 8233-56
Среда Температура, °C Выдержка
I 820-840 Масло 20-40 До температуры масла На воздухе 63-65 1
II 90-140 До 150-200 °C
III 830-850 Расплав селитры,
щелочи
150-160 Выдержка в расплаве равна
выдержке при нагреве под закалку
На воздухе 62-64 1-3
Температуру расплава и продолжительность изотермической выдержки выбирают
по диаграмме на рис.1
в зависимости от требуемой твердости.
Охлаждение до 20 °C на воздухе.
  1. Варианты II и III применяют для закалки изделий сложной формы с минимальной деформацией.
  2. При закалке изделий толщиной более 50 мм температура нагрева повышается до 850 — 870 °С.
  3. Продолжительность выдержки при нагреве под закалку рекомендуется рассчитывать по методике ВНИИ [6].

Диаграмма изотермического превращения аустенита (сталь ХВГ)

Обработка холодом [5]

Вариант закалки Температура охлаждения, °C Назначение Повышение твердости ΔHRC
I-III -70 °C Стабилизация размеров
инструментов повышенной точности
0-1

ПРИМЕЧАНИЕ: Обработку холодом производить не позднее 1 ч после закалки.

Рекомендуемые режимы отпуска [5]

Вариаит Назначение Температура
нагрева, °C
Среда нагрева HRC
II Снятие напряжений,
стабилизация структуры
и размеров
140-160
170-200
230-280
Масло,
расплав селитры,
щелочи
62-65
60-62
55-60
II Снятие напряжений
и понижение твердости
См. примечание 2 Расплавы селитры,
щелочи,
печь с воздушной атмосферой

  1. Изделия высокой точности (1-2 мкм) после предварительного шлифования должны подвергаться повторному отпуску (старению).
  2. Режим отпуска для получения твердости ниже HRC 55 выбирают по графику рис.2 в соответствии с требуемой твердостью.
  3. Отпуск при температурах более 250 °С обеспечивает стабилизацию размеров изделий.
  4. Продолжительность выдержки при отпуске смотри в разделе «Выдержка при отпуске в жидких средах инструмента из углеродистой и легированной стали» ниже

Зависимость твердости от продолжительности отпуска (сталь ХВГ)

Выдержка при отпуске в жидких средах инструмента из углеродистой и легированной стали

Твердость в состоянии поставки металлопродукции из стали ХВГ, предназначенной для холодной механической обработки (ГОСТ 5950-2000)

Марки
стали
Твердость HB,
не более
Диаметр
отпечатка, мм,
не менее
ХВГ 255 3,8

Твердость образцов металлопродукции из стали ХВГ после закалки и закалки с отпуском (ГОСТ 5950-2000)

Марка
стали
Температура, °С,
и среда закалки
образной
Температура
отпуска, °С
Твердость
HRCэ (HRC),
не менее
ХВГ 820-840, масло 180 61 (60)

Твердость и ударная вязкость в зависимости от сечения образца [7]

Сечение, мм Место
вырезки
образца
КСU,
Дж/см 2
Твердость
HRCэ
16 1/2R 40 64
25 1/2R 30 64
50 1/2R 20 63
100 1/2R 15 61

ПРИМЕЧАНИЕ. Закалка на мелкое зерно; отпуск при 150-160 °C.

Твердость стали в зависимости от температуры отпуска [8]

* Заготовки сечением до 50 мм закаливаются с охлаждением в масле, св. 50 мм — в расплаве солей с водой.

Механические свойства при комнатной температуре [10]

НД Режим термообработки Сечение, мм σ0,2,
Н/мм2
σв,
Н/мм2
δ, % ψ, % KCU,
Дж/см2
HRC HB
Операция t, °C Охлаждающая
среда
не менее
ГОСТ
5950-2000
Отжиг 770-790 С печью со
скоростью
30 °C/ч
Не определяются ≤255
Закалка
Отпуск
820-840
180
Масло
Воздух
Образцы ≥60

Технологические свойства (ОСТ 23.4.127-77)

  • Температура ковки, °C: начала 1070, конца 860. Охлаждение замедленное.
  • Свариваемость — не применяется для сварных конструкций.
  • Обрабатываемость резанием — Kv б.ст = 0,35 и kv тв.спл = 0,75 в горячекатаном состоянии при НВ 235 и ств = 760 МПа.
  • Склонность к отпускной хрупкости — малосклонна.
  • Флокеночувствительность — чувствительна [11].

Прокаливаемость (ОСТ 23.4.127-77) [12]

Критический диаметр d

Термообработка Критическая
твердость HRCэ
d, мм,
после закалки
в масле
Закалка 61 15-70

Шлифуемость — пониженная при твердости HRCэ 59-61; удовлетворительная [9] при HRCэ 55-67.

Сталь ШХ15 подшипниковая

Согласно ГОСТ 801-78 расшифровка стали марки ШХ15 следующая:

  • Буквой «Ш» в начале маркировки стали указывает, что сталь подшипниковая.
  • Буква «Х» указывает, что сталь легирована хромом.
  • Двухзначное число 15 указывает примерную массовую долю хрома в процентах, для стали ШХ15 примерная массовая доля хрома составляет 1,5%.

Вид поставки

  • Сортовой прокат, в том числе фасонный по ГОСТ 801-78, ГОСТ 2590-88, ГОСТ 2591-88.
  • Калиброванный пруток ГОСТ 7417-75.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77.
  • Полоса ГОСТ 103-76.
  • Проволока ГОСТ 4727-83.

Химический состав, % (ГОСТ 801-78)

C Mn Si Cr S P Ni Cu
не более
0,95-1,05 0,20-0,40 0,17-0,37 1,30-1,65 0,020 0,027 0,30 0,25

Характеристики и применение

Сталь ШХ15 применяется для изготовления деталей , от которых требуется высокая твердость, износостойкость и контактная прочность, например:

  • шарики диаметром до 150 мм,
  • ролики диаметром до 23 мм,
  • кольца подшипников с толщиной стенки до 14 мм,
  • втулки плунжеров,
  • плунжеры,
  • нагнетательные клапаны,
  • корпуса распылителей,
  • ролики толкателей

Сталь для производства подшипников качения поставляют:

  • для горячей штамповки деталей — неотожженной,
  • для холодной механической обработки — отожженной.

Применение стали ШХ15 для изготовления деталей подшипников

Марка ГОСТ или ТУ Профиль и вид поставки Применение
ШХ15 ГОСТ 801-60 Горячекатаная и
холоднотянутая
сортовая
сталь
Кольца, тела качения
ГОСТ 800-55 Трубы Кольца
ГОСТ 4727-67 Прутки Кольца, тела качения
ЧМТУ 1-992-70 Прутки Кольца, тела качения

Температура критических точек, °С

Влияние азотирования на износостойкость стали ШХ15

Марка
стали
Твердость
поверхности HV
Путь
трения, км
Износ
образца, мг
неподвижного вращающегося
ШХ15 780 12,5 16 7,4

ПРИМЕЧАНИЕ. Вращающийся образец из стали ШХ15, которая в состоянии закалки и низкотемпературного отпуска имеет твердость HV780.

Твердость стали ШХ15 после высокочастотной закалки

Твердость после
закалки и
отпуска HRCэ
Достижимая
глубина
63-67 8

Температура нагрева стали ШХ15 для высокочастотной закалки

Марка
стали
Предварительная
термическая
обработка
Температура
нагрева, °C
в печи,
в масле
при высокочастотном
поверхностном нагреве
(охлаждение водянным душем)
и суммарном времени
аустенизации, с
10 3 1
ШХ15 Отжиг 830-850 890-930 920-960 940-980
Улучшение 830-850 850-870 880-920 900-940

Механические свойства

Термообработка Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Твердость, не более
не менее
Отжиг при 800 °С,
охл. с печью до
730 °С, затем до
650 °С со скоростью
10-20 град/ч на воздухе
370-410 590-730 15-25 35-55 44 НВ 179-207
Закалка с 810°С в
воде до 200 °С,
затем в масле;
отпуск при 150 °С,
охл. на воздухе
30-60 1670 2160 5 HRCэ 62-65

Механические свойства в зависимости от температуры отпуска

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Твердость
HRCэ HB
Закалка с 840 °С в масле
200 1960-2200 2160-2550 61-63
300 1670-1760 2300-2450 56-58
400 1270-1370 1810-1910 50-52
450 1180-1270 1620-1710 46-48
Закалка с 860 °С в масле
400 1570 15 480
500 1030 1278 8 34 20 400
550 900 1080 8 36 24 360
600 780 930 10 40 34 325
650 690 780 16 48 54 280

Механические свойства в зависимости от температуры испытаний

tисп, °С σ0,2, МПа σв, МПа δ5, % ψ% KCU,
Дж/см 2
Нагрев при 1150 °С и охлаждение до температур испытаний
800 130 35 43
900 88 43 50
1000 59 42 50
1100 39 40 50
Образец диаметром 6 мм и длиной 30 мм, деформированный и отожженный.
Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с
1000 32 42 61 100
1050 28 48 62 100
1100 20 29 72 100
1150 17 25 61 100
1200 18 22 76 100
Закалка с 830 °С в масле; отпуск при 150 °С, 1,5 ч
25 2550 88
-25 2650 69
-40 2600 64

Предел выносливости при n=10 6

Термообработка Твердость НВ σ-1, МПа
Отжиг 192 333
Закалка с 830 °С; отпуск при 150 °С, охл. в масле 616 804

Теплостойкость

Технологические свойства

Температура ковки, °С: начала 1150, конца 800. Сечения до 250 мм охлаждаются на воздухе, сечения 251-350 мм — в яме.
Свариваемость — способ сварки КТС.
Обрабатываемость резанием — Кv тв.спл = 0,90 и Кv б.ст = 0,36 в горячекатаном состоянии при НВ 202 и σв=740 МПа.
Склонность к отпускной хрупкости — склонна.
Флокеночувствительность — чувствительна.
Шлифуемость — хорошая.

Нормы карбидной неоднородности в подшипниковой стали ШХ15

Сталь,
состояние поставки
Размер
профиля, мм
Баллы карбидной
неоднородности
(не более)
карбидной
полосчатости
карбидной
ликвации
ШХ15,
холоднотянутая
Все размеры 2,0 1,0
ШХ15,
горячекатаная
отожженная
Все размеры 3,0 2,0
ШХ15,
горячекатаная
неотожженная
Все размеры 4,0 3,0
ШХ15,
проволока
5,4
>12
2,0 0,5
1,0

Термообработка

Нагрев под закалку деталей подшипников из стали ШХ15 производят в электропечах сопротивления и соляных ваннах. Учитывая прокаливаемость стали (рис. ниже), устанавливают температуру нагрева 830-860°С для деталей из стали ШХ15 с сечением до 10 мм и свыше 10 мм 840-870°С.

Прокаливаемость стали ШХ15. Распределение твердости по сечению роликов разного диаметра

Величина действительного аустенитного зерна стали ШХ15 после закалки характеризуется кривыми на рис. ниже. Время нагрева зависит от вида оборудования, среды нагрева и толщины сечения.

Зависимость величина зерна аустенита в закаленной стали ШХ15 от исходной структуры и температуры закалки

Охлаждение колец производят в индустриальных маслах с температурой 30-60°С.

Перед отпуском детали должны быть охлаждены до температуры не выше 25°С. Отпуск деталей из стали ШХ15 производят при температуре 150-165°С.

Общую длительность отпуска устанавливают из расчета выдержки при температуре не менее 2 ч для деталей с сечением толщины стенки до 20 мм и 3 ч при сечении толщины стенки 20-50 мм. Содержание остаточного аустенита в сталях ШХ15 должно быть не более величин, указанных в таблице ниже.

Содержание остаточного аустенита в стали ШХ15 в зависимости от режимов термообработки

Процесс нитроцементации колец подшипников проводят в шахтных печах при температуре 860°С, продолжительность выдержки 2-4 ч, глубина нитроцементации при этом от 0,3 до 1,6 мм.

Микроструктура нитроцементованного слоя состоит из скрытокристаллического азотистого мартенсита с равномерно распределенными карбидами.

После нитроцементации значительно увеличивается объем стали ШХ15 по сравнению с объемом закаленной стали. Для компенсации этого увеличения предусматривается изменение припусков на шлифовку. Так, для колец подшипников диаметром от 50 до 200 мм по наружному диаметру уменьшают припуск на 0,1-0,15 мм, а по внутреннему диаметру увеличивают припуск также на 0,1-0,15 мм. Для колец диаметром менее 50 мм и шариков припуск не изменяется.

Стали и сплавы легированные (ГОСТ 4543-71)

Стали легированные — железоуглеродистые материалы, которые кроме обычных примесей (марганца, кремния, серы и фосфора) содержат ряд элементов, специально вводимых в сталь при ее выплавке для получения заданных свойств. Эти элементы называют легирующими. В качестве легирующих элементов чаще всего добавляют в сплавы никель, хром, вольфрам, молибден, титан, ванадий, алюминий, медь, кобальт, бор. Кремний и марганец, если они специально введены в сталь, также являются легирующими элементами. При этом содержание кремния должно быть выше 0,5%, а марганца — выше 0,8%. Подавляющая часть легированных сталей содержит два или несколько легирующих элементов, так как совместное их действие значительнее влияет на изменение свойств сталей, чем действие одного элемента, даже если он вводится в большом количестве.

Сталь легированная

Название легированных сталей определяется основными легирующими элементами, входящими в их состав, например: хромистая, хромомарганцовая, хромоникелевая, хромоникельмолибденовая и т. п.

Влияние легирующих элементов на свойства стали зависит от их количества, местоположения в структуре и содержания углерода. Все легирующие элементы в том или ином количестве способны растворяться в кристаллической решетке феррита, образуя при этом, так называемый, легированный феррит. По отношению к углероду легирующие элементы можно разделить на две группы:

  • первая группа — элементы, способные создавать с углеродом стойкие химические соединения — карбиды; к ним относятся титан, ванадий, вольфрам, молибден, хром, марганец и ниобий;
  • вторая группа — элементы, не образующие карбиды; в их число входят кремний, алюминий, никель, медь, кобальт. Эти элементы содержатся в легированных сталях в виде твердого раствора в феррите.

Карбидообразующие элементы, растворенные в феррите, искажают его кристаллическую решетку, упрочняют феррит, уменьшают теплопроводность и электропроводность стали. Карбиды отличаются весьма высокой твердостью (70÷75 HRC) и износостойкостью, но обладают значительной хрупкостью. Они играют весьма важную роль в инструментальных сталях.

После термической обработки (закалки, отпуска) улучшаются механические свойства легированных сталей, но в изделиях малых сечений их свойства мало отличаются от механических свойств углеродистой стали. В изделиях крупных сечений (свыше 15 мм) механические свойства легированных сталей — предел текучести σт, относительное сужение Ψ и ударная вязкость ан — значительно выше, чем углеродистых. Эго объясняется малой критической скоростью закалки легированных сталей, а следовательно, лучшей их прокаливаемостью. После термической обработки у них образуются более мелкое зерно и дисперсные структуры. Большая прокаливаемость и малая критическая скорость закалки позволяют закаливать эти стали в менее резких охладителях, к которым относится масло и воздух, что способствует уменьшению деформации деталей и уменьшению возможности образования трещин. Поэтому легированные стали применяют для изготовления деталей малого сечения со сложной геометрической формой. Без термической обработки эти стали использовать нецелесообразно. Прокаливаемость возрастает с увеличением в стали марганца, хрома, бора, никеля и молибдена. Конкретному сечению стали должно соответствовать определенное количество легирующих элементов, иначе ухудшаются такие ее технологические свойства, как обработка резанием, свариваемость и др. Если содержание хрома или марганца превышает 1%, увеличивается порог хладноломкости стали или критической температуры хрупкости ( температуры перехода металла от вязкого разрушения к хрупкому и наоборот). Поэтому содержание легирующих элементов должно быть минимальным, обеспечивающим необходимую сквозную прокаливаемость для конкретного сечения детали и условий охлаждения при закалке.

Никель повышает сопротивление стали хрупкому разрушению, увеличивает пластичность и вязкость, уменьшает чувствительность к концентраторам напряжений и понижает температуру порога хладноломкости. Поскольку никель дорогой металл, то его вводят в конструкционные стали в сочетании с хромом и другими элементами в предельно малых количествах.

После отпуска легированная сталь обладает более высокой прочностью и твердостью, но меньшей пластичностью вязкостью, чем углеродистая. Молибден и вольфрам повышают прокаливаемость и устойчивость стали против отпуска, способствуют образованию мелкозернистой структуры. Особое влияние молибден оказывает на цементированную сталь, так как повышает твердость и прокаливаемость цементированного слоя. Кремний при изотермической закалке обеспечивает высокую вязкость и пониженную чувствительность стали к надрезу. В отожженном и нормализованном состоянии легированная сталь имеет более высокую прочность, но меньшую пластичность, чем углеродистая.

В зависимости от области применения легированые стали подразделяют на три группы: конструкционные стали, предназначенные для изготовления деталей машин и конструкций; инструментальные стали, используемые для производства режущих и измерительных инструментов, штампов и пресс-форм; стали и сплавы с особыми физическими и химическими свойствами — коррозионностойкие, жаростойкие, жаропрочные, магнитомягкие, магнитотвердые, с заданным коэффициентом теплового расширения и др.

В зависимости от содержания вредных примесей различают качественную легированную сталь (не более 0,035% серы также и фосфора), высококачественную — А (не более 0,025% серы также и фосфора ), особовысококачественную — Ш (до 0,015% серы и до 0,025% фосфора). Буква Ш ставится через дефис в конце марки стали, например ЗОХГС-Ш, ЗОХГСА-Ш.

В обозначение марок легированных сталей (ГОСТ 4543-71) входят заглавные буквы русского алфавита, соответствующие определенным химическим элементам, содержащимся в стали, и цифры, обозначающие количество легирующих элементов и углерода (табл. 1).

Первые одна или две цифры (слева) характеризуют среднее содержание углерода: одна цифра — в десятых долях процента, две цифры — в сотых долях. В марках некоторых инструментальных легированных сталей с содержанием углерода около 1% цифра не ставится. Цифры после букв означают приблизительное содержание легирующих элементов в целых процентах. При содержании легирующего элемента до 1,5% цифра после буквы может не проставляться (это делается в исключительных случаях). Например, 40Х означает хромистую легированную конструкционную сталь, содержащую 0,4% углерода и около 1% хрома; 15Н2М — конструкционную легированную никельмолибденовую сталь с содержанием 0,15% углерода, 2% никеля и до 1% молибдена.

Маркировка высококачественных сталей отличается наличием буквы А, проставляемой в конце марки. Например, 18Х2Н4МА означает хромоникельмолибденовую конструкционную легированную высококачественную сталь с содержанием 0,18% углерода, 2% хрома, 4% никеля и до 1% молибдена; 38Х2МЮА — хромоалюминиевую конструкционную высококачественную сталь, имеющую в своем составе 0,38% углерода, 2% хрома, до 1% молибдена и до 1% алюминия. Буква А не ставится в обозначении высококачественных инструментальных легированных сталей и сплавов с особыми свойствами. Например, 8Х4ВЗМЗФ2 — инструментальная легированная сталь для режущего и измерительного инструмента (0,8% углерода, 4% хрома, 3% вольфрама, 3% молибдена и 2% ванадия).

Иногда в обозначении марок сталей в начале ставятся буквы, указывающие области их применения: А — автоматные стали повышенной обрабатываемости резанием (А 12, А35), Ш — шарикоподшипниковые стали (ШХ15, ШХ9), Р — быстрорежущие стали (Р18, Р6М5К5), Св — сварочные и наплавочные стали и сплавы (Св-12ГС, Св-08ХН2ГМТА). Особое внимание следует обратить на букву А, которая может содержаться в начале обозначения марки стали, в середине и в конце. Если буква А стоит, в начале марки, она указывает область применения стали (автоматная конструкционная сталь повышенной и высокой обрабатываемости резанием, например А40ХЕ); если в конце марки, значит сталь высококачественная (например 20Х2Н4А); буква А, стоящая в середине марки, означает азот, например 10Х14АП5. Стали, предназначенные для специального производства (исследуемые или пробные), часто маркируют условно, например, по месту их выплавки: Э — «Электросталь», 3 — Златоустовский металлургический комбинат, Д — завод «Днепроспецсталь» — ЭИ868, ЭП48, ЗИ, ДИ (И — значит исследовательская, П — пробная).

Углеродистые и легированные стали

Углеродистые стали подразделяют на три основные группы: углеродистые стали обыкновенного качества, качественные углеродистые стали и углеродистые стали специального назначения (автоматная, котельная и др.).

Стали углеродистые обыкновенного качества соответствуют ГОСТ 380–2005. Их поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях народного хозяйства.

Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6.

Цифры — это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.

В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы справа от номера марки означают:

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Между индексом и номером марки может стоять буква Г, это означает повышенное содержание марганца. Вобозначениях марок слева от букв Ст указаны группы (Б и В) стали. Стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой правее индекса степени раскисления. Например, Ст5Гпс3 означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспокойная, третьей категории. Сталь первой категории пишется без указания номера последней, например Ст4пс.

Химический состав сталей группы А не регламентируют, а гарантируют их механические свойства, определяемые соответствующим государственным стандартом. Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).

Сталь группы Б поставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют. Сталь группы Б поставляют по механическим свойствам, соответствующим нормам для стали группы А, и по химическому составу, соответствующему нормам для стали группы Б. Сталь группы Б используют, в основном, для сварных конструкций.

2. Стали углеродистые качественные конструкционные

Стали углеродистые качественные конструкционные соответствуют ГОСТ 1050–88. От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и в большинстве случаев — более высоким содержанием кремния и марганца.

Сталь маркируют двузначными числами, которые обозначают содержание углерода в сотых долях процента, и поставляют с гарантированными показателями химического состава и механических свойств. Буква Г в марках этих сталей также указывает на повышенное содержание марганца (до 1%). Сталь углеродистую качественную поставляют катаной, кованой, калиброванной, круглой с особой отделкой поверхности (серебрянка). К сталям углеродистым специального назначения относят стали (ГОСТ 1414–75) с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены, в основном, для изготовления деталей массового производства.

Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают также введением в стали технологических добавок — селена, свинца, теллура. Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют следующие марки автоматной стали: А12, А20, А30, А40Г. Из стали А12 изготовляют неответственные детали, из сталей других марок — более ответственные детали, работающие при значительных напряжениях и повышенных давлениях. Сортамент автоматной стали предусматривает изготовление сортового проката в виде прутков круглого, квадратного и шестигранного сечений.

Стали листовые (котельные, ГОСТ 5520–79 и ТУ) для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горения газовых турбин и других деталей. Они должны работать при переменных давлениях и температуре до 450°С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродистую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали: 12К, 15К, 16К, 18К, 20К, 22К с содержанием в них углерода от 0,08 до 0,28%. Эти стали поставляют в виде листов толщиной до 200 мм и поковок в состоянии после нормализации и отпуска. Свойства и назначение качественных конструкционных сталей приведены в табл. 1.

3. Влияние легирующих элементов. Маркировка легированных сталей

Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Таблица 1. Механические свойства качественной конструкционной стали

прочности

при растяжении

Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его.

Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель — элементы с решеткой, отличающейся от решетки -Fe. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают ударную вязкость (за исключением никеля). При содержании до 1% марганец и хром повышают ударную вязкость. Свыше этого содержания ударная вязкость снижается, достигая уровня нелегированного феррита при 3% Сr и 1,5% Мn.

Повышению конструктивной прочности при легировании стали способствует увеличение прокаливаемости. Улучшение прокаливаемости стали достигается при ее легировании несколькими элементами, например Сr + Мо, Cr + Ni, Cr + Ni + Mo и другими сочетаниями различных элементов.

Высокая конструктивная прочность стали обеспечивается рациональным содержанием в ней легирующих элементов. Избыточное легирование после достижения необходимой прокаливаемости приводит к снижению вязкости и облегчает разрушение стали.

Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.

Никель — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.

Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Никель заметно повышает предел текучести стали, но делает ее чувствительной к перегреву. Всвязи с этим для измельчения зерна одновременно с никелем в сталь вводят карбидообразующие элементы.

Кремний является некарбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.

Молибден и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2…0,4% и вольфрам в количестве 0,8…1,2% в комплексно легированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.

Ванадий и титан — сильные карбидообразущие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, титана, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных труднорастворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.

Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002…0,005%).

Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения (ГОСТ 4543–71):

  1. хром (X),
  2. никель (Н),
  3. марганец (Г),
  4. кремний (С),
  5. молибден (М),
  6. вольфрам (В),
  7. титан (Т),
  8. алюминий (Ю),
  9. ванадий (Ф),
  10. медь (Д),
  11. бор (Р),
  12. кобальт (К),
  13. ниобий (Б),
  14. цирконий (Ц).

Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента содержится до 1,5%.

В качественных конструкционных легированных сталях две первые цифры марки показывают содержание углерода в сотых долях процента. Высококачественные легированные стали имеют в конце марки букву А, а особо высококачественные — Ш. Например, сталь марки 30ХГСН2А: высококачественная легированная сталь содержит 0,30% углерода, до 1% хрома, марганца, кремния и до 2% никеля; сталь марки 95Х18Ш: особо высококачественная, выплавленная методом электрошлакового переплава с вакуумированием, содержит 0,9…1,0% углерода; 17…19% хрома, 0,030% фосфора и 0,015% серы. Легированные конструкционные стали делят на цементуемые, улучшаемые и высокопрочные.

4. Цементуемые, улучшаемые и высокопрочные стали

Цементуемые стали — это низкоуглеродистые (до 0,25 С), низко- (до 2,5%) и среднелегированные (2,5…10% суммарное содержание легирующих элементов) стали. Они предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки.

Стали марки 15ХА с пределом прочности σв МПа предназначены для изготовления небольших деталей, работающих в условиях трения при средних давлениях и скоростях. Для изготовления ответственных деталей, работающих при больших скоростях, высоких давлениях и ударных нагрузках, используется сталь марок 18ХГ и 25ХГМ. Для крупных, ответственных, тежелонагруженных деталей применяются стали 20ХН и 20Х2Н4А.

При изготовлении крупных, особо ответственных, тяжелонагруженных деталей, работающих при больших скоростях с наличием вибрационных и динамических нагрузок, используется сталь с пределом прочности в МПа марки 18Х2Н4МА.

Работоспособность таких деталей зависит от свойств сердцевины и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка обеспечивает высокую поверхностную твердость (HRC 58…63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.

Улучшаемые легированные стали — среднеуглеродистые (0,25…0,6% С) и низколегированные стали. Для обеспечения необходимых свойств (прочности, пластичности, вязкости) эти стали термически улучшают, подвергая закалке и высокому отпуску (при 500…600°С).

Улучшаемые и цементуемые стали после термической обработки дают прочность до σв МПа и вязкость до КС= 0,8…1,0 МДж/м 2 . Для создания новых современных машин такой прочности недостаточно. Необходимы стали с пределами прочности σв МПа. Для этих целей применяют комплексно легированные и мартенситостареющие стали. Свойства таких сталей и их назначение показаны в табл. 2.

Таблица 2. Улучшаемые легированные стали

прочности

при

растяжении

вязкость

Комплексно легированные стали — это среднеуглеродистые (0,25…0,6% С) легированные стали, термоупрочняемые при низком отпуске или подвергающиеся термомеханической обработке.

Мартенситостареющие стали — это новый класс высокопрочных легированных сталей на основе безуглеродистых (не более 0,03% С) сплавов железа с никелем, кобальтом, молибденом, титаном, хромом и другими элементами. Мартенситостареющие стали закаливают на воздухе от 800…860°С с последующим старением при 450…500°С.

5. Углеродистые инструментальные стали

Инструментальные стали — это особая группа сталей, обладающих специфическими свойствами. Эти стали предназначены для изготовления режущего и измерительного инструмента, штампов.

По условиям работы инструмента к углеродистым инструментальным сталям предъявляют следующие требования:

  1. стали для режущего инструмента (резцы, сверла, метчики, фрезы и др.) должны обладать высокой твердостью, износостойкостью и теплостойкостью;
  2. стали для измерительного инструмента должны быть твердыми, износостойкими и длительное время сохранять размеры и форму инструмента;
  3. стали для штампов (холодного и горячего деформирования) должны иметь высокие механические свойства (твердость; износостойкость, вязкость), сохраняющиеся при повышенных температурах;
  4. стали для штампов горячего деформирования должны обладать устойчивостью против образования поверхностных трещин при многократном нагреве и охлаждении.

Инструментальные углеродистые стали (ГОСТ 1435–99) выпускают следующих марок: У7, У8, У8Г, У9, У10, У11, У12 и У13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г, например У8Г, после цифры означает, что сталь имеет повышенное содержание марганца, что обеспечивает большую твердость сплава.

Марка инструментальной углеродистой стали высокого качества имеет букву А, например У12А: инструментальная углеродистая сталь высокого качества, содержащая 1,2% С. Инструменты, применение которых связано с ударной нагрузкой, например зубила, бородки, молотки, изготовляют из сталей У7А, У8А. Инструменты, требующие большой твердости, но не подвергающиеся ударам, например сверла, метчики, развертки, шаберы, напильники, изготовляют из сталей У12А, У13А. Стали У7—У9 подвергают полной, а стали У10— У13 — неполной закалке.

Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурах нагрева. При нагреве выше 200°С инструмент из углеродистых сталей теряет твердость, т.е. при повышенных температурах нужно применять инструменты из других сталей.

6. Легированные инструментальные стали

Легированные инструментальные стали имеют ГОСТ 5950– 2000. Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам). По сравнению с углеродистыми легированные инструментальные стали имеют преимущества:

  1. хорошая прокаливаемость;
  2. большая пластичность в отожженном состоянии;
  3. значительная прочность в закаленном состоянии, более высокие режущие свойства.

Низколегированные инструментальные стали содержат до 2,5% легирующих элементов, имеют высокую твердость (HRC 62…69), значительную износостойкость, но малую теплостойкость (200…260°С). Их используют для изготовления инструмента более сложной формы. В низколегированных сталях X, 9ХС, ХВГ, ХВСГ основной легирующий элемент — хром. Сталь X легирована только хромом. Повышенное содержание хрома увеличивает ее прокаливаемость. Сталь X прокаливается в масле полностью в сечении до 25 мм, сталь У10 — только в сечении до 5 мм.

Применяют сталь X для изготовления токарных, строгальных и долбежных резцов. Сталь 9ХС, кроме хрома, легирована кремнием. По сравнению со сталью X она имеет большую прокаливаемость — до 35 мм; повышенную теплостойкость — до 250…260°С (сталь X — до 200…210°С) и лучшие режущие свойства. Из стали марки 9ХС изготовляют сверла, развертки, фрезы, метчики, плашки. Сталь ХВГ легирована хромом, вольфрамом и марганцем; имеет прокаливаемость на глубину до 45 мм. Сталь ХВГ используют для производства крупных и длинных протяжек, длинных метчиков, длинных разверток и т.п.

Сталь ХВСГ — сложнолегированная и по сравнению со сталями 9ХС и ХВГ лучше закаливается и прокаливается. При охлаждении в масле она прокаливается полностью в сечении до 80 мм. Она менее чувствительна к перегреву. Теплостойкость ее такая же, как у стали 9XС. ХВСГ применяют для изготовления круглых плашек, разверток, крупных протяжек и другого режущего инструмента.

Высоколегированные инструментальные стали содержат вольфрам, хром и ванадий в большом количестве (до 18% основного легирующего элемента); имеют высокую теплостойкость (600…640°С). Их используют для изготовления высокопроизводительного режущего инструмента, предназначенного для обработки высокопрочных сталей и других труднообрабатываемых материалов. Такие стали называют инструментальными быстрорежущими (ГОСТ 19265–73). Быстрорежущие стали обозначают буквой Р, цифра после которой указывают содержание вольфрама. Содержание хрома (4%) и ванадия (2%) в марках быстрорежущих сталей не указывают. В некоторые быстрорежущие стали дополнительно вводят молибден, кобальт и большое количество ванадия. Марки таких сталей содержат соответственно буквы М, К, Ф и цифры, указывающие их количество. Для изготовления измерительных инструментов применяют X, ХВГ и другие стали, химический состав которых приведен в ГОСТ 5950–2000.

Для измерительного инструмента большое значение имеет изменение размеров закаленного инструмента с течением времени. Поэтому при термической обработке измерительного инструмента внимание уделяется стабилизации напряженного состояния. Это достигается режимом низкого отпуска — при температуре 120…130°С в течение 15…20 ч и обработкой при температурах ниже нуля (до –60°С).

Штампы холодного деформирования небольших размеров (сечением 25…30 мм), простой формы, работающие в легких условиях, изготовляют из углеродистых сталей У10, УН, У12. Штампы сечением 75…100 мм более сложной формы и для более тяжелых условий работы изготовляют из сталей повышенной прокаливаемости X, ХВГ. Для изготовления инструмента с высокой твердостью и повышенной износостойкостью, а также с малой деформируемостью при закалке используют стали с высокой прокаливаемостью и износостойкостью, например высокохромистую сталь Х12Ф1 (11…12,5% Сr; 0,7…0,9% V).

Для инструмента, подвергающегося в работе большим ударным нагрузкам (такого как пневматические зубила, режущие ножи для ножниц холодной резки металла), применяют стали с меньшим содержанием углерода, повышенной вязкости — 4ХС, 6ХС, 4ХВ2С и др.

Молотовые штампы горячего деформирования изготовляют из сталей 5ХНМ, 5ХГМ, 5ХНВ. Эти стали содержат одинаковое количество (0,5…0,6%) углерода и легированы хромом. Такое содержание углерода позволяет получить достаточно высокую ударную вязкость; хром повышает прочность и увеличивает прокаливаемость сталей. Никель вводят в эти стали с целью повышения вязкости и улучшения прокаливаемости. Вольфрам и молибден повышают твердость и теплостойкость, уменьшают хрупкость, измельчают зерно и уменьшают склонность стали к перегреву. Марганец как более дешевый легирующий элемент является заменителем никеля. Для сталей молотовых штампов характерна глубокая прокаливаемость.

7. Коррозионно-стойкие стали

Коррозионно-стойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионно-стойкие стали получают легированием низкои среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.

Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. Наибольшая коррозионная стойкость сталей достигается после термической и механической обработки (табл. 3).

Таблица 3. Химический состав (%) некоторых нержавеющих сталей

Читайте также: