Примеси в сталях и чугуне

Обновлено: 15.05.2024

Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси ( Si, Mn, P, S) , а иногда и легирующие элементы, затвердевает с образованием эвтектики. Чугун — важнейший первичный продукт чёрной металлургии (см. также Доменное производство), используемый для передела при производстве стали и как компонент шихты при вторичной плавке в чугунолитейном производстве. Чугун вторичной плавки - один из основных конструкционных материалов; Применяется как литейный сплав. Широкому использованию чугуна в машиностроении способствуют его хорошие литейные и прочностные свойства (по прочности некоторые чугуны лишь немногим уступают углеродистой стали; см. Модифицированный чугун>. В современном машиностроении на долю деталей из чугуна приходится около 75% от общей массы отливок.

Углерод оказывает большое влияние на свойства чугунов. Он может находиться в чугуне в виде цементита или графита или одновременно в виде цементита и графита. Чугун, в котором практически ,весь углерод находится в виде цементита, назы­вается белым, а если в виде графита—серым чугуном.

Содержание углерода и форма выделения графита в серых чугунах также оказывают значительное влияние на их свой­ства. Поскольку графит обладает весьма малой прочностью, то в первом приближении графитовые включения в микрост­руктуре чугуна можно считать пустотами. Чем больше угле­рода в чугуне в виде графита, тем больший объем будут за­нимать пустоты и тем, следовательно, ниже механические свойства чугуна.

Кремний способствует графитизации чугуна и, следова­тельно, оказывает особенно большое влияние на его свойства. В чугунах обычно содержится 1,2. 3,5% Si. Изменяя сум­марное содержание углерода и кремния в чугуне, можно при прочих равных условиях получить различную структуру и свой­ства чугуна.

Марганецпрепятствует процессу графитизации и повышает способность чугуна к сохранению углерода в форме цементита, образуя карбиды. В чугунах содержится 1 . 1,5 % Мn.

Сера является вредной примесью; она ухудшает литейные свойства (понижает жидкотекучесть) и способствует отбелива­нию чугуна. Содержание серы в чугуне для мелкого литья до­пускается не выше 0,08%, для крупного литья—не выше 0,10. 0,12 %. Вредное влияние серы на свойства чугуна в зна­чительной степени нейтрализуется марганцем, образующим хи­мическое соединение МnS, большая часть которого переходит в шлак.

Фосфор увеличивает жидкотекучесть чугуна благодаря об­разованию легкоплавкой тройной эвтектики FезР—FезС—Fе7, имеющей температуру плавления 950 °С. После затвердевания фосфитная эвтектика повышает твердость и износостойкость чугуна. Фосфор в чугунах содержится до 0,5 %.

Кроме постоянных примесей, в чугун вводят специальные добавки для придания чугунам определенных свойств. Иногда чугуны выплавляют в доменных печах из руд, содержащих хром, никель и другие легирующие компоненты. Такие чугуны называют природнолегированными. Влияние легирующих эле­ментов на свойства чугунов определяется главным образом их отношением к углероду. Графитообразующие элементы способ­ствуют получению хорошо обрабатываемых чугунов, а карбидообразующие—получению отбеленных чугунов, плохо под­дающихся обработке режущим инструментом.

Влияние примесей на свойства стали и чугуна

Полезные примеси: В первую очередь, это кремний и марганец.
- Марганец: Благодаря марганцу в стали повышается прокаливаемость, а вредное воздействие серы, наоборот, понижается.
- Кремний: повышает прочность стали, раскисляя ее.

Прикрепленные файлы: 1 файл

Влияние примесей на свойства стали и чугуна.doc

Влияние примесей на свойства стали и чугуна

Сталь — деформируемый (ковкий) сплав железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %, но не менее 0,022 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Чугу́н — сплав железа с углеродом (содержанием обычно более 2,14 %). Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.). Как правило, чугун хрупок.

Примеси могут оказывать на свойства стали как положительное, так и отрицательное влияние, поэтому их делят на полезные и вредные. Полезные примеси в основном влияют на свойства кристаллов (зерен), а вредные примеси ухудшают межкристаллитные (межзеренные) связи.

В сталях большинства марок главной полезной примесью является углерод. Такие стали называют углеродистыми. Содержание углерода в углеродистых сталях чаще всего составляет 0,05—0,50%, но может достигать 1% и более (теоретически до 2,14%). В углеродистых сталях в качестве полезной примеси также могут содержаться марганец (0,3—0,6%) и кремний (0,15—0,3%). Содержание вредных примесей, которыми обычно являются сера, фосфор, кислород и азот, ограничивают сотыми и тысячными долями процента.

Полезные примеси: В первую очередь, это кремний и марганец.

- Марганец: Благодаря марганцу в стали повышается прокаливаемость, а вредное воздействие серы, наоборот, понижается.

- Кремний: повышает прочность стали, раскисляя ее.

И фосфор, и кремний вводится в сталь специально при выплавке.

Вредные примеси: К вредным примесям относятся сера и фосфор.

- Сера: Влияние серы отрицательно сказывается на пластичности и вязкости стали. Сталь становится красноломкой при ковке и прокатке. Но сера может влиять на сталь и положительно. Она придает стали свойства, более оптимальные для обработки. Поэтому, в некоторых случаях, содержание серы все же допустимо (но только в автоматических сталях неответственного назначения). В стали сера появляется из чугуна.

- Фосфор: Негативное влияние фосфора сказывается на пластичности стали. Это связано с тем, что тип кристаллической решетки заметно фосфора заметно отличается от стали. Фосфор содержится в руде, из которой выплавляют сталь.

Отрицательно сказываются на качестве стали и такие газы, как кислород, азот и водород.

- Кислород: уменьшает вязкость и пластичность стали.

- Азот: Имеет аналогичное действие.

- Водород: вызывает хрупкость стали.

Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор; из металлического лома - хром, никель и др.; в процессе выплавки и раскисления - углерод, кремний и марганец. Углерод находится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в чугунах. С увеличением содержания углерода в сталях возрастают твердость, прочность и уменьшается пластичность. Сера является вредной примесью. Она образует легкоплавкую эвтектику FeS + + Fe, которая при кристаллизации сплава располагается по границам зерен и при повторном нагреве расплавляется, что приводит к образованию трещин и надрывов. Это явление носит название красноломкости.

Содержание серы должно быть менее 0,06 %. Фосфор ухудшает пластические свойства сплава, вызывая явление хладноломкости. Его содержание в стали не должно превышать 0,08 %. В чугуне допускается до 0,3 % Р. Азот, кислород и водород присутствуют в сплавах в составе оксидов FeO, Si02, А1203, нитридов Fe4N или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Оксиды и нитриды служат концентраторами напряжений и могут снижать механические свойства (прочность, пластичность). Водород растворяется в стали при расплавлении. При охлаждении сплава растворимость водорода уменьшается, он накапливается в микропорах под высоким давлением и может стать причиной образования внутренних надрывов в металле (флокенов) и трещин. Кремний и марганец попадают в железоуглеродистый сплав при его выплавке и в процессе раскисления. Кремний повышает предел текучести и уменьшает склонность к хладноломкости. Кремний способствует графитизации чугуна. Марганец образует твердый раствор с железом и немного повышает твердость и прочность феррита. Стали классифицируются по химическому составу, качеству и назначению. По химическому составу классифицируют главным образом конструкционные стали, предназначенные для изготовления деталей машин и металлических конструкций. Конструкционные стали делят на углеродистые и легированные. Углеродистые стали могут быть низкоуглеродистые: С 0,09 . 0,25 %; среднеуглеродистые: С 0,25 . 0,45 % и высокоуглеродистые: С 0,45 . 0,75 %. Легированные стали условно подразделяют на низколегированные с содержанием легирующих элементов 2,5 %; среднелегированные - от 2,5 до 10 % и высоколегированные - более 10 %.

Другие стали, например инструментальные, с особыми физико-химическими свойствами по химическому составу обычно не классифицируются. По назначению стали подразделяют на конструкционные, инструментальные и стали и сплавы с особыми свойствами - жаропрочные, кислотостойкие, износостойкие, магнитные и др. По качеству различают стали общего назначения, качественные, высококачественные и особовысококачественные, в последнем случае в маркировке указывается способ выплавки и последующей обработки стали. Под качеством стали понимают совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей - серы и фосфора. Газы являются скрытыми количественно трудноопределяемыми примесями, поэтому нормы содержания вредных примесей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества содержат до 0,05 % S и 0,04 % Р, качественные - не более 0,04 % S и 0,035 % Р, высококачественные -не более 0,025 % S и 0,025 % Р, особовысококачественные - не более 0,015 % S и 0,025 % Р. Стали углеродистые обыкновенного качества (ГОСТ 380-88) обозначаются индексом Ст и порядковым номером, например, Ст1, СтЗ, Ст5. Чем выше номер в обозначении стали, тем выше ее прочность и ниже пластичность.

Марганец: Марганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении - снижаются. Марганец увеличивает усадку сплава

Сера: Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава, считается вредной примесью, придает чугуну красноломкость (образование трещин при высоких температурах), препятствует выделению графита

Фосфор: Фосфор на процесс графитизации углерода влияет слабо, но повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. хрупкость

Никель: Никель - легирующий элемент, благоприятно влияет на выравнивание механических свойств в отливках с различной толщиной стенок, повышает твердость на 10 НВ. С увеличением содержания никеля возрастает коррозионная стойкость и улучшается обрабатываемость сплава

Хром: Хром - карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углерода

Молибден: Молибден - легирующий элемент; замедляет процесс графитизации углерода и способствует карбидообразованию. С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износу

Медь: Медь способствует графитизации углерода, увеличивает жидкотекучесть, повышает прочность и твердость сплава

Углерод: Увеличенное содержание углерода улучшает литейные свойства чугуна

Кремний: С повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания - уменьшаются предел прочности при растяжении и относительное удлинение

Марганец: С повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%

Магний: Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния - 0,04-0,08%

Сера: Чем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойства

Фосфор: Фосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%

Никель: Никель влияет на тепло- и электропроводность, а также на коррозионную стойкость и жаростойкость сплава. С увеличением содержания никеля эти свойства повышаются

Хром: С увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплава

Медь: При содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть - до 50 % и соответственно при 2% меди - до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графита

Углерод: Углерод - основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева

Кремний: Для ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются

Фосфор: Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава

Никель: Никель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава

Хром: Хром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов

Молибден: Молибден способствует измельчению перлита и графитовых включений, увеличивает предел прочности на 3-7 кгс/мм2 при содержании молибдена 0,5%; замедляет процесс графитизации углерода

Медь: Медь способствует графитизации углерода и увеличивает содержание в сплаве перлита

Воздействие отдельных элементов на чугун в целом.

Алюминий Al (До 0,03%): Способствует образованию водородных газовых пор в тонких сечениях при содержании Al выше 0,005%. Нейтрализует азот. Способствует образованию дросса. При Al свыше 0,08% оказывает отрицательное воздействие на форму шаровидных включений графита. Может быть нейтрализован церием. Сильный стабилизатор графита.

Сурьма Sb (До 0,02%): Сильный стабилизатор перлита и карбидов. Препятствует образованию шаровидного графита в отсутствие РЗМ.

Мышьяк As (До 0,05%): Сильный стабилизатор перлита и карбидов. Улучшает форму шаровидного графита.

Барий Ba (До 0,003%): Усиливает образование центров графитизации графита и увеличивает продолжительность действия модификатора. Снижает тенденцию к отбелу и способствует образованию графита.

Висмут Bi (Свыше 0,01%): Способствует образованию отбела и нежелательных форм графита. Увеличивает число включений шаровидного графита в ВЧ, содержащем РЗМ (церий). Чрезмерное число шаровидных включений графита может спровоцировать усадку.

Бор В (До 0,01%): Свыше 0.001 % способствует образованию карбидов особенно в ВЧ. 0,002 % B улучшает способность к отжигу ковкого чугуна.

Кальций Са (До 0,01%): Улучшает степень шаровидности включений графита. Снижает тенденцию к отбелу и способствует образованию графита.

Церий Се (До 0,02%): Как правило, не используется в сером чугуне. Подавляет отрицательное воздействие нежелательных элементов в ВЧ. Улучшает степень шаровидности графита. Стабилизатор карбидов из-за сегрегации.

Хром Cr (До 0,3%): Способствует образованию отбела и перлита. Повышает прочность. Образует скопления карбидов в ВЧ при содержании выше 0,05 %.

Кобальт Со (До 0,02%): Не оказывает существенного воздействия на чугун.

Медь Cu (До 0,5%): Способствует образованию перлита. Повышает прочность. Ослабляет процесс ферритизации в ВЧ. Отсутствие вредного воздействия.

Водород Н : Образует подповерхностные газовые поры. В незначительной степени способствует образованию отбела. Способствует отбелу при недостатке марганца для нейтрализации серы. Способствует образованию крупных включений графита.

Свинец Pb (До 0,005%): Способствует образованию нежелательных структур графита в сером чугуне и существенно снижает прочность при содержании > 0,004 %. Способствует образованию перлита и карбидов. Вызывает образование дегенеративных форм шаровидных включений графита. Отрицательное воздействие на графит в ВЧ нейтрализуется РЗМ (церием).

Магний Mg (0,03 - 0,08%): Способствует образованию шаровидных включений графита и стабилизирует карбиды в ВЧ. Не используется в серых чугунах.

Марганец Mn (0,2 - 1,0%): Нейтрализует серу, образуя MnS. Способствует образованию перлита. Образует скопления карбида в ВЧ. При высоком содержании способствует образованию газовых пор в сочетании с высоким содержанием серы.

Молибден Мо (До 0,1%): Способствует образованию перлита. Повышает прочность. Может способствовать формированию усадки и образованию карбидов.

Никель Ni (До 0,5%): В небольших количествах слабое воздействие на расплав. Графитизирующий эффект в больших количествах.

Азот N (До 0,015%): Способствует формированию компактных структур графита. Способствует образованию перлита. Повышает прочность. Высокое содержание приводит к образованию трещин в толстых сечениях. Может быть нейтрализован Al, Ti и Zr. Оказывает незначительное влияние на ВЧ.

Фосфор Р (До 0,1%): Повышает углеродный эквивалент. Повышает жидкотекучесть. Формирует фосфидную эвтектику. Оказывает отрицательное воздействие на ВЧ при содержании > 0,05 %. При содержании > 0,04 % вызывает образование пригара.

Сера S (До 0,15% (серый чугун)): Оказывает сильное отрицательное воздействие на структуры и свойства, если не сбалансирована марганцем. Повышает чувствительность СЧ к модифицированию. Может требовать увеличения навесок Mg в ВЧ. Содержание серы в ВЧ не должно превышать 0,03 %.

Стронций Sr (До 0,003%): Способствуют формированию графита в СЧ и ВЧ. В значительной степени снижает отбел в сером чугуне.

Теллур Те (До 0,003%): Сильный стабилизатор карбидов. Вызывает образование многих нежелательных форм графита. Влияние Те выражено при содержании с 0,0003 %. Влияние уменьшается в сочетании Те с Mg и Ce в ВЧ

Олово Sn (До 0,15%): образованию перлита. Повышает прочность. Охрупчивает ВЧ при содержании > 0,08%. Не отмечено других вредных проявлений.

Титан Ti (До 0,10%): Нейтрализует азот в сером чугуне. Вызывает формирование водородной пористости в присутствии алюминия. Вызывает образование переохлажденного графита в сером чугуне. Подавляет формирование шаровидных включений графита при производстве ЧВГ.

Вольфрам W (До 0,05%): Редко присутствует в существенных объемах. Средний по силе стабилизатор перлита.

Ванадий V (До 0,10%): Вызывает образование отбела. Измельчает включения пластинчатого графит. Существенно повышает прочность.

Классификация: Сталь конструкционная углеродистая обыкновенного качества

Применение: детали клепаных конструкций, болты, гайки, ручки, тяги, втулки, ходовые валики, клинья, цапфы, рычаги, упоры, штыри, пальцы, стержни, звездочки, трубчатые решетки, фланцы и др. детали, работающие в интервале температур от 0 до +425 °С; поковки сечением до 800 мм.

Химический состав в % материала ВСт5сп .

С: 0.28 - 0.37 ; Si: 0.15 - 0.35 ; Mn: 0.5 - 0.8 ; Ni: до 0.3 ; S: до 0.05 ;

P: до 0.04 ; Cr: до 0.3 ; Cu: до 0.3 ; As: до 0.08

С- углерод ; Si- кремний ; Mn- марганец ; Ni- никель ; S- сера ; Р- фосфор ; Сr- хром ; Аs- мышьяк

По степени раскисления – спокойная (СПОКОЙНАЯ СТАЛЬ - литая сталь, более полно раскисленная по сравнению с кипящей и полуспокойной сталью, что достигается вводом в металл, находящийся в печи или в ковше, увеличенного количества сильных раскислителей - ферросилиция, алюминия и др. Застывает сталь спокойно, без кипения и выделения искр; отличается плотной однородной структурой.)

Сталь конструкционная легированная

оси, коленчатые валы, поршневые штоки, рычаги, распреде лительные валики, карданные валы, полуоси и другие детали.

Химический состав в % материала 40Г2:

С: 0.36 - 0.44 ; Si: 0.17 - 0.37 ; Mn: 1.4 - 1.8 ; Ni: до 0.3 ; S: до 0.035 ; Р: до 0.035 ; Сr: до 0.3 ; Сu: до 0.3

Литература и сайты

Н.А. Минкевич «Свойства, тепловая обработка и назначение стали и чугуна», Москва 1982г.

Федоров В.Б., Шоршоров М.Х., Хакимова Д.К. «Углерод и его взаимодействие с металлами.» М: Металлургия, 1978.

Серый чугун

Серый чугун

За счет графитовых вкраплений в железном сплаве серый чугун был выделен в качестве отдельного вида. При охлаждении эти включения имеют вид хлопьев или пластин, благодаря чему такой материал выглядит как пористая губка. Серый чугун очень хрупок, и его легко можно разбить на куски одним ударом кувалды.

Процентный состав углерода 2,14 %. Такое высокое содержание не позволяет говорить о нормальной растворимости, поэтому и возникают хлопьевидные или пластинчатые вкрапления. Но, несмотря на хрупкость серого чугуна, его литейные характеристики довольно высоки, поэтому он активно применяется в машиностроении. О других особенностях этого материала поговорим далее.

Что такое серый чугун

Стальные сплавы всегда имеют более высокую цену, чем чугунные, что связано с дорогим и технологически сложным производством. По этой причине чугун используют в сферах, в которых экономия на материале не мешает эксплуатации изделий.

Существует пять основных разновидностей чугуна, причем в основе классификации лежит форма графита в микроструктуре кристаллической решетки. Выделяют серый чугун, белый, ковкий, особой прочности, половинчатый, причем первый является самым хрупким. Это объясняется тем, что частички графита в нем заменяет ледебурит.

К серым чугунам, относится несколько ковких высокопрочных сплавов, из-за чего возникает путаница в терминологии. Решить вопрос позволяет применение типовых стандартов, согласно которым серым чугуном называется материал на основе железа, графита и других компонентов. Примеси придают металлу определенные характеристики либо легируют его.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Поэтому, отвечая на вопрос о том, как получают серый чугун, нужно отметить, что он является просто сплавом железа и углерода, при охлаждении металлической базы которого образуются включения в виде пластин и хлопьев. Углерод обеспечивает повышение пластичности с параллельным снижением прочности, оптимизирует литейные характеристики, способствует графитизации.

Химический состав серого чугуна

  • Доля углерода составляет 2,4–3,8 %. Меньший объем растворится в металле, а больший приведет к потере материалом упругости, жесткости.
  • Количество кремния находится на уровне 1,3–2,6 %. Данный элемент обеспечивает протекание графитизации, приводит к снижению вязкости, увеличению твердости серого чугуна. Но при превышении порога в 3 % ухудшаются показатели пластичности. Принято оценивать зависимость технико-физических параметров металла от углерода вместе с кремнием, а именно: смотрят на их суммарное содержание в структуре.

Доля серы не более 0,13–0,16 %. Этот компонент находится в сплаве в виде сульфида железа и негативно отражается на пластичности, твердости. При закреплении на кристаллах снижает механические параметры чугуна, повышает усадку, вызывает красноломкость металла, из-за которой при нагревании образуются трещины.

Химический состав серого чугуна

Перекрыть вредное влияние серы позволяет добавление марганца, благодаря которому запускается формирование карбидов железа. Необходимый объем марганца подбирается в соответствии с содержанием серы, обычно его требуется добавить в пределах 0,4–1,2 %.

Вредные примеси в стали

Вредные примеси в стали

Вредные примеси в стали не только ухудшают ее состав, но и могут привести к последующей деформации изготовленного из нее изделия. Однако нельзя все их рассматривать как нежелательные. Некоторые из них относят к полезным, а от других вообще невозможно избавиться, так как они постоянные. Да и нет необходимости их устранять, поскольку постоянные примеси могут влиять на качественные характеристики стали.

В этой статье мы поговорим о том, какими являются вредные примеси стали и как они влияют на ее состав и характеристики стальных изделий.

Полезные и специальные примеси в стали

Полезные и специальные примеси в стали

В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:

  • Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
  • Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.

Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.

Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.

Рекомендовано к прочтению

По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.

Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.

Остановимся подробно на назначении некоторых элементов:

  • Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
  • Медь – увеличивает стойкость стали к коррозии.
  • Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
  • Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
  • Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
  • Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
  • Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
  • Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
  • Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
  • Церий – способствует возрастанию пластичности и прочности стали.
  • Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
  • Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.

Вредные примеси в стали, которые ухудшают ее свойства

Давайте разберемся, какие вредные примеси содержатся в стали. Основными являются фосфор и сера.

Вредные примеси в стали, которые ухудшают ее свойства

Сера (S) содержится в сталях высокого качества в количестве не более 0,02–0,03 %. Для металла общего назначения этот показатель повышается до 0,03–0,04 %. С помощью спецобработки количество серы уменьшается до 0,005 %.

Растворения серы в железе не происходит, а образуется FeS (сульфид железа). Он входит в эвтектику, образующуюся при температуре +988 °С.

При высоком содержании серы сталь становится красноломкой. Это происходит из-за появления на границах зерен сульфидных эвтектик, имеющих низкую способность к плавке. Красноломкость появляется при температуре красного каления стали – +800 °С.

Плохое влияние сера оказывает на свариваемость, пластичность, ударную вязкость, а также поверхность металла. Это особенно заметно, если марганец и углерод содержатся лишь в небольших количествах.

Склонность к сегрегации на границах зерен у серы значительна. По этой причине в ходе нагрева пластичность стали падает. Если металл предназначен для дальнейшей обработки автоматическим механическим способом, то в состав обязательно добавляют серу в количестве от 0,08 % до 0,33 %, так как она способствует возрастанию у подшипниковых сталей усталостной прочности.

Марганец же снижает вредное воздействие серы на сталь. При жидком состоянии сплава он вступает в реакцию с образованием сульфида марганца, температура плавления которого составляет +1620 °С. Она значительно превышает температуру горячей обработки металла (от +800 °С до +1200 °С). При таком нагреве сульфиды марганца достаточно пластичны и просто деформируются.

Сера

Сегрегация фосфора (Р) в значительно меньшей, чем серы и углерода, степени происходит в ходе затвердевания сталей. Идет его растворение в феррите, из-за чего прочность металла увеличивается. Чем больший процент фосфора содержит сталь, тем выше ее хладноломкость и ниже ударная вязкость, пластичность.

Высокая температура среды позволяет достичь растворимости фосфора в пределах 1,2 %. Чем ниже становится температура, тем меньше растворимость фосфора. Она постепенно опускается до 0,02–0,03 %. Именно такое содержание данного химического элемента наблюдается в сталях. Это может говорить о том, что он, как правило, полностью растворяется в альфа-железе.

Отпускная хрупкость хромистых, хромоникелевых и хромомарганцевых, марганцевых и магниево-кремниевых легированных сталей во многом зависит от сегрегации фосфора по границам зерен. Элемент способствует замедлению распада мартенсита и повышает упрочняемость.

С целью улучшения механической (автоматической) обработки в низколегированные стали добавляют большое содержание фосфора.

При наличии углерода в количестве 0,1 % в конструкционной низколегированной стали фосфор должен увеличивать антикоррозийные свойства, а также прочность металла.

Наличие фосфора в хромоникелевых аустеничных сталях приводит к увеличению предела текучести. При попадании аустеничной нержавеющей стали в среду сильного окислителя присутствие в ее составе фосфора вызывает коррозию на границах зерен. Такое поведение предопределено сегрегацией фосфора на этих границах.

Углерод

Вредные примеси в стали – это не только сера и фосфор, но и углерод.

Медленно остывая, сталь приобретает структуру, состоящую их двух фаз – цементита и феррита. Цементит связан в стали с углеродом. Его содержание прямо пропорционально количеству последнего. При этом цементит имеет твердость, значительно превышающую жесткость феррита. Цементит, вернее, входящие в его состав частицы (хрупкие, твердые), увеличивают сопротивляемость деформации, повышая противодействие движению дислокации. Помимо того, снижается вязкость и пластичность металла.

Как следствие, при возрастании процента углерода происходит увеличение твердости стали, пределов ее текучести и прочности, снижение относительных сужения и удлинения, а также ударной вязкости. То есть чем больше углерода, тем легче сталь переходит в хладноломкое состояние. Если содержание углерода в стали колеблется в диапазоне 1,0–1,1 %, то растет твердость металла в отожженном состоянии. При этом предел прочности снижается.

Такое явление, как снижение прочности, наблюдается по причине выделения аустенита вторичного цементита на границах бывшего зерна. Этот цементит делает сплошную сетку в сталях с вышеуказанным составом. В ходе растяжения сетка напрягается и цемент, хрупкий по своей природе, начинает разрушаться. Все это является причиной распада и последующего уменьшения предела прочности. Увеличивая количество углерода, можно добиться уменьшения плотности стали, увеличения электросопротивляемости, коэрцитивной силы, снижения остаточной индукции, теплопроводности и магнитной проницаемости.

Рассматривая вопрос о том, какие вредные примеси присутствуют в стали, нельзя забывать о влиянии азота (N). Под его воздействием в металле образуются нитриды, представляющие собой неметаллические хрупкие инородные тела, которые делают свойства стали значительно хуже.

Однако вредные примеси в стали являются в какой-то мере полезными, а иногда и неустранимыми. К положительным сторонам примеси азота стоит отнести его способность увеличить аустеничную область диаграммы состояния металла. Он делает аустеничную структуру стабильнее. Кроме того, он способен заменить собой никель (но только частично) в рассматриваемых сталях.

Для увеличения прочности низколегированной стали прибегают к добавлению титана, ванадия и ниобия (нитридообразующих элементов). В процессе горячей обработки и последующего охлаждения, взаимодействуя, они создают небольшие карбонитриды и нитриды, придающие стали прочность.

Олово

Даже небольшое количество олова (Sn) вредно для стали. В легированных сталях этот элемент способен вызвать отпускную хрупкость. Кроме того, олово сегрегируется на границах зерен стали, уменьшает ее горячую пластичность в аустенитно-ферритной области диаграммы состояния. Непрерывнолитые слитки под воздействием олова имеют низкое качество поверхности.

Обсуждая вредные примеси в стали и их влияние на материал, нельзя забывать, пожалуй, о самом опасном из них – водороде. В процессе сварки этот химический элемент во всех случаях является вредной примесью. Причина заключается в излишнем охрупчивании стали. При проведении сварочных работ водород может попасть в расплав из:

  • атмосферы дугового разряда;
  • может уже содержаться в металле.

Поглощенный из атмосферы водород, пребывающий в ионизированном и атомарном виде, в ходе кристаллизации значительно уменьшает собственную растворимость. В результате его последующего выделения из материала в нем образуются трещины и поры.

Водород, уже находящийся в металле, может быть в виде гидрида (связанном) или в диффузно-подвижном состоянии (в виде твердого раствора). Молекулярный водород содержится в микронесплошностях материала.

Снизить количество водорода в сварочной зоне можно следующими способами:

  • используют окислители атмосферы (применяют специальные руднокислые электроды или работают под защитой CO2);
  • покрытия электродов и флюсы дополняют хлоридами и фторидами (ими могут быть соли и плавиковый шпат);
  • проводят просушку материалов, предназначенных для сварки (флюса, электродов, газов, проволоки и пр.).
  • Кислород.

Вредные примеси в стали включают в себя и кислород, который понижает пластичность металла. Для защиты материала при сварке используют процесс раскисления шва до определенной нормы. В ходе сварки титана, алюминия и прочих высокоактивных металлов мастера делают атмосферу внутри рабочей зоны без кислорода. Используя для этого гелий, аргон, галидные флюсы, они создают вакуум, поскольку для этих металлов достаточно сложно найти раскислители.

Сурьма

Сурьма (Sb) оказывает вредное влияние на поверхность стали (непрерывнолитых слитков). Причина заключается в ее сегрегации в процессе затвердевания металла. Когда сталь переходит в твердое состояние, сурьма сегрегирует на границах зерен, что приводит у легированных сталей к отпускной хрупкости.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: