Определить сопротивление стального провода

Обновлено: 24.04.2024

Данная статья поможет вам рассчитать сопротивление кабеля. Расчет можно выполнить по формулам, либо по данным таблицы "сопротивление кабелей",которая приведена ниже.

То как влияет материал проводника учитывается при помощи удельного сопротивления, которое принято обозначать буквой греческого алфавита ρ и являет собой сопротивление проводника сечением 1 мм2 и длинной 1м. У серебра наименьшее удельное сопротивление ρ = 0,016 Ом•мм2/м. Ниже приводятся значения удельного сопротивления для нескольких проводников:

  • Сопротивление кабеля для серебра - 0,016,
  • Сопротивление кабеля для свинеца - 0,21,
  • Сопротивление кабеля для меди - 0,017,
  • Сопротивление кабеля для никелина - 0,42,
  • Сопротивление кабеля для люминия - 0,026,
  • Сопротивление кабеля для манганина - 0,42,
  • Сопротивление кабеля для вольфрама - 0,055,
  • Сопротивление кабеля для константана - 0,5,
  • Сопротивление кабеля для цинка - 0,06,
  • Сопротивление кабеля для ртути - 0,96,
  • Сопротивление кабеля для латуни - 0,07,
  • Сопротивление кабеля для нихрома - 1,05,
  • Сопротивление кабеля для стали - 0,1,
  • Сопротивление кабеля для фехрали -1,2,
  • Сопротивление кабеля для бронзы фосфористой - 0,11,
  • Сопротивление кабеля для хромаля - 1,45

Так как в состав сплавов входят разные количества примесей, то удельное сопротивление может изменятся.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Сопротивление кабеля рассчитывается по формуле,которая приведена ниже:

  • R — сопротивление,
  • Ом; ρ — удельное сопротивление, (Ом•мм2)/м;
  • l — длина провода, м;
  • s — площадь сечения провода, мм2.

Площадь сечения рассчитывается так:

S=(π?d^2)/4=0.78?d^2≈0.8?d^2

Измерить диаметр провода можно микрометром либо штангенциркулем,но если их нету под рукой,то можно плотно намотать на ручку (карандаш) около 20 витков провода, затем измерить длину намотанного провода и разделить на количество витков.

Для определения длинны кабеля,которая нужна для достижения необходимого сопротивления,можно использовать формулу:

таблица сопротивления кабелей

1.Если данные для провода отсутствуют в таблице,то берется некоторое среднее значение.Как пример ,провод из никелина который имеет диаметр 0,18 мм площадь сечения равна приблизительно 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток 0,075 А.

2.Данные последнего столбца,для другой плотности тока, необходимо изменить. Например при плотности тока 6 А/мм2, значение необходимо увеличить вдвое.

Пример 1. Давайте найдем сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. С помощью таблицы берем сопротивление 1 м медного провода, которое равно 2,2 Ом. Значит, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам будет выглядеть так: площадь сечения : s= 0,78•0,12 = 0,0078 мм2. Поскольку удельное сопротивление меди ρ = 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько провода из манганина у которого диаметр 0,5 мм нужно чтобы изготовить реостат, сопротивлением 40 Ом?

Решение. По таблице выбираем сопротивление 1 м этого провода: R= 2,12 Ом: Чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78•0,52 = 0,195 мм2. Длина провода l = 0,195•40/0,42 = 18,6 м.

Сопротивление провода.

Данная статья поможет вам рассчитать сопротивление провода. Расчет можно выполнить по формулам, либо по данным таблицы "сопротивление проводов", которая приведена ниже.

То как влияет материал проводника учитывается при помощи удельного сопротивления, которое принято обозначать буквой греческого алфавита ρ и являет собой сопротивление проводника сечением 1 мм 2 и длинной 1 м. У серебра наименьшее удельное сопротивление ρ = 0,016 Ом•мм 2 /м. Ниже приводятся значения удельного сопротивления для нескольких проводников:

  • Сопротивление провода для серебра - 0,016,
  • Сопротивление провода для свинеца - 0,21,
  • Сопротивление провода для меди - 0,017,
  • Сопротивление провода для никелина - 0,42,
  • Сопротивление провода для люминия - 0,026,
  • Сопротивление провода для манганина - 0,42,
  • Сопротивление провода для вольфрама - 0,055,
  • Сопротивление провода для константана - 0,5,
  • Сопротивление провода для цинка - 0,06,
  • Сопротивление провода для ртути - 0,96,
  • Сопротивление провода для латуни - 0,07,
  • Сопротивление провода для нихрома - 1,05,
  • Сопротивление провода для стали - 0,1,
  • Сопротивление провода для фехрали -1,2,
  • Сопротивление провода для бронзы фосфористой - 0,11,
  • Сопротивление провода для хромаля - 1,45

Сопротивление провода рассчитывается по формуле,которая приведена ниже:

  • R — сопротивление,
  • Ом; ρ — удельное сопротивление, (Ом•мм 2 )/м;
  • l — длина провода, м;
  • s — площадь сечения провода, мм 2 .

Для определения длинны провода,которая нужна для достижения необходимого сопротивления,можно использовать формулу:

Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78•0,52 = 0,195 мм 2 . Длина провода l = 0,195•40/0,42 = 18,6 м.

Расчет сопротивлений проводов

Расчет сопротивлений проводов

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой ? и представляющего собой сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением ? = 0,016 Ом•мм2/м обладает серебро. Приведем среднее значение удельного со п ротивления некоторых проводников:

Серебро - 0,016 , Свинец - 0,21 , Медь - 0,017 , Никелин - 0,42 , Алюминий - 0,026 , Манганин - 0,42 , Вольфрам - 0,055 , Константан - 0,5 , Цинк - 0,06 , Ртуть - 0,96 , Латунь - 0,07 , Нихром - 1,05 , Сталь - 0,1 , Фехраль - 1,2 , Бронза фосфористая - 0,11 , Хромаль - 1,45 .

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:


где R — сопротивление, Ом; удельное сопротивление, (Ом•мм2)/м; l — длина провода, м; s — площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:


Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой


Расчет сопротивлений проводов

Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78•0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78•0,52 = 0,195 мм2. А длина провода будет l = 0,195•40/0,42 = 18,6 м.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Сопротивления, проводимости и схемы замещения линий электросетей

Сопротивления, проводимости и схемы замещения линий электросетей

Линии электросетей обладают активными и индуктивными сопротивлениями и активными и емкостными проводимостями, равномерно распределенными по их длине.

В практических электрических расчетах электросетей принято равномерно распределенные постоянные линии заменять сосредоточенными постоянными: активным r и индуктивным х сопротивлениями и активной g и емкостной b проводимостями. Соответствующая этому условию П-образная схема замещения линии приведена на рис. 1,а.

При расчетах местных электросетей напряжением 35 кв и ниже проводимости g и b можно не учитывать и применять более простую схему замещения, состоящую из последовательно соединенных активного и индуктивного сопротивлений (рис. 1,б).

Активное сопротивление линии определяют по формуле


где l— длина провода, м; s — сечение провода или жилы кабеля, ммг γ — удельная расчетная проводимость материала, м/ом-мм2.

Схемы замещения линий

Рис. 1. Схемы замещения линий: а — для районных электросетей; б — для местных электросетей.

Среднее расчетное значение удельной проводимости при температуре 20° С для однопроволочных и многопроволочных проводов с учетом их фактического сечения и увеличения длины при скрутке многопроволочных проводов равно для меди 53 м/ом∙мм2, для алюминия 32 м/ом∙мм2.

Активное сопротивление стальных проводов непостоянно. При увеличении тока по проводу возрастает поверхностный эффект, а следовательно, увеличивается активное сопротивление провода. Активное сопротивление стальных проводов определяют по экспериментальным кривым или таблицам в зависимости от величины протекающего по ним тока.

Индуктивное сопротивление линии. Если линия трехфазного тока выполнена с перестановкой (транспозицией) проводов, то при частоте 50 гц индуктивное сопротивление фазы на 1 км длины линии можно Определить по формуле


где: аср – среднее геометрическое расстояние между осями проводов


а1, а2 и а3 — расстояния между осями проводов разных фаз, d — наружный диаметр проводов, принимаемый по таблицам ГОСТ на провода; μ— относительная магнитная проницаемость металла провода; для проводов из цветного металла μ=1; х'0 — внешнее индуктивное сопротивление линии, обусловленное магнитным потоком вне провода; х"0 — внутреннее индуктивное сопротивление линии, обусловленное магнитным потоком, замыкающимся внутри провода.

Индуктивное сопротивление линии длиной l км


Индуктивные сопротивления х0 воздушных линий с проводами из цветного металла составляют в среднем 0,33—0,42 ом/км.

Линии напряжением 330—500 кв для снижения потерь на корону (см. ниже) выполняют не одним многопроволочным проводом большого диаметра, а двумя-тремя сталеалюминиевыми проводами на фазу, расположенными на небольшом расстоянии друг от друга. При этом индуктивное сопротивление линии существенно снижается. На рис. 2 показано подобное выполнение фазы линии 500 кв, где три провода расположены по вершинам равностороннего треугольника со сторонами 40 см. Провода фазы скреплены несколькими жесткими растяжками в пролете.

Применение нескольких проводов на фазу эквивалентно увеличению диаметра провода, что ведет к уменьшению индуктивного сопротивления линии. Последнее можно подсчитать по второй формуле, разделив второй член ее правой части на п и подставив вместо наружного диаметра d провода эквивалентный диаметр dэ определенный по формуле


где n — число проводов в одной фазе линии; асp—среднее геометрическое расстояние между проводами одной фазы.

При двух проводах на фазу индуктивное сопротивление линии снижается примерно на 15—20%, а при трех проводах—на 25—30%.

Суммарное сечение проводов фазы равно необходимому расчетному сечению, последнее как бы разделяют на два-три провода, поэтому такие линии принято условно называть линиями с расщепленными проводами.

Стальные провода обладают значительно большей величиной х0, так как магнитная проницаемость стали больше единицы и определяющим является второй член второй формулы, т. е. внутреннее индуктивное сопротивление х"0.

Подвесная гирлянда с тремя расщепленными проводами одной фазы линии 500 кв

Рис. 2. Подвесная гирлянда с тремя расщепленными проводами одной фазы линии 500 кв.

Вследствие зависимости магнитной проницаемости стали от величины протекающего по проводу тока определение х"0 стальных проводов достаточно сложно. Поэтому в практических расчетах определяют х"0 стальных проводов по кривым или таблицам, полученным экспериментальным путем.

Индуктивные сопротивления трехжильных кабелей можно принимать, исходя из следующих средних значений:

• для трехжильных кабелей 35 кв - 0,12 ом/км

• для трехжильных кабелей 3—10 кв - 0,07—0,03 ом/км

• для трехжильных кабелей до 1 кв - 0,06—0,07 ом/км

Активная проводимость линии определяется потерями активной мощности в ее диэлектриках.

В воздушных линиях всех напряжений потери через изоляторы невелики даже в районах с сильно загрязненным воздухом, поэтому их не учитывают.

В воздушных линиях напряжением 110 кв и выше при определенных условиях возникает коронирование проводов, обусловленное интенсивной ионизацией окружающего провод воздуха и сопровождающееся фиолетовым свечением и характерным потрескиванием. Особенно интенсивно провода коронируют в сырую погоду. Наиболее радикальным средством снижения потерь мощности на корону является увеличение диаметра провода, так как с увеличением последнего напряженность электрического поля, а следовательно, и ионизация воздуха вблизи провода уменьшаются.

Для линий 110 кв диаметр провода из условий короны должен быть не менее 10— 11 мм (провода АС-50 и М-70), для линий 154 кв — не менее 14 мм (провод АС-95), а для линии 220 кв — не менее 22 мм (провод АС-240).

Потери активной мощности на коронирование в проводах воздушных линий 110—220 кв при указанных и больших диаметрах проводов незначительны (десятки киловатт на 1 км длины линии), поэтому в расчетах их не учитывают.

В линиях 330 и 500 кв применяют два или три провода на фазу, что, как указывалось ранее, эквивалентно увеличению диаметра провода, вследствие чего напряженность электрического поля вблизи проводов значительно снижается и провода коронируют незначительно.

В кабельных линиях 35 кв и ниже потери мощности в диэлектриках малы и их также не учитывают. В кабельных линиях 110 кв и выше потери в диэлектрике составляют несколько киловатт на 1 км длины.

Емкостная проводимость линии обусловлена емкостью между проводами и между проводами и землей.

С достаточной для практических расчетов точностью емкостную проводимость трехфазной воздушной линии можно определять по формуле


где С0 — рабочая емкость линии; ω — угловая частота переменного тока; аср и d — см. выше.

При этом не учитывают проводимость почвы и глубину возврата тока в земле и предполагают, что на линии выполнена перестановка проводов.

Для кабелей рабочую емкость определяют по заводским данным.

Проводимость линии длиной l км


Наличие емкости в линии обусловливает протекание емкостных токов. Емкостные токи опережают на 90° соответствующие фазные напряжения.

В действительных линиях с равномерно распределенными по длине постоянными емкостные токи неодинаковы вдоль длины линии, так как напряжение вдоль линии непостоянно по величине.

Емкостный ток в начале линии в предположении постоянного по величине напряжения


где Uф—фазное напряжение линии.

Емкостная мощность линии (мощность, генерируемая линией)


где U — междуфазное напряжение, кв.

Из третьей формулы следует, что емкостная проводимость линии мало зависит от расстояния между проводами и диаметра проводов. Мощность, генерируемая линией, сильно зависит от напряжения линии. Для воздушных линий 35 кв и ниже она весьма мала. Для линии 110 кв длиной 100 км Qc≈З Мвар. Для линии 220 кв длиной 100 км Qc≈13 Мвар. Наличие расщепленных проводов увеличивает емкость линии.

Емкостные токи кабельных сетей учитывают только при напряжениях 20 кв и выше.

Электрическое сопротивление проводников

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.

Электрическое сопротивление — физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока

Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение

Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Аналоговый мультиметр

Омметр - прибор для измерения электрического сопротивления

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.

Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.

Медные токоведущие шины в распределительном устройстве

Медные токоведущие шины в распределительном устройстве

Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.

Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 - 1892).

Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.

Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.

Резисторы для электронных схем

Резисторы для электронных схем

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.

Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.

Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа - 0,12, удельное сопротивление константана - 0,48, удельное сопротивление нихрома - 1-1,1.

Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.

удельное сопротивление

удельная проводимость

Электрический провод с медной жилой

Электрический провод с медной жилой

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :

где - R - сопротивление проводника, ом, l - длина в проводника в м, S - площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = ( Пи х d 2 )/ 4

где Пи - постоянная величина, равная 3,14; d - диаметр проводника.

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Поперечный разрез силового кабеля на 400 кВ

Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля - 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.

Это нужно запомнить:

1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.

2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.

3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.

Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.

Нагревательный элемент для электрической плиты

Нагревательный элемент для электрической плиты

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.

При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.

С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре - 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Этот материал проводит электричество без сопротивления до 15°C, но только под высоким давлением

Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре

При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.

Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 - 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.

В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.

Что еще почитать:

Читайте также: