Никель в легированных сталях

Обновлено: 28.04.2024

Никель повышает также способность стали к улучшению (даже при больших сечениях изделий) и уменьшает чувствительность к перегреву, что очень важно для конструкционных сталей. Однако стали, содержащие более 4% Ni, склонны к образованию трещин при охлаждении, особенно в литом состоянии. У цементуемых никелевая сталь переход от цементованного слоя к ненауглероженной сердцевине более плавный, чем у углеродистых.

Скорость цементации этих сталей практически одинакова, но содержание углерода в поверхностном слое Н с. значительно меньше, и грубая цементитная сетка встречается очень редко. При длительных выдержках никель препятствует укрупнению зерна в цементованном слое. Никелевая сталь содержащие 0,5—1,0% Ni, отличаются повышенной коррозионной стойкостью при длительных выдержках в воде (в т. ч. и морской), в разбавленных солях и к-тах. Стали, содержащие 5—7% Ni, коррозионно-стойки в щелочах.

При введении в железоуглеродистый сплав до 30% Ni снижается теплопроводность, повышаются теплоемкость и температурный коэфф. линейного расширения. При большем содержании никеля теплопроводность увеличивается, а теплоемкость и температурный коэфф. линейного расширения уменьшаются. Если в углеродистой стали содержится 30% Ni, электропроводность минимальна, а магн. насыщение близко к нулю. Никелевая сталь отличается от углеродистой стали более высокой вязкостью при одинаковой прочности.

Если никель содержится более 20%, наблюдается увеличение пластичности при некотором уменьшении прочности. Свойства никелевая сталь в поперечном сечении такие же, как в продольном. Улучшают их термообработкой. Сталь марки 21H5A (0,18— 0,25% С; 0,3-0,62% Мn; 0,17-0,37% Si; не более 0,03% S; 0,03% Р; 0,3% Сr и 4,5—5,0% Ni) закаливают в масле при т-ре 780 ± 20° С и отпускают при т-ре 150—170° С, охлаждая на воздухе. После такой термообработки предел прочности на растяжение составляет 120 кгс/мм2, предел текучести 95 кгс/мм2, удлинение 9%, сужение 40%, ударная вяз-кость 5 кгс • м/см2, твердость 380— 440 НВ.

Стали марок никеля

Из стали марки 21Н5А изготовляют катаные, холоднотянутые и кованые прутки. Стали марок 0Н6 и 0Н9 содержат до 0,06% С; 0,45—0,60% Мn; 0,17-0,37% Si и соответственно 6,5—7,0 и 8,5—9,5% Ni. Сталь марки 0Н6 используют после двойной нормализации (950 ± ± 10 и 820 ± 10° С) и отпуска при 580 — 600° С в течение 2,5 — 3 ч, охлаждая на воздухе, или после закалки при температуре 820 ± ± 10° С в воде и отпуска при т-ре 580—600° С в течение 2,5—3 ч, также охлаждая на воздухе. Сталь марки 0Н9 используют только после двойной нормализации (т-ры 900 ± 10 и 790 ± 10° С) и отпуска при т-ре 550—580° С в течение 2,5—3 ч, охлаждение на воздухе. Прочность и пластичность стали марки 0Н9 при т-рах 20 и —196° С выше, чем стали марки 0Н6 .

Из стали марок 0Н6 и 0Н9 изготовляют изделия, эксплуатируемые под давлением при т-ре — 196° С. Сложнолегированные Н. с. используют в качестве конструкционных и инструментальных сталей, а также сталей с особыми физическими и химическими св-вами. Конструкц. хромоникелевая сталь (марок 20ХН, 45НХ и 12 ХНЗА) отличается высокой твердостью, прочностью и ударной вязкостью.

В инструментальных хромоникелевых сталях (марок 5ХНМ и 5ХНВ) никель уменьшает критическую скорость охлаждения, увеличивая прокаливаемость, а хром, как карбидо-образующий элемент, повышает износостойкость. Для устранения отпускной хрупкости в эти стали обычно вводят молибден (0,4%) и вольфрам (до 1%). Жаропрочные и коррозионностойкие хромоникелевые стали (марок 12Х18Н9Т, 10Х17Н13МЗТ и 03Х16Н15МЗБ) дополнительно легируют титаном, молибденом, ниобием и бором. Из сложнолегированных Н. с. изготовляют арматуру печей, трубы, сопловые лопатки, муфели и др. изделия.

Легирующие элементы и примеси в сталях: краткий справочник

Характеристики углеродистых сталей далеко не всегда соответствуют требованиям, которые предъявляют к материалам различные отрасли промышленности. Чтобы откорректировать их свойства, используют легирование.

Чем отличаются легирующие элементы от примесей

В углеродистых сталях, помимо основных элементов – железа и углерода, есть и другие: марганец, сера, фосфор, кремний, водород и прочие. Их считают примесями и делят на несколько групп:

  • К постоянным относят серу, фосфор, марганец и кремний. Они всегда содержатся в стали в небольших количествах, попадая в нее из чугуна или используясь в качестве раскислителей.
  • К скрытым относят водород, кислород и азот. Они тоже присутствуют в любой стали, попадая в нее при выплавке.
  • К случайным относят медь, мышьяк, свинец, цинк, олово и прочие элементы. Они попадают в сталь из шихтовых материалов и считаются особенностью руды.

Для каждой из перечисленных примесей характерно определенное процентное содержание. Так, марганца в стали, как правило, не более 0,8 %, кремния – не более 0,4 %, фосфора – не более 0,025 %, серы – не более 0,05 %. Если обычного содержания некоторых элементов недостаточно, для получения сталей с нужными свойствами в них дополнительно вносят в определенных количествах специальные примеси, которые называют легирующими добавками.

Выплавка стали

Химический состав стали, формируемый в процессе выплавки, напрямую влияет на ее механические свойства

Как примеси влияют на свойства сталей

Примеси оказывают разное влияние на характеристики сталей:

  • Углерод (С) повышает твердость, прочность и упругость сталей, но снижает их пластичность.
  • Кремний (Si) при содержании в стали до 0,4 % и марганец при содержании до 0,8 % не оказывают заметного влияния на свойства.
  • Фосфор (P) увеличивает прочность и коррозионную стойкость сталей, но снижает их пластичность и вязкость.
  • Сера (S) повышает хрупкость сталей при высоких температурах, снижает их прочность, пластичность, свариваемость и коррозионную стойкость.
  • Азот (N2) и кислород (O2) уменьшают вязкость и пластичность сталей.
  • Водород (H2) повышает хрупкость сталей.

Как легирующие элементы влияют на свойства сталей

Легирующие добавки вводят в стали для изменения их характеристик:

  • Хром (Cr) повышает твердость, прочность, ударную вязкость, коррозионную стойкость, электросопротивление сталей, одновременно уменьшая их коэффициент линейного расширения и пластичность.
  • Никель (Ni) увеличивает пластичность, вязкость, коррозионную стойкость и ударную прочность сталей.
  • Вольфрам (W) повышает твердость и прокаливаемость сталей.
  • Молибден (Mo) увеличивает упругость, коррозионную стойкость, сопротивляемость сталей растягивающим нагрузкам и улучшает их прокаливаемость.
  • Ванадий (V) повышает прочность, твердость и плотность сталей.
  • Кремний (Si) увеличивает прочность, упругость, электросопротивление, жаростойкость и твердость сталей.
  • Марганец (Mn) повышает твердость, износоустойчивость, ударную прочность и прокаливаемость сталей.
  • Кобальт (Co) увеличивает ударную прочность, жаропрочность и улучшает магнитные свойства сталей.
  • Алюминий (Al) повышает жаростойкость и стойкость сталей к образованию окалины.
  • Титан (Ti) увеличивает прочность, коррозионную стойкость и улучшает обрабатываемость сталей.
  • Ниобий (Nb) повышает коррозионную стойкость и устойчивость сталей к воздействию кислот.
  • Медь (Cu) увеличивает коррозионную стойкость и пластичность сталей.
  • Церий (Ce) повышает пластичность и прочность сталей.
  • Неодим (Nd), цезий (Cs) и лантан (La) снижают пористость сталей и улучшают качество поверхности.

Виды легированных сталей

В зависимости от содержания легирующих элементов, стали делят на три вида:

  1. Если легирующих элементов менее 2,5 %, стали относят к низколегированным.
  2. При их содержании от 2,5 до 10 % стали считаются среднелегированными.
  3. Если легирующих элементов более 10 %, стали относят к высоколегированным.

Заключение

Примеси неизбежно присутствуют в сталях, но ряд из них являются вредными (к ним относятся скрытые примеси), поэтому их содержание стараются минимизировать. Легирующие элементы добавляют в стали целенаправленно для улучшения их свойств или получения специфических характеристик.

Никель в легированных сталях

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения никеля

Steels alloyed and highalloyed.
Methods for the determination of nickel

Дата введения 1982-01-01

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 16.04.81 № 1997

ВЗАМЕН ГОСТ 12352-66 в части разд. 2, 3

Ограничение срока действия снято по протоколу № 2-92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)

ПЕРЕИЗДАНИЕ (март 1999 г.) с Изменением N 1, утвержденным в июле 1986 г. (ИУС 10-86)

Настоящий стандарт устанавливает методы определения никеля: фотометрический (при массовой доле от 0,01 до 4,0%), гравиметрический (при массовой доле от 0,5 до 45,0%) и атомно-абсорбционный (при массовой доле от 0,1 до 15,0%) в легированных и высоколегированных сталях.

Стандарт полностью соответствует СТ СЭВ 962-78.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа - по ГОСТ 28473-90.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ НИКЕЛЯ

2.1. Определение никеля (0,01-0,5%) в сталях с массовой долей меди до 1%, кобальта до 1% и марганца до 2%.

2.1.1. Сущность метода

Метод основан на образовании окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в аммиачной среде в присутствии бромистого и бромноватокислого калия и измерении светопоглощения раствора при длине волны 530 нм.

2.1.2. Аппаратура и реактивы

Спектрофотометр или фотоэлектроколориметр.

Кислота азотная по ГОСТ 4461-77 или по ГОСТ 11125-84.

Кислота серная по ГОСТ 4204-77 или по ГОСТ 14262-78 и разбавленная 1:5.

Смесь азотной и соляной кислот в соотношении 1:3.

Кислота лимонная по ГОСТ 3652-69, раствор 100 г/дм.

Калий бромистый по ГОСТ 4160-74.

Калий бромноватокислый по ГОСТ 4457-74.

Раствор бромистого и бромноватокислого калия: 39 г бромистого калия и 10 г бромноватокислого калия растворяют в воде в мерной колбе вместимостью 1 дм, доливают до метки водой и перемешивают.

Аммиак водный по ГОСТ 3760-79 и разбавленный 3:2.

Железо карбонильное радиотехническое по ГОСТ 13610-79.

Никель металлический по ГОСТ 849-97.

Никель сернокислый, стандартный раствор: 0,1 г металлического никеля растворяют в 15-20 см азотной кислоты, приливают 30 см серной кислоты (1:5), выпаривают до начала выделения паров серной кислоты и охлаждают. Соли растворяют в 100-150 см воды, раствор переносят в мерную колбу вместимостью 1 дм, охлаждают, доливают до метки водой и перемешивают.

1 см раствора содержит 0,0001 г нике

2.1.3. Проведение анализа

Навеску стали 0,5 г помещают в стакан вместимостью 200-250 см, растворяют при нагревании в 30 см серной кислоты (1:5) и окисляют азотной кислотой, прибавляя ее по каплям. Если сталь не растворяется в серной кислоте (1:5), навеску растворяют в 30 см смеси кислот. Затем приливают 30 см серной кислоты (1:5) и раствор выпаривают до начала выделения паров серной кислоты. После охлаждения соли растворяют в 100-120 см воды, раствор переносят в мерную колбу вместимостью 250 см, охлаждают, доливают до метки водой и перемешивают.

Часть раствора отфильтровывают через сухой фильтр в колбу вместимостью 250 см, отбрасывая две первые порции фильтрата. Две аликвотные части раствора по 25 см помещают в мерные колбы вместимостью 100 см и при постоянном перемешивании последовательно приливают в каждую мерную колбу 20 см раствора лимонной кислоты, 5 см соляной кислоты (1:4), 10 см раствора бромистого и бромноватокислого калия и через 2-3 мин 25 см раствора аммиака (3:2). Растворы перемешивают и немедленно охлаждают до 20°С.

В одну из колб приливают 1 см раствора диметилглиоксима, в другую колбу приливают 1 см этилового спирта. Растворы доливают до метки водой и тщательно перемешивают. В течение 25 мин измеряют оптическую плотность окрашенного раствора на спектрофотометре при длине волны 530 нм или на фотоэлектроколориметре со светофильтром, имеющим максимум пропускания в интервале длин волн 530-550 нм. Толщину поглощающего свет слоя кюветы выбирают таким образом, чтобы получить оптимальную абсорбцию света, оптимальное значение оптической плотности.

В качестве раствора сравнения используют аликвотную часть анализируемого раствора, содержащую все реактивы, кроме диметилглиоксима.

Одновременно с выполнением анализа проводят контрольный опыт на загрязнение реактивов.

Из значения оптической плотности каждого анализируемого раствора вычитают среднее значение оптической плотности контрольного опыта.

Массу никеля находят по градуировочному

2.1.4. Построение градуировочного графика

Для сталей с массовой долей от 0,01 до 0,05% никеля в шесть стаканов вместимостью 200-250 см помещают по 0,5 г карбонильного железа или по 0,5 г стали, близкой по составу к анализируемой, не содержащей никель, и приливают последовательно 0,5; 1,0; 2,0; 3,0; 4,0 и 5,0 см стандартного раствора никеля и далее анализ проводят как указано в п. 2.1.3.

Для сталей с массовой долей от 0,05 до 0,5% никеля в пять стаканов вместимостью 200-250 см помещают по 0,5 г карбонильного железа или по 0,5 г стали, близкой по составу к анализируемой, не содержащей никель, и приливают последовательно 5,0; 10,0; 15,0; 20,0; 25,0 см стандартного раствора никеля и далее анализ проводят как указано в п. 2.1.3.

По найденным величинам оптической плотности и соответствующим им значениям массы никеля строят градуировочный график.

2.1.2-2.1.4. (Измененная редакция, Изм. № 1).

2.2. Определение никеля (0,1-4,0%) в сталях с массовой долей меди до 2%, кобальта до 1,5% и марганца до 2%

2.2.1. Сущность метода

Метод основан на образовании окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя надсернокислого аммония и измерении светопоглощения раствора при длине волны 440 нм.

2.2.2. Аппаратура и реактивы

Калий-натрий виннокислый (4-водный) по ГОСТ 5845-79, раствор 200 г/дм.

Влияние хим. элементов на свойства стали.

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

О легировании стали никелем, хромом, молибденом

Приобрести у нас прокат (оптом, в розницу, а также в формате регулярных поставок) вы можете, как находясь в Днепре, так и оформив заказ с транспортировкой металлопроката в любой город Украины.

О легировании стали никелем, хромом, молибденом

Процесс легирования – это технология введения в расплавленный металл частиц других металлов, для образования однородной фактуры сплава и улучшения его качеств.

Впервые до целенаправленного легирования додумались во второй половине 19-го века: в 1858 году француз Мюшетт придумал сталь для станочных резцов, в которую был добавлен марганец, углерод и вольфрам. А в массовое производство пошла сталь включениями углерода и марганца, придуманная в 1882 году англичанином Робертом Эбботом Гадфильдом.

Какие свойства приобретает сталь в результате легирования?

Каждый химический элемент, вводимый в сплав, меняет его. Имеют значение пропорции примесей. К тому же, один сплав обычно легируют не одним металлом-добавкой, а несколькими.

Легирование никелем

В стальных сплавах металл никель в качестве примеси способствует тому, чтобы в сплаве образовывался и сохранялся аустенит. Это повышает прочность сплава. Если к никелю добавлен хром и молибден, то никель становится еще более эффективным для термического упрочнения стали, повышения ее вязкости, а также усталостной прочности. Никелем легируют ферритные стали – они становятся более вязкими. Хромоникелевые аустенитные стали лучше сопротивляются явлению коррозии.

Легирование хромом

Хром – элемент, который, при добавлении, улучшает стойкость металлического сплава к явлениям окисления и коррозии, делает сталь более прочной даже при случаях нагрева до высоких температур, а также улучшает возможности высокоуглеродистого сплава к сопротивлению износу по фактору трения. В процессе легирования хромом образовываются карбиды хрома – благодаря им сталь становится тверже и прочнее: из нее можно изготавливать ножи и прочие колюще-режущие инструменты. Если же в стали при этом присутствуют также примеси олова, мышьяка, фосфора или сурьмы, то они сегрегируют к границам «зерен» сплава, что вызывает повышение отпускной хрупкости стального сплава.

Легирование молибденом

Молибден создает большее термическое упрочнение в процессе отпуска стали (после ее закалки). Стали с примесью молибдена при высоких температурах характеризуются меньшей ползучестью.

Также при включении молибдена, уменьшается зернистость сплава и сталь становится прочнее. Улучшается показатель стойкости к коррозионным процессам (в том числе, к точечной коррозии).

При сочетании металлов-добавок по технологии легирования получают хромоникельмолибденовые, хромистые и хромоникелевые сплавы, которые обладают оптимальными наборами параметров для определенных условий эксплуатации и способов обработки.

Предлагаем купить листовой прокат легированных сталей в Днепре у ТД ТАМ

Мы можем предложить две разновидности листового проката из легированной стали: инструментальную и конструкционную.

Отличия в том, что инструментальная сталь легированная (из которой действительно делают элементы различных инструментов) характеризуется большей твердостью и большей устойчивостью к механическим воздействиям (ударам, трению, деформации).

Конструкционная легированная сталь мягче, что облегчает вырезание из нее нужных элементов, но обладает большей усталостной прочностью.

Читайте также: