Определить допускаемую нагрузку для стальной балки

Обновлено: 16.05.2024

Чтобы посчитать сечение деревянной балки - необходимо собрать нагрузку, действующая на балку. В зависимости от длительности действия нагрузки разделяют на постоянные и временные.

К постоянным нагрузкам относятся:

  • собственный вес деревянной балки;
  • собственный вес перекрытия, чердачного перекрытия и т.д.;

К временным нагрузкам относятся:

  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние). Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности. В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

Нагрузки можно собрать на нашем сайте.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 400кг/м2, а шаг балок 0,6м. Тогда распределенная нагрузка на деревянную балку будет: Qраспр.= 400кг/м2 * 0,6м = 240кг/м. Эта нагрузка вносится в калькулятор

2. Выбор предельного прогиба

В зависимости от назначения балки и ее пролета задаем вертикальный предельный прогиб по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия) Пункт2.а. Смысл вертикального прогиба заключается в следующем: например, прогиб l/250 означает, что для балки длинной 4м предельный вертикальны прогиб равен fult = 4м / 250 = 0,016м = 16мм в месте максимального прогиба для балки. Для балки на двух опорах загруженной равномерно или с сосредоточенной нагрузкой посередине балки - максимальный прогиб будет посередине пролета. Для консольной балки максимальный прогиб - на свободном конце балки.

3. Задание ширины искомого сечения балки.

В зависимости от конструктивных требований задаем ширину сечения балки. Расчет деревянной балки сводится к тому, что необходимо подобрать требуемую высоту hтр сечения деревянной балки, которое способно выдержать заданную нагрузку и не превысить заданный предельный прогиб.

Алгоритм расчета деревянной балки, используемый в данном калькуляторе

По заданной нагрузке и пролету производится построение эпюры моментов и поперечной силы. Эпюра поперечной силы находится для информации (чтобы знать какая нагрузка давит на опоры балки) и в расчете не используется. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

2. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и hтр и из таблицы рекомендуемого сортамента выбрать подходящее сечение высотой равное hтр деревянной балки по ширине сечения (b) и по Wтр. Следует отметить, что калькулятор подбирает именно по Wтр, нахождение hтр сделано для наглядности, чтобы видеть какая высота сечения должна быть. Для подбора деревянной балки по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента пиломатериалов подбирают подходящее сечение.

3. Подбор деревянной балки из таблицы сортамента пиломатериалов по ГОСТ 244454-80

Из двух результатов подбора (1 и 2 предельное состояние) выбирается сечение с большей выстой сечения.

Определить допускаемую нагрузку для стальной балки

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

  • собственный вес металлической балки;
  • собственный вес перекрытия и т.д.;

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль. Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м. означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм. Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.

Полный расчет балки на прочность и жесткость

Полный расчет балки на прочность и жесткость

Пример решения задачи полного расчета на прочность и жесткость стальной двутавровой балки при заданной системе внешних изгибающих нагрузок.

Задача

Расчетная схема балки

Выполнить полный расчёт на прочность и проверить жёсткость стальной, двутавровой, статически определимой балки на двух опорах

при следующих данных:
Интенсивность равномерно распределенной нагрузки q=26кН/м, продольный размер a=0,6м, сосредоточенная сила F=2qa, изгибающий момент m=4qa 2 .
Допускаемые нормальные напряжения [σ]=160МПа,
Модуль упругости I рода Е=200ГПа.
Допустимый прогиб балки [f]=l/400.

Последовательность решения задачи
Для расчета балки на прочность

  1. Вычерчивается схема нагружения в масштабе, с указанием числовых значений приложенных нагрузок;
  2. Строятся эпюры внутренних силовых факторов Qy и Mx;
  3. По условию прочности подбирается двутавровое сечение (№ двутавра) стальной балки:
  4. Для балки двутаврового профиля выполняется полная проверка на прочность, приняв
  5. Проверяется прочность по главным напряжениям в опасных точках сечения по III гипотезе прочности
  6. По результатам расчетов дается заключение о прочности балки при выбранном сечении.
  7. В случае невыполнения условия прочности по главным напряжениям, подбирается новый номер двутавра.

Для расчета балки на жесткость

  1. С использованием универсальных уравнений метода начальных параметров (МНП) определяются углы поворота θ над опорами и прогибы в характерных сечениях (2-3 сечения), а также, максимальные прогибы балки в пролете и консольной части;
  2. По этим данным, в соответствии с эпюрой Mx, строится линия изогнутой оси балки;
  3. Проверяется выполнение условия жесткости балки.
  4. Если условие жесткости не удовлетворяется, подбирается новое двутавровое сечение, обеспечивающее необходимую жесткость.

Решение


Рассчитаем численные значения силы F и момента m, которые были заданы в виде переменных.
Вычерчиваем расчетную схему нагружения балки в масштабе, с указанием числовых значений приложенных нагрузок.

Показываем оси системы координат y-z и обозначаем характерные сечения балки.

Полный расчет стальной балки на прочность

Определение реакций в шарнирных опорах балки


Направим реакции опор вверх и запишем суммы моментов относительно точек на опорах, нагрузок приложенных к балке

Из составленных уравнений выражаем и находим реакции.
Из первого уравнения
из второго
Положительные значения указывают на то, что произвольно заданное направление реакций вверх оказалось верным.

Выполним проверку найденных реакций опор спроецировав все силы на ось y
Равенство суммы проекций сил нулю говорит о том что реакции опор определены правильно.

Более подробно, пример определения опорных реакций для балки рассмотрен здесь

А также в нашем коротком видеоуроке:

Построение эпюр внутренних силовых факторов

Рассчитаем значения внутренних поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом сечений.

Силовые участки балки

Балка имеет 4 силовых участка.

Поперечная сила и изгибающий момент на первом участке

1 участок (AB)

Внутренние силовые факторы на втором участке

2 участок (BC)


3 участок (CD)


4 участок (DK)

Здесь, значения Qy на границах участка имеют одинаковый знак, поэтому на этом участке, на эпюре Mx экстремума не будет.

Эпюры внутренних силовых факторов балки

По полученным данным строим эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

Проверка построенных эпюр:
— по дифференциальным зависимостям
— в сечениях балки, где приложены сосредоточенные силы, на эпюре Qy имеются скачки значений на величину соответствующей силы;
— в сечениях балки, где приложены изгибающие моменты, на эпюре Mx скачки значений на величину соответствующего момента.
Все условия выполнены, следовательно, эпюры построены верно.

По эпюрам видно, что опасным является сечение балки в точке C, где:
Mx=Mx max=-24,336кНм
Qy=-4,68кН

Подбор двутаврового сечения балки

Подберем двутаврового сечение балки по условию прочности по нормальным напряжениям
где
Mx max – максимальное значение внутреннего изгибающего момента в сечениях балки. Принимается с построенной эпюры Mx;
Wx – осевой момент сопротивления поперечного сечения балки относительно горизонтальной оси x;
[σ] – допустимые нормальные напряжения.

Выразим и рассчитаем минимально необходимое значение осевого момента сопротивления поперечного сечения балки Wx обеспечивающего её прочность по нормальным напряжениям
По сортаменту прокатной стали выбираем номер двутавра имеющий осевой момент сопротивления близкий к расчетному Wx=152,1см 3 в большую сторону.

Это двутавр №18а у которого Wx=159,0см 3 .

Максимальные нормальные напряжения в сечении

Этот двутавр будет работать при максимальных нормальных напряжениях в крайних слоях опасного сечения балки.

Максимальные нормальные напряжения выбранного номера двутавра не превышают допустимых значений, значит сечение подобрано верно.

Полная проверка на прочность двутаврового сечения

Эпюры нормальных и касательных напряжений

При изгибе тонкостенных прокатных профилей, таких как, например, двутавр или швеллер, в местах соединения стенки с полкой нормальные и касательные напряжения имеют не максимальные, но достаточно большие значения.

Их совместное действие, выраженное в виде главных (эквивалентных) напряжений, может превышать допустимые значения, что будет означать потерю прочности в этих точках поперечного сечения балки.

В отношении главных напряжений неблагоприятным является сечение балки B, в котором максимально значение поперечной силы при значительном изгибающем моменте:

Для полной проверки на прочность построим эпюры нормальных и касательных напряжений в сечении B для выбранного номера двутавра.

Построение эпюр нормальных и касательных напряжений в сечении балки подробно рассмотрено здесь:

Для выполнения расчетов, из сортамента выпишем необходимые геометрические характеристики выбранного номера двутавра:
Высота сечения
h=180мм;
Ширина сечения
b=100мм;
Толщина стенки
d=5,1мм;
Толщина полки
t=8,3мм;
Осевой момент инерции поперечного сечения
Ix=1430см 4 ;
Статический момент сечения
Sx=89,8см 3 .

Двутавровое сечение по высоте имеет 5 характерных точек: верхнюю (1), нижнюю (5), среднюю (3) и две точки в местах перехода стенки в полку двутавра (2 и 4).

Для построения эпюр, определим значения напряжений в указанных точках сечения.

Нормальные напряжения в сечении балки распределяются по линейному закону, поэтому для построения эпюры достаточно найти максимальные значения
Касательные напряжения в характерных точках сечения рассчитываются по формуле Журавского
где
Qy — поперечная сила в данном сечении. Принимается с эпюры с учетом знака;
Ix – осевой момент инерции поперечного сечения;
by – ширина сечения на уровне рассматриваемой точки;
Sx* — статический момент части сечения, расположенной между уровнем рассматриваемой точки и верхним (нижним) краем сечения.

Рассчитаем значения касательных напряжений

Так как выше точки 1 и ниже точки 5 площадь сечения равна нулю, то статический момент Sx* для этих точек тоже равен нулю, следовательно
В точке 3


В точке 3 будут максимальные касательные напряжения, т.к. для неё статический момент сечения Sx максимальный при минимальной ширине сечения d

Видно, что прочность сечения по касательным напряжениям обеспечена.

В точках, где стенка двутавра переходит в полку, будут скачки напряжений, так как на уровне этих точек резко меняется ширина сечения

Рассчитаем значения напряжений в этих точках для стенки (с) и полки (п)

Статический момент полки двутавра
Касательные напряжения в точках 2 и 4 полки
Касательные напряжения в точках 2 и 4 стенки
По этим данным строим эпюры нормальных и касательных напряжений для выбранного номера двутавра.

Рассчитаем величину главных напряжений в точках соединения полки со стенкой двутавра (т. 2 и 4)


Нормальные напряжения в рассматриваемых точках

Эквивалентные напряжения в опасных точках сечения
Как видно, величина эквивалентных напряжений не превышает допустимых значений, следовательно, выбранный номер двутавра удовлетворяет условию прочности и по главным напряжениям.

Полный расчет балки на жесткость

Для того чтобы балка удовлетворяла условию жесткости, линейные перемещения (прогибы) балки yz не должны превышать заданных допустимых значений [f], т.е. должно выполняться условие жесткости

Расчет перемещений сечений балки

Расчет перемещений сечений балки выполним методом начальных параметров (МНП).


Шаблоны уравнений метода начальных параметров имеют вид:

Здесь:
θz — угловое перемещение (угол наклона) рассматриваемого сечения;
yz — вертикальное линейное перемещение (прогиб) рассматриваемого сечения балки;
z – расстояние от выбранного начала координат балки до рассматриваемого сечения (координата);
θ0, y0 — соответственно угловое и линейное перемещения балки в выбранном начале координат (начальные параметры);
E – модуль упругости I рода для материала балки;
Ix – осевой момент инерции сечения балки;
m, F, q – соответственно моменты, сосредоточенные силы и распределенные нагрузки, приложенные к балке (включая опорные реакции и компенсирующую распределенную нагрузку);
a, b – расстояние от начала координат до соответствующих моментов m и сил F;
c – расстояние от начала координат до сечения балки, где начинается действие распределенной нагрузки q.

Составляем уравнения МНП для заданной балки

Начало координат принимаем в крайнем правом сечении балки, так как оно расположено на опоре.

Распределенная нагрузка не доходит до конца балки, поэтому продляем её действие и на этой же длине добавляем компенсирующую нагрузку той же интенсивности но противоположного направления.

Запишем нагрузки в уравнения МНП последовательно по участкам с учетом знаков

Для определения начальных параметров θ0 и y0 запишем граничные условия.

На опорах прогибы балки равны нулю, т.е.
Из второго граничного условия, используя уравнение прогибов для точки B определим угол поворота сечения в начале координат θ0
Откуда, при z=3м

Для построения линии изогнутой оси балки определим углы наклона сечений балки на опорах θB, θK и прогибы в характерных сечениях yA, yC, yD.

Углы поворота сечений на опорах

Далее, для краткости, сократим дробь перед скобками
Линейные перемещения (прогибы) характерных сечений балки
Прогиб сечения A (yz при z=3,6м)

Прогиб сечения C (yz при z=1,8м)

Прогиб сечения D (yz при z=0,6м)

Расчет максимальных прогибов балки

Экстремумы прогибов балки

Экстремумы прогибов балки будут в точках, где угол наклона сечения балки равен нулю.

Для их определения, приравниваем к нулю уравнения углов наклона сечений по каждому участку балки, откуда определяем координаты z экстремумов прогибов на участке (если они есть).
1 участок (KD).
Уравнение решений не имеет (т.е. экстремумов на участке нет), это значит, что максимальный прогиб на этом участке будет на его левой границе (в сечении D), так как правая точка участка расположена на опоре.


2 участок (DC).

То есть, экстремум прогибов на втором участке будет на расстоянии z2=0,782м от начала координат.


3 участок (CB).

Экстремум прогибов на третьем участке в сечении, на расстоянии z3=2,269м от начала координат.


4 участок (BA).

Данное уравнение решений также не имеет, следовательно, максимальный прогиб на конце консоли, так как на правой границе участка – опора.

Значения максимальных прогибов балки на втором и третьем участках определяем из соответствующих уравнений прогибов для найденных значений z.

По полученным данным строим линию изогнутой оси балки в соответствии с эпюрой изгибающих моментов Mx и с указанием углов поворота сечений на опорах.

Проверка балки на жесткость

Проверяем балку на жесткость, сравнивая по модулю максимальные значения прогибов ymax в пролёте и на консольной части с допустимыми [f].

Балка считается жесткой, если прогибы её сечений не превышают допустимых значений, т.е.
Рассчитаем абсолютные значения допустимых прогибов заданной балки:
В пролете

На консольной части

Для проверки на жесткость сравниваем величину рассчитанных ранее максимальных прогибов сечений балки с соответствующими допустимыми значениями.

В пролете
На консоли
Как видно, максимальный прогиб на конце консольной части балки превышает соответствующее допустимое значение, следовательно, балка не удовлетворяет заданному условию жесткости.

Жесткость балки можно увеличить до требуемого значения путем увеличения момента инерции её сечения, т.е. подбором сечения большего размера.

Подберем двутавр другого номера, который будет обеспечивать необходимую жесткость балки.

Определяем, во сколько раз надо уменьшить величину максимального перемещения сечения.
Тогда, расчетный момент инерции нового сечения балки
По сортаменту выбираем двутавр №20 с осевым моментом инерции сечения Ix=1840см 4 .

Для начала требуется пересчитать угол наклона сечения балки в начале координат.

Рассчитываем прогиб сечения A с новым размером сечения

Условие жесткости выполняется.

Таким образом, двутавр №20 обеспечивает необходимую прочность и жёсткость заданной балки.
Полный расчет заданной балки на прочность и жёсткость выполнен.

Проверка прогибов стальной балки

При расчете стальных балок по II-й ГПС (по прогибам) необходимо создавать раскрепления для прогибов:

Проверка_прогибов_стальной_балки_01

Информация из справки LIRA SAPR (Справка\Пояснения Сталь\Проверки прогибов):

Проверка прогиба осуществляется сопоставлением реально определенного относительного прогиба (L/f) с максимально возможным для данного конструктивного элемента прогибом.

В данной версии проверка выполняется только для балок на основании состава загружений во всех сочетаниях. Учитываются коэффициенты надежности по нагрузке (заданные при формировании РСУ в среде ПК ЛИРА-САПР) и коэффициенты сочетания.

Перемещения, вызванные загружениями с долей длительности 0, в данном расчете не используются.

Прогибы находятся для каждого сечения на основании распределения MY1, MZ1, QY1, QZ1 по длине элемента. Соответственно, увеличение количества расчетных сечений способствует более точному определению прогибов (особенно, если воздействуют сосредоточенные силовые факторы).

В режиме локального расчета элемента (см. справочную систему СТК-САПР) имеется возможность расчета прогибов по огибающим эпюрам изгибающего момента в запас. Это может потребоваться, когда редактируются расчетные сочетания усилий (или нагрузок) и теряется связь с результатами расчета на ПК ЛИРА-САПР основной схемы.

Важно: Предусмотрена возможность определять не чистые перемещения (относительно локальных осей Y и Z в недеформированной схеме), а прогиб относительно двух выбранных условно неподвижных точек – точек раскрепления (в случае консоли, например, относительно одной точки).

Проверка_прогибов_стальной_балки_02

На приведенном фрагменте показан механизм определения прогибов (они обозначены как di и dk) в конструктивном элементе с наложенными раскреплениями на элементы.

Если раскрепления не наложены, то прогиб принимается равным полному расстоянию до оси X.

Важно: Если балка (ригель) разбита по длине промежуточными узлами, то для нее необходимо создать конструктивный элемент и раскрепления для проверки прогибов создавать как для конструктивного элемента (т.е. для балки как единого целого). В расчете стальных конструкций коэффициент расчетной длины (и для балок, и для колонн, и для ферм) применяется к длине конечного элемента (КЭ), если не задан конструктивный элемент (КоЭ). Если задан КоЭ, то коэффициент расчетной длины применяется к полной длине КоЭ.

Пример расчета однопролетной балки

Проверка_прогибов_стальной_балки_03

Согласно нормативной документации прогиб определяется от действия нормативных нагрузок. Поскольку в LIRA SAPR все нагрузки прикладываются к узлам и элементам их расчётными значениями, при определении прогибов программа определяет нормативное значение нагрузок путём деления их на коэффициент надёжности.

Посмотреть какие приняты коэффициенты надёжности, а также ввести их вручную, если это необходимо, можно в окне параметров расчёта.

Проверка_прогибов_стальной_балки_04

Подробнее о корректировке коэффициентов надёжности для расчета прогибов вручную читайте в статье "Коэффициенты к временным нагрузкам при проверке прогиба"

Проверка_прогибов_стальной_балки_05

Предельно допустимый L/200=6000/200=30мм

Без задания раскреплений (по абсолютному перемещению узлов балки):
((39,8мм/ к-т надежности по нагрузке)/ 30мм))*100%=((39,8/1,1)/30)*100%=120,6%

Ручной ввод расчётной длины балки для расчёта прогибов

В диалоговом окне задания характеристик расчёта стальной балки присутствует группа параметров Расчёт по прогибу.

Информация из справки ЛИРА САПР:
Расчет по прогибу – данные для расчета прогиба. Длина пролета авто – вычисляется по положению раскреплений. Длина пролета точно – длина пролета при расчете приравнивается этому числу.

Проверка_прогибов_стальной_балки_06

Рассмотрим раму из предыдущего примера, только теперь раскрепления для прогибов назначим для всех конструкций, а расчётные длины будем для первого случая задавать автоматическим способом, а для второго ручным.

Проверка_прогибов_стальной_балки_07


Проверка_прогибов_стальной_балки_08

Предельно допустимый прогиб при длине 6 м L/200=6000/200=30мм

Предельно допустимый прогиб при длине 4 м L/200=4000/200=20мм

Проценты использования по предельному прогибу

Расчёт прогибов стрельчатой арки

Пример — рама переменного сечения (РПС) пролётом 18 м. Соединение полурам в коньке — шарнирное, опирание полурам на фундамент — шарнирное.

Проверка_прогибов_стальной_балки_09

При этом в параметрах «Дополнительные характеристики» необходимо указать вручную пролет, с которым программа будет сравнивать прогиб (автоматическое определение пролета возможно только для линейных балок, где все конечные элементы (КЭ) конструктивного элемента (КоЭ) лежат на одной оси):

Проверка_прогибов_стальной_балки_10

Проверка_прогибов_стальной_балки_11

Результаты определения прогибов в СТК-САПР:

Проверка_прогибов_стальной_балки_12

Предельно допустимый L/200=17664/200=88.32 мм

Без задания раскреплений (по абсолютному значению на эпюре прогибов fz):
96.7/17644=1/182 — совпадает с результатом расчёта элемента №2

С заданием раскреплений (по относительному значению на эпюре прогибов fz):
(96.7-(-6.46))/17644=1/171 — совпадает с результатом расчёта элемента №4

Без задания раскреплений (по абсолютному значению перемещений узлов):
99.8/17644=1/177 — не совпадает ни с чем

Вывод: Расчёт на прогибы выполняется в местной системе координат стержня. Прогиб стрельчатых и цилиндрических арок, а также любых криволинейных конструкций, нужно определять по перемещениям узлов в глобальной системе координат и вручную сравнивать с предельно допустимыми значениями.

Расчёт прогибов цилиндрической арки

Пример – цилиндрическая арка пролётом 18 м, стрелой подъёма f = 9 м. Соединение всех элементов между собой — жёсткое, опирание на фундамент — шарнирное.

Нагрузки на арку приложены их расчётными значениями. Значения нагрузок для определения прогибов принимаются согласно СП 20.13330.2016 Нагрузки и воздействия, таблица Д.1 Приложения Д. В данном примере арка является конструкцией покрытия, прогиб которой должен определяться от постоянных и длительных нагрузок (п.2 табл. Д.1). Для визуализации перемещений от нормативных значений нагрузок, необходимо создать особое РСН с нормативными длительными значениями нагрузок. Нагрузки в данном РСН нужно поделить на коэффициент надёжности, с учётом длительности. На конструкцию действуют два загружения:

Загружение 1 — постоянное, коэффициент надёжности 1.1;
Загружение 2 — кратковременное, коэффициент надёжности 1.2, доля длительности 0.35;

Вычислим коэффициенты для перехода к нормативным значениям

Загружение 1 Kn=1/1.1=0.91;
Загружение 2 Kn=1/1.2*0.35=0.292

Проверка_прогибов_стальной_балки_13

Проверка_прогибов_стальной_балки_14

Предельно допустимый прогиб L/200=18000/200=90 мм

Фактический прогиб (по абсолютному значению перемещений узлов): 32.2/18000=1/559 – меньше предельно допустимого значения.

Примечание: если подобная конструкция стоит на своих опорах, то перемещения опорных точек (для получения относительных перемещений) удобно получить через «Мозаику относительных перемещений», указав реперный узел.

Расчет деревянных балок перекрытия – Калькулятор онлайн

Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.

Расчет балки онлайн

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине - h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим ( < 35 °C .. >50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м 2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Расчет балок перекрытия

Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.

Виды балок

В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:

Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.

Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.

Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.

Цельная деревянная балка

Клееная балка из досок

Клееная балка из шпона LVL

Брус с двумя кантами

Подбор сечения балки

Для того чтобы подобрать сечение балки самостоятельно вручную, нужно иметь огромный багаж знаний в сфере сопромата, ведь вам потребуется применять на практике большое количество формул и коэффициентов, поэтому для начинающего мастера это достаточно сложная и не совсем нерациональная задача. Наш калькулятор должен помочь произвести приблизительный расчет деревянного перекрытия и сэкономить значительное количество времени. Однако пользователь должен понимать, что ни одна программа не заменит настоящего специалиста, так как принцип работы сервиса построен на обработке стандартных табличных величин и не может учитывать конкретных ситуаций.

Расчет балок перекрытия из дерева намного проще выполнить с помощью нашего калькулятора. Вам не нужно держать в голове много формул и переживать за неприведенную ошибку!

Расчет балки – Пример

Алгоритм работы программы для расчета балок основывается на СП 64.13330.2011 (Актуализированная редакция СНиП II-25-80). Для большей наглядности, мы разберем расчет однопролетной балки на прогиб и прочность в примере, кратко описывая основные этапы вычисления и формулы.

Длина балки

Расчетная длина балки определяется значением длины пролета и запасом для укладывания их на стену.

Узнать протяженность между пролетами не составляет трудности – с помощью рулетки замерьте расстояние, которые необходимо перекрыть балками, и к полученному числу добавьте величину заделки в «гнезда» равную 300 мм (по 150 мм на сторону) или более.

В случае, когда вы собираетесь крепить балки на специальные металлические крепления, длина пролета будет равна длине балки.

Если ваше помещение имеет неправильную форму, например, 4х5 м, правильнее будет использовать балки меньшей длины, т.е. 4 м, а не 5 м.

Определение расчетной нагрузки

Для того чтобы правильно рассчитать нагрузку на деревянную балку, нужно определить все виды оказываемых воздействий на перекрытие.

Величину нагрузки можно узнать двумя путями: использовать СНиП 2.01.07-85* Нагрузки и воздействия и с его помощью высчитать все необходимые коэффициенты вручную, а затем сложить их, или же можно взять нормативные данные из справочников. Если вы произведете все расчеты правильно, то первый вариант будет более точен, однако никто не застрахован, что при выполнении долгих громоздких вычислений не будет допущена ошибка.

Поэтому для получения приблизительного расчета, целесообразнее взять стандартные величины и применять их в последующих формулах. Согласно справочникам, для межэтажных перекрытий расчетная нагрузка обычно составляет 400 кг/м 2 , а для чердаков – 200 кг/м 2 .

Типовые нагрузки для межэтажных перекрытий - 400 кг/м 2 и чердаков – 200 кг/м 2 применимы не во всех ситуациях. Если подразумевается, что на основание будет воздействовать ненормально большой вес, например, от тяжелого оборудования – необходимо произвести корректировку начальных параметров.

Максимальный изгибающий момент

Изгибающий момент – момент внешних сил относительно нейтральной оси сечения балки или другого твёрдого тела, иначе простыми словами, это произведение силы на плечо.

Максимальный изгибающий момент, соответственно, принимает наибольшее значение, которое может выдержать данное тело без нарушения целостности.

Если на балку будет действовать равномерно распределенная нагрузка (в калькуляторе реализован именно этот случай), то значение максимального изгибающего момента будет равно:

Изгибающий момент (формула): Mmax = q × l 2 / 8

  • q – величина нагрузки на перекрытие;
  • l – величина пролета перекрытия.

Требуемый момент сопротивления

Момент сопротивления – это способность материала оказывать сопротивления к изгибу, растяжению или сжатию. Для того чтобы определить это значение для деревянной балки, нужно воспользоваться готовой формулой:

Требуемый момент сопротивления (формула): Wтреб = Мmax / R

  • Мmax – величина максимального изгибающего момента;
  • R – величина расчетного сопротивления древесины.

Отдельно нужно рассказать о величине R. Она имеет целый ряд поправочных коэффициентов, которые нужно учитывать при расчете балки, если вы хотите получить максимально точный результат. Полная формула выглядит так:

Расчетное сопротивление древесины (формула): R = Rи × mп × mд × mт × ma × γсc × …

  • Rи – расчетное сопротивление древесины изгибу, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СП 64.13330.2011;
  • mп – коэффициент перехода для других пород древесины;
  • mд – поправочный коэффициент принимаемый в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок;
  • mт – температурный коэффициент;
  • ma – коэффициент принимаемый в случае, когда дерево подвергается пропитке антипиренами;
  • γсc – коэффициент срока службы древесины.
  • . – существуют другие менее важные коэффициенты, однако при расчетах они практически не используются, так как величина поправки слишком незначительна.

Получается, что по сути, величина R это произведение расчетного сопротивления древесины изгибу и различных поправок. В большинстве случаев для получения ориентировочного результата, эти поправки не учитываются, а значение R принимается равным Rи.

Момент сопротивления балки перекрытия

В зависимости от формы сечения балки (квадрат, прямоугольник, круг, овал…) формулы нахождения фактического момента сопротивления будут отличаться. В наших калькуляторах применяются только два типа профиля: прямоугольный и тесаное бревно. Мы продолжим разбирать алгоритм на примере прямоугольного сечения:

Момент сопротивления балки (формула): W = b × h 2 /6

Расчет балки на прочность

Для того чтобы определить подходит балка по прочности или нет, нужно чтобы момент сопротивления балки перекрытия (W), равнялся или был больше требуемого момента (Wтреб ):

Wтреб ≤ W

Но вычислить реальный момент сопротивления балки перекрытия мы не можем, так как не известна ее высота. В этом случае нужно или воспользоваться перебором сечений, исходя из условия, что наиболее оптимальное соотношение высоты к ширине 1,4:1, или же просто принять W = Wтреб, в силу того, что мы не нарушаем условий заданной формулы. Также, после этих манипуляций станет известен параметр h.

Онлайн калькулятор KALK.PRO расчета балки на прочность оперативно вычислит нужное сечение, чтобы перекрытие выдержало расчетную нагрузку БЫСТРО и БЕСПЛАТНО.

Расчет балки на прогиб (изгиб)

Момент инерции и момент сопротивления сечений - KALK.PRO

Методика определения прогиба балки значительно проще. При распределенной нагрузке, применяется формула:

Прогиб балки (формула): f = (5 × q × l 4 ) / (384 × E × I)

  • q – величина нагрузки на перекрытие;
  • l – величина пролета перекрытия;
  • E – модуль упругости;
  • I – момент инерции.

Первые два параметра нам известны, модуль упругости для древесины обычно принимается равным 100 000 кгс/м², хотя это и не всегда так, а момент инерции, в зависимости от формы сечения, рассчитывается по разным формулам. Для прямоугольника:

Момент инерции (формула): I = b × h 3 /12

Собирая все в кучу, мы получим итоговую формулу расчета прогиба балки:

Прогиб балки (итоговая формула): f = (5 × q × l 4 ) / (384 × E × (b × h 3 / 12))

После того, как вы получите искомое значение, нужно сравнить его с величиной допустимого (предельного) прогиба балки в долях от пролета. Этот параметр устанавливается СНиП II-25-80 «Деревянные конструкции»:

Элементы конструкций

Максимальный прогиб балки, не более

1. Балки междуэтажных перекрытий

2. Балки чердачных перекрытий

3. Перекрытия при наличии стяжки/штукатурки

Например, для межэтажных перекрытий при длине пролета равной 400 см мы получим условие – 400/250, т.е. предельно возможный изгиб в данной ситуации 1,6 см.

Если ваше значение f превышает его, необходимо изменять сечение балки в большую сторону, до тех пор, пока оно не станет меньше величины предельного прогиба.

Наш калькулятор прогиба деревянной балки сам подберет нужные параметры сечения и избавит вас от сложных громоздких вычислений.

Конечные параметры балки

После того, как вы подберете сечение при расчете на прочность и прогиб/изгиб, можно будет определить минимально допустимые параметры балки.

Предположим, что при расчете на прочность вы получили сечение – 165х150 мм, а при расчете на прогиб – 239х150 мм. Очевидно, что в подобной ситуации следует выбирать наибольшую величину, то есть значение на прогиб, поскольку если вы сделаете ровно наоборот, перекрытие выдержит нагрузку, но очень сильно деформируется и ни о каком ровном потолке не может быть и речи.

В результате расчета несущей способности деревянной балки, мы используем сечение равное 239х150 мм, но тут сталкиваемся с очередной проблемой – балок такого размера серийно никто не производит. В этом случае нужно производить округление обязательно в большую сторону, обычно кратно 50 мм, т.е. нам подойдет балка 250х150 мм. В некоторых ситуациях, можно обратиться к ГОСТ 24454-06, в нем указаны все типовые размеры материалов.

Расчет балки онлайн без знания сопромата – одно из главных преимуществ сервиса KALK.PRO.

Методика расчета балок перекрытия из клееного бруса и отесанного бревна

Технология расчета балок перекрытия из клееного бруса практически не отличается от изделий из цельной древесины. Все этапы работы с калькулятором совпадают и никакие дополнительные коэффициенты вводить не нужно, но при самостоятельном вычислении в формулу нахождения величины расчетного сопротивления (R), нужно будет добавить дополнительный коэффициент kw , который учитывает форму и размер поперечного сечения.

Например, для прямоугольных клееных балок принимаются следующие поправки:

Читайте также: