Нержавеющая сталь чистое вещество

Обновлено: 14.05.2024

Температура плавления нержавеющей стали является одной из важнейших физических характеристик металлов и сплавов. Однако знание ее величины на практике необходимо достаточно узкому ряду специалистов и промышленно-производственного персонала предприятий, имеющих отношение к литейному делу. Всем же потребителям любого проката из нержавейки следует знать совсем другие параметры этих сплавов – температуры применения и обработки для улучшения качеств.

1 Что такое температура плавления и как она себя проявляет у нержавеющих сплавов

Температура плавления – это такое значение нагрева кристаллического твердого тела из любого чистого вещества, при котором оно переходит в жидкое состояние. Причем эта же температура одновременно является и температурой кристаллизации. То есть у чистых веществ эти 2 температуры совпадают. И, таким образом, при температуре плавления чистое вещество может быть как в жидком состоянии, так и в твердом.

Что такое температура плавления и как она себя проявляет у нержавеющих сплавов

Если при этом произвести дополнительный нагрев, то вещество станет жидким, а его температура не будет меняться (повышаться), пока оно полностью все в рассматриваемой системе (теле) не расплавится. Если же наоборот, начать отведение тепла – охлаждать вещество – то оно начнет застывать (переходить в твердое кристаллическое состояние) и, пока полностью не затвердеет, его температура не изменится (не понизится).

Таким образом, температуры плавления и кристаллизации имеют одинаковую и такую величину для чистого вещества, при которой оно может находиться в жидком или твердом состоянии, а переход в одну из этих фаз происходит сразу и с последующим изменением температуры при, соответственно, дополнительном нагреве либо отводе тепла.

Сплавы, в том числе и нержавеющие, не являются чистыми веществами. В них помимо основного металла есть дополнительные легирующие элементы, а также примеси. То есть сплавы являются смесью веществ. А у всех без исключения смесей веществ отсутствует в общепринятом (приведенном выше) понимании температура плавления/кристаллизации. Они, в том числе и нержавеющие сплавы, переходят из одного состояния в другое в некотором определенном диапазоне температур. При этом температура начала перехода в жидкую фазу (она же – застывания) имеет название "точка солидуса". А температуру полного расплавления называют "точка ликвидуса".

Точно измерить температуры солидус и ликвидус (плавления) для большинства смесей веществ, включая нержавеющие сплавы, невозможно. Для их определения применяют специальные расчетные методы, устанавливаемые ГОСТ 20287 и стандартом ASTM D 97.

2 От чего зависит температура расплавления нержавеющих сталей

Значение температуры полного расплавления (ликвидус) нержавеющей стали зависит от химического состава сплава, то есть от тех металлов и примесей, из которых он состоит. При этом определяющая роль, разумеется, будет всегда за тем элементом, который основной либо имеет наибольшую концентрацию. А примеси и легирующие добавки в зависимости от своей концентрации только корректируют температуру ликвидус основного или доминантного по содержанию в сплаве металла в большую или меньшую сторону.

От чего зависит температура расплавления нержавеющих сталей

Можно, для примера, рассмотреть легированные нержавеющие сплавы. Это один из видов коррозионно-стойких сплавов согласно классификации нержавеющих сталей ГОСТ 5632-2014 (введенному взамен стандарта 5632-72), по которому их сейчас производят. Кстати, классификация в этом ГОСТ произведена исходя из того, какой состав нержавеющих сталей.

В легированных нержавеющих сплавах основным металлом и элементом их химического состава является железо (Fe) с температурой плавления 1539 о C. И вот как будут влиять на температуру ликвидус таких сталей примеси и легирующие добавки в зависимости от своей концентрации в %:

  • углерод (C), марганец (Mn), кремний (Si), сера (S) и фосфор (F) – каждый по-своему в той или иной степени снижают;
  • молибден (Mo), титан (Ti), ванадий (V) и никель (Ni) – в пределах тех соотношений, в каких используются для изготовления нержавеющих сталей, снижают в той или иной степени (если рассматривать сплавы только из одного из этих элементов и железа с любыми соотношениями этих металлов, то начиная с определенной концентрации, повышают обратно);
  • алюминий (Al) – в пределах тех соотношений, в каких он используется для изготовления нержавеющих сталей, никак не влияет (если рассматривать сплавы только из Al и Fе с любыми соотношениями этих металлов, то начиная с определенной концентрации, значительно снижает);
  • вольфрам (W) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 4,4 %, а потом незначительно повышает обратно;
  • хром (Cr) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает, пока его концентрация не достигает 23 (22) %, а потом повышает обратно;
  • никель (Ni) – в пределах тех соотношений, в каких он используются для изготовления нержавеющих сталей, снижает.

Стоит подробнее остановиться на влиянии никеля. Наибольшее влияние он оказывает на температуру ликвидус (полного расплавления) 2-х других видов нержавеющих сталей стандарта 5632. Речь идет о сплавах: одни – на железоникелевой, а другие – на никелевой основе. Характерная особенность состава первых – в них суммарная массовая доля никеля и железа больше 65 %, причем Fe является основным элементом, концентрация Ni варьируется в пределах от 26 до 47 %, а приблизительное соотношение между ними 1:1,5. В сплавах, отлитых на никелевой основе, никеля не менее 50 %, железа может не быть вообще, а максимальная его концентрация – 20 %.

В этих двух видах сплавов у никеля вообще превалирующее по сравнению со всеми вышеуказанными примесями и легирующими металлами влияние на температуру ликвидус. И это не удивительно, ведь в них Ni значительно больше, чем в нержавеющих легированных сталях (на основе железа). У железоникелевых и никелевых сплавов в первую очередь из-за Ni их температура ликвидус ниже температурного значения плавления железа. И она близка к температуре плавления самого никеля (которая равна 1455 о C).

Причем в железоникелевых сплавах никель по мере возрастания своей массовой доли способствует только снижению температуры ликвидус стали, потому что предельная его концентрация в них, как отмечалась выше, 47 %. А в никелевых сплавах снижение температуры ликвидус наблюдается только до 68 % содержания Ni. А дальнейшее повышение концентрации этого металла ведет к обратному повышению температуры полного расплавления никелевых сплавов.

3 Так какая она, эта температура – границы пределов и значения для некоторых сплавов

Температура ликвидус нержавеющих сталей варьируется в пределах 1450–1520 о C. У легированных сплавов (на основе железа) она имеет значения примерно от середины этого диапазона и до верхнего его предела в 1520 о C. У никелевых – примерно от середины и до нижнего предела в 1450 о C. Диапазон температур железоникелевых сплавов находится посередине и частично охватывает область значений для легированных и никелевых сплавов.

Так какая она, эта температура – границы пределов и значения для некоторых сплавов

Температуры полного расплавления (ликвидус) для конкретных нержавеющих сплавов можно найти только в некоторых справочниках и статьях интернета. В ГОСТах их нет. И, как указывалось выше, эту температуру невозможно замерить. Ее только рассчитывают для сплава с определенным составом, который согласно стандарта 5632 для одной и той же марки стали может варьироваться в процентном содержании практически всех его элементов. Поэтому те значения температуры, которые указывают какие-либо источники, не являются точными, а лишь приблизительными.

4 Какие параметры нагрева нужны потребителям нержавейки?

Всем потребителям любых изделий из нержавеющей стали, не собирающимся их расплавлять (то есть утилизировать методом переплавки), вовсе не нужно знать температуру плавления этих сплавов.

Какие параметры нагрева нужны потребителям нержавейки?

Тем, кто занимается проектированием, разработкой и изготовлением деталей, продукции и конструкций из нержавеющих сталей, а также их эксплуатацией, необходимо знать совсем другие температурные параметры этих сплавов:

  • параметры термообработки нержавейки – закалки, отпуска, отжига и так далее;
  • температурные режимы других видов обработки – ковки, сварки и так далее;
  • для коррозионно-стойких марок – в каком интервале температур эксплуатировать;
  • для жаростойких марок – максимальная рекомендуемая температура применения на протяжении длительного времени (обычно составляет до 10000 часов);
  • для жаропрочных марок – рекомендуемая температура применения;
  • для жаростойких и жаропрочных марок – когда в воздушной среде начинается интенсивное окалинообразование.

Эти температуры указаны в приложении А вышеупомянутого стандарта 5632 и есть в соответствующих справочниках по металловедению, металлообработке и так далее, а также должны быть в документации производителей на соответствующие марки нержавейки. И эти температуры намного ниже той, при которой начинается плавление нержавеющих сталей. Так что, если ориентироваться на последнюю, то при том или ином использовании изделий из нержавейки их требуемые для определенного вида применения физические свойства будут утрачены задолго до расплавления.

Температура плавления и использования нержавеющей стали – что важнее?

Состав нержавеющей стали – какие типы антикоррозийных сплавов существуют

Сегодня все большей популярностью пользуются легированные сплавы, особенно с добавлением хрома, который входит в состав нержавеющей стали, обладающей высокими антикоррозийными свойствами. Мы рассмотрим, какие бывают классы нержавейки.

1 Рассмотрим особенности коррозиеустойчивых сплавов

Стали с различными добавками, улучшающими физические свойства, называются легированными. К ним относятся и нержавеющая сталь, в состав которой обычно входит хром, как основной элемент, отвечающий за сопротивление коррозии. Для этой же цели используются в некоторых случаях никель, ванадий, марганец, медь и даже связанный азот. В гораздо меньшем процентном соотношении добавляются другие элементы, улучшающие качества металла: ниобий, кобальт и молибден, иногда – титан. И, конечно, не обойтись без вечных спутников железа – углерода, серы, фосфора, кремния. К слову, чем меньше их процентная доля в сплаве, тем выше качество стали.

Рассмотрим особенности коррозиеустойчивых сплавов

Нержавеющий сплав образуется в том случае, если химический состав имеет включение более 13 % хрома. Если же этот элемент добавить в количестве свыше 17 % от общего соединения компонентов, то сталь будет устойчива к коррозии даже в предельно агрессивных средах. Различают 3 типа нержавейки, которые определяются физическими свойствами. Так, обычный сплав называют просто коррозиестойким, он применяется в быту, а также повсеместно на производстве, где нет необходимости высокой степени защиты металла от агрессивных сред. Второй тип – жаростойкий, у него устойчивость к коррозии сохраняется при крайне высоких температурах. И, наконец, жаропрочный, у которого, как можно понять из названия, в той же агрессивной среде остается неизменной прочность, но коррозия нержавеющей стали у марок этого типа вполне возможна.

Итак, две основные группы нержавеющих сплавов – хромистые и хромоникелевые. Та и другая включают в себя несколько структурных классов. В первую входят мартенситные и ферритные стали, а также еще одна, являющаяся промежуточной и объединяющая в себе некоторые химические показатели двух первых – это мартенситно-ферритный сплав. Во второй группе насчитывается 4 класса: аустенитные, а также переходные аустенитно-ферритные, аустенитно-мартенситные и аустенитно-карбидные. Существует также группа хромомарганцевоникелевых сталей, которые, в целом, схожи по своей структуре с хромоникелевыми. Рассмотрим более подробно все вышеуказанные типы и классы.

2 Типы нержавеющих сплавов и их свойства

Как уже было сказано, коррозийную стойкость железо приобретает при добавлении в его расплав другого металла, как правило, благородного или любого цветного. При этом, в зависимости от химического состава сплава, сталь может получить свойства одного из 3 типов нержавейки. Самый простой структурой обладают обычные коррозиестойкие марки, такие как 08X13 и 12X13. Они пластичны и могут быть использованы как в быту в виде различных изделий, так и в промышленности, там, где от деталей и узлов требуется устойчивость к ударным нагрузкам. Как ясно из маркировки, содержание хрома в этих сплавах составляет 13 %. Первые же 2 цифры – это количество углерода, исчисляющееся в сотой доле процента.

Типы нержавеющих сплавов и их свойства

Следующие 2 типа относятся к сплавам, которые должны сохранять коррозиестойкость при воздействии высоких температур. В жаростойких сталях добавление хрома (или кремния) в количестве от 28 % и более обеспечивает снижение интенсивности окисления вплоть до полного его прекращения даже при сильном нагреве. Иными словами, окалина практически не возникает по той причине, что на поверхности уже имеется оксидная пленка. В той же степени хром может изменить структуру сплава при выработке жаропрочных марок сталей, которые обладают высокой степенью прочности под большой нагрузкой в процессе сильного и длительного нагрева.

3 Химические свойства хромистых коррозиестойких сталей

Следует отметить, что железо, которое является основой любой стали, имеет несколько состояний, совпадающих с фазами активности и покоя кристаллической решетки, которые зависят от степени коррозийной стойкости. Чем она выше, тем более пассивным считается металл. Наиболее распространенными считаются сплавы с образующейся при закалке мартенситной структурой, обладающие достаточно высокой пластичностью. Согласно химическим характеристикам, это железо в α-фазе (чистый металл), содержащее насыщенный твердый раствор углерода. К таковым относятся пищевая и быстрорежущая нержавейка, из которой изготавливают изделия для использования в быту на кухне, например, всевозможные емкости и ножи. Мартенситные стали способны выдержать контакт со слабоагрессивными химическими веществами.

Химические свойства хромистых коррозиестойких сталей

Другой тип – ферритные сплавы с достаточно высоким магнитным показателем. Разница у них по большей части в форме кристаллической решетки, она имеет кубическую структуру, в отличие от тетрагональной мартенситной. В целом же это средненасыщенный твердый раствор углерода в α-железе с добавлением легирующих элементов, таких как хром. Примечательно, что такие сплавы не подвергаются изменениям при нагреве до предельно возможных температур и не теряют свои свойства. Чаще всего таким изделиям находят применение в пищевой промышленности или для изготовления инструментов. Мартенситно-ферритные сплавы имеют свойства обоих перечисленных типов, то есть они механически устойчивы, обладают высокой прочностью и имеют магнитный потенциал. Но устойчивость к окислительной среде у таких сталей не очень высока, намного ниже, чем у обычных ферритных сплавов.

4 Отличительные черты аустенитных сплавов

В первую очередь рассмотрим аустенитные структуры сталей, которые определяются, как γ-железо (высокотемпературное изменение кристаллической решетки металла) в виде твердого раствора с углеродом. Проще говоря, такие сплавы могут подвергаться межкристаллической коррозии даже при высоком содержании хрома, если не имеют включения дополнительных элементов, таких как титан или ниобий. Во избежание их обязательно подвергают термообработке. В остальном это очень пластичные, прочные и технологичные стали, содержащие, помимо хрома еще и никель, которые относят к разряду конструкционных. Также из этих сплавов изготавливают инструменты, а вот в пищевой промышленности, равно как и для изготовления кухонной утвари, марки данного класса непригодны, поскольку никель весьма аллергенный.

Отличительные черты аустенитных сплавов

Межкристаллической коррозией называют внутреннее окисление металла, проходящее по границам отдельных зерен стали. По этой причине разрушение изделия остается незаметным, при сохранении характерного блеска узнать о коррозии можно только по звуку при ударах

Что примечательно, каким бы ни был химический состав аустенитных сплавов, они всегда немагнитные. Но при любой холодной деформации, например, под воздействием механических воздействий, они начинают приобретать небольшой магнитный потенциал. Это происходит по той причине, что при нарушении кристаллической решетки аустенит на некоторых участках превращается в феррит. Прочность таких сплавов достигается путем предельного уменьшения содержания углерода, впрочем, до определенного порога – не ниже 0,04 %, по причине присутствия в растворе никеля. В таких условиях легко образуются карбиды, то есть химическое соединение хрома с углеродом. Иногда в сплав добавляют связанный азот, благодаря которому возникают карбнитриды, также повышающие прочность стали. Примером может послужить марка нержавейки Х17АГ14.

Промежуточные сплавы имеют несколько иные характеристики, в частности, аустенитно-мартенситные. Они имеют более низкую коррозиестойкость, чем просто аустенитные структуры, но намного прочнее. При этом данный класс довольно тяжело поддается термообработке, вернее, воздействие на него высокими температурами связано с некоторыми сложностями. Зачастую такие сплавы со свойствами мартенситов требуют не только закалки, но также обработки холодом с последующим отпуском металла. Однако при такой технологии прочность нержавейки переходного класса повышается в несколько раз. В производстве элементов для тяжелых несущих конструкций стали, вроде марок 09X15Н8Ю или 20Х13Н4Г9, не используются, их применяют только для изготовления легких конструкций.

Особенность аустенитно-ферритных сплавов заключается в том, что они содержат сравнительно небольшое количество никеля в сравнении с другими промежуточными классами. За счет этого такие стали, как 12Х21Н5Т или 08Х22Н6Т, имеют гораздо лучшую свариваемость, швы при соединении металлопроката из них получаются очень качественные и прочные на деформацию. Обеспечивается это влиянием ферритной структуры, обеспечиваемой элементами Сr, Ti, Mo или Si. Однако следует отметить, что по той же причине, то есть из наличия ферритообразующих включений, в значительной степени ухудшается жаропрочность, равно как и пластичность. Высокой остается только механическая прочность.

В марках сталей обычно присутствуют буквы кириллицы, они тождественны латинским обозначениям, в частности Ю означает "ювенал" – алюминий, причем так он маркируется только в сталях. Другие элементы могут означаться также не по первым буквам, например кремний – С, от силициума, а марганец – Г, поскольку эта буква имеется в середине слова.

что такое чистое вещество

Что такое "чистое вещество"?
Химики установили, чистые вещества обладают постоянными физическими свойствами. Например, чистая вода имеет температуру кипения 100 °С и температуру плавления 0 °С.
У чистого металла олова, которое знакомо каждому, кто хотя бы раз в жизни имел дело с паяльником, температура плавления 232 °С. Но если в олове есть хотя бы небольшая примесь другого металла - свинца, то температура плавления становится на несколько градусов ниже. Это значит, что мы имеем дело не с чистым веществом, а со смесью (в данном случае - со сплавом металлов) .

Совершенно чистые вещества в природе не встречаются, хотя их стараются получить ученые в своих лабораториях. Обычно мы имеем дело со смесями, а смеси бывают однородными и неоднородными.
Неоднородные смеси постепенно распадаются на составные части, а если их рассматривать через сильный микроскоп, можно различить частицы разных веществ. Иногда (например, на разломе изделия из чугуна - сплава железа и углерода) эти частицы видно, что называется, невооруженным взглядом.
Но особенно часто в своей жизни мы имеем дело с однородными смесями - растворами. Это и бензин, и соленая морская вода, и сладкий чай в чашке (жидкие растворы) , и воздух, которым мы дышим (газообразный раствор кислорода в азоте) , и нержавеющая сталь, из которой сделаны ножи и вилки, и латунь, которая знакома по заклепкам на джинсах, металлической посуде и блестящим дверным ручкам. Сталь и латунь - твердые растворы разных металлов друг в друге.
Химикам приходится немало потрудиться, чтобы разделить между собой вещества, которые попали в состав смеси.

Человека окружает множество веществ, некоторые из них называют «чистыми» .Чисто вещество почти не содержит примесей других веществ. Так, в чистой воде содержатся только молекулы воды. Чистая медь является веществом, созданная только атомами элемента меди.
Чистое вещество — это вещество, состоящее из частиц определенного вида (из одинаковых атомов или молекул) и поэтому имеет постоянные свойства.
Чистые вещества не разделяются на отдельные вещества и не меняют своих физических свойств.
Современная техника требует веществ, в которых массовая доля посторонних примесей не превышает миллионной доли. Такие вещества называют сверхчистого. Без них не могла бы развиваться радиоэлектроника. Но следует помнить, что абсолютно чистых веществ в природе не существует, и добыть их искусственно практически невозможно. Вещества всегда содержат в своем составе посторонние атомы или молекулы. Если их масса значительно меньше массы основного вещества, то они называются примесями. Если содержание примесей в веществе существенный, то образуется смесь веществ.
Смесь состоит из двух или более чистых веществ.
Очень малое содержание примесей часто не сказывается на химических свойствах веществ, поэтому такие вещества называют химически чистыми. Однако даже минимальные примеси нефтепродуктов делают воду непригодной для питья.

Читайте также: