Сталь 12х18н10т гост 5632 2014

Обновлено: 11.05.2024

____________________________________________________________________
Текст Сравнения - 2014 с см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

МКС 77.080.20
ОКП 08 7030
08 7150
08 7450

Дата введения 2015−01−01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в .0−92 «Межгосударственная система стандартизации. Основные положения» и .2−2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 375 «Металлопродукция из черных металлов и сплавов» на базе Федерального государственного унитарного предприятия «Центральный Научно-исследовательский институт черной металлургии им. (ФГУП «ЦНИИчермет им. И.П.Бардина»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 марта 2014 г. N 65-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004−97 Код страны по МК (ИСО 3166) 004−97 Сокращенное наименование национального органа по стандартизации
Армения AM Минэкономии Республики Армения
Беларусь BY Госстандарт Республики Беларусь
Казахстан KZ Госстандарт Республики Казахстан
Киргизия KG Кырзызстандарт
Молдова MD Молдова-Стандарт
Россия RU Росстандарт
Таджикистан TJ Таджикстандарт
Узбекистан
UZ Узстандарт
Украина
UA Минэкономразвития Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2014 г. N 1431-ст межгосударственный стандарт введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на легированные нержавеющие деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 7565−81 (ИСО 377−2:1989) Чугун, сталь и сплавы. Метод отбора проб для определения химического состава

ГОСТ 12344−2003 Стали легированные и высоколегированные. Методы определения углерода

ГОСТ 12345−2001 (ИСО 671:1982, ИСО 4935:1989) Стали легированные и высоколегированные. Методы определения серы

ГОСТ 12346−78 (ИСО 439:1982, ИСО 4829−1:1986) Стали легированные и высоколегированные. Методы определения кремния

ГОСТ 12347−77 Стали легированные и высоколегированные. Методы определения фосфора

ГОСТ 12348−78 (ИСО 629:1982) Стали легированные и высоколегированные. Методы определения марганца

ГОСТ 12349−83 Стали легированные и высоколегированные. Методы определения вольфрама

ГОСТ 12350−78 Стали легированные и высоколегированные. Методы определения хрома

ГОСТ 12351−2003 (ИСО 4942:1988, ИСО 9647:1989) Стали легированные и высоколегированные. Методы определения ванадия

ГОСТ 12352−81 Стали легированные и высоколегированные. Методы определения никеля

ГОСТ 12353−78 Стали легированные и высоколегированные. Методы определения кобальта

ГОСТ 12354−81 Стали легированные и высоколегированные. Методы определения молибдена

ГОСТ 12355−78 Стали легированные и высоколегированные. Методы определения меди

ГОСТ 12356−81 Стали легированные и высоколегированные. Методы определения титана

ГОСТ 12357−84 Стали легированные и высоколегированные. Методы определения алюминия

ГОСТ 12358−2002 Стали легированные и высоколегированные. Методы определения мышьяка

ГОСТ 12359−99 (ИСО 4945:1977) Стали углеродистые, легированные и высоколегированные. Методы определения азота

ГОСТ 12360−82 Стали легированные и высоколегированные. Методы определения бора

ГОСТ 12361−2002 Стали легированные и высоколегированные. Методы определения ниобия

ГОСТ 12362−79 Стали легированные и высоколегированные. Методы определения микропримесей сурьмы, свинца, олова, цинка и кадмия

ГОСТ 12363−79 Стали легированные и высоколегированные. Методы определения селена

ГОСТ 12364−84 Стали легированные и высоколегированные. Методы определения церия

ГОСТ 12365−84 Стали легированные и высоколегированные. Методы определения циркония

ГОСТ 17051−82 Стали легированные и высоколегированные. Методы определения тантала

ГОСТ 17745−90 Стали и сплавы. Методы определения газов

ГОСТ 18895−97 Сталь. Метод фотоэлектрического спектрального анализа

ГОСТ 24018.0−90 Сплавы жаропрочные на никелевой основе. Общие требования к методам анализа

ГОСТ 24018.1−80 Сплавы жаропрочные на никелевой основе. Методы определения олова

ГОСТ 24018.2−80 Сплавы жаропрочные на никелевой основе. Методы определения сурьмы

ГОСТ 24018.3−80 Сплавы жаропрочные на никелевой основе. Методы определения свинца

ГОСТ 24018.4−80 Сплавы жаропрочные на никелевой основе. Методы определения висмута

ГОСТ 24018.5−80 Сплавы жаропрочные на никелевой основе. Методы определения свинца и висмута

ГОСТ 24018.6−80 Сплавы жаропрочные на никелевой основе. Методы определения мышьяка

ГОСТ 24018.7−91 Сплавы жаропрочные на никелевой основе. Методы определения углерода

ГОСТ 24018.8−91 Сплавы жаропрочные на никелевой основе. Методы определения серы

ГОСТ 27809−95 Сталь и чугун. Методы спектрографического анализа

ГОСТ 28033−89 Сталь. Метод рентгенофлюоресцентного анализа

ГОСТ 28473−90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

ГОСТ 29095−91 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения железа

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по [1], а также следующие термины с соответствующими определениями:

3.1 легированные нержавеющие стали: Стали с минимальной массовой долей хрома 10,5% и максимальной массовой долей углерода 1,2%.

Примечание — У ограниченного количества легированных нержавеющих сталей допускается минимальная массовая доля хрома 7,5%.

3.2 сплавы на железоникелевой основе: Сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65% при приблизительном отношении никеля к железу 1:1,5).

3.3 сплавы на никелевой основе: Сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (массовая доля никеля не менее 50%).

3.4 коррозионно-стойкие стали и сплавы: Стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.

3.5 жаростойкие (окалиностойкие) стали и сплавы: Стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °C, работающие в ненагруженном или слабонагруженном состоянии.

3.6 жаропрочные стали и сплавы: Стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

3.7 легирующие химические элементы: Химические элементы, специально вводимые в сталь или сплав в определенном количестве, массовая доля которых контролируется.

3.8 остаточные химические элементы: Химические элементы (титан, медь, никель, алюминий, ниобий, кобальт, вольфрам, ванадий, молибден и другие элементы), добавленные не преднамеренно, а попавшие в сталь или сплав случайно из шихтовых материалов, огнеупоров и пр.

3.9 маркировочный анализ: Количественный анализ стали, проведенный по ковшевой пробе или по пробе готового слитка (передельной заготовки, продукции). Для водорода маркировочным анализом является его массовая доля, определенная в жидкой стали после вакуумирования, перед разливкой.

4 Обозначения и сокращения

4.1 В наименованиях марок стали и сплавов химические элементы обозначены следующими буквами: А (в начале марки) — сера, А (в середине марки) — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий, ч — РЗМ (редкоземельные металлы: лантан, празеодим, церий и пр.).

Наименование марок стали состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднюю массовую долю легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в стали в сотых долях процента.

Наименование марок сплавов на железоникелевой и никелевой основах состоит только из буквенных обозначений легирующих элементов, за исключением:

— углерода (только для сплавов на железоникелевой основе), для которого цифры перед буквенным обозначением указывают среднюю или максимальную долю углерода в сотых долях процента;

— никеля, после которого указывают цифры, обозначающие его среднюю массовую долю в процентах.

Исключение составляют следующие сплавы: (7−6) 07X15Н30В5М2 (ЧС81), (8−3) ХН54К15МБЮВТ (ВЖ175), (8−8) ХН55К15МБЮВТ (ЭК151), (8−12) ХН56К16МБВЮТ (ВЖ172).

4.2 Стали и сплавы, полученные с применением специальных методов (процессов) выплавки или специальных переплавов, дополнительно обозначают через дефис в конце наименования марки следующими буквами:

ВД — вакуумно-дуговой переплав, Ш — электрошлаковый переплав и ВИ — вакуумно-индукционная выплавка, ГР — газокислородное рафинирование, ВО — вакуумно-кислородное рафинирование, ПД — плазменная выплавка с последующим вакуумно-дуговым переплавом, ИД — вакуумно-индукционная выплавка с последующим вакуумно-дуговым переплавом, ШД — электрошлаковый переплав с последующим вакуумно-дуговым переплавом, ПТ — плазменная выплавка, ЭЛ — электронно-лучевой переплав, П — плазменно-дуговой переплав, ИШ — вакуумно-индукционная выплавка с последующим электрошлаковым переплавом, ИЛ — вакуумно-индукционная выплавка с последующим электронно-лучевым переплавом, ИП — вакуумно-индукционная выплавка с последующим плазменно-дуговым переплавом, ПШ — плазменная выплавка с последующим электрошлаковым переплавом, ПЛ — плазменная выплавка с последующим электронно-лучевым переплавом, ПП — плазменная выплавка с последующим плазменно-дуговым переплавом, ШЛ — электрошлаковый переплав с последующим электронно-лучевым переплавом, ШП — электрошлаковый переплав с последующим плазменно-дуговым переплавом, СШ — обработка синтетическим шлаком, ВП — вакуумно-плазменный переплав, В — с вакуумированием, ДД — двойной вакуумно-дуговой переплав, ГВР — газокислородное рафинирование с последующим вакуумно-кислородным рафинированием.

5 Классификация

5.1 Легированные нержавеющие стали в зависимости от структуры подразделяют на классы:

— мартенситный — стали с основной структурой мартенсита;

— мартенсито-ферритный — стали, содержащие в структуре кроме мартенсита не менее 10% феррита;

— ферритный — стали, имеющие структуру феррита (без превращений);

— аустенито-мартенситный — стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;

— аустенито-ферритный — стали, имеющие структуру аустенита и феррита (феррит более 10%);

— аустенитный — стали, имеющие структуру устойчивого аустенита.

Подразделение стали на классы по структурным признакам является условным, так как предполагает только одну термическую обработку, а именно — охлаждение на воздухе после высокотемпературного нагрева (свыше 900°С) образцов небольших размеров. Поэтому структурные отклонения в стали браковочным признаком не являются.

Сталь 12х18н10т гост 5632 2014

НЕРЖАВЕЮЩИЕ СТАЛИ И СПЛАВЫ КОРРОЗИОННО-СТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ*

Stainless steels and corrosion resisting, heat-resisting and creep resisting alloys. Grades

____________________________________________________________________
Текст Сравнения ГОСТ 5632-2014 с ГОСТ 5632-72 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 77.080.20
ОКП 08 7030
08 7150

Дата введения 2015-01-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 375 "Металлопродукция из черных металлов и сплавов" на базе Федерального государственного унитарного предприятия "Центральный Научно-исследовательский институт черной металлургии им.И.П.Бардина (ФГУП "ЦНИИчермет им.И.П.Бардина")

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономии Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2014 г. N 1431-ст межгосударственный стандарт ГОСТ 5632-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 1, 2019 год

ВНЕСЕНА поправка, опубликованная в ИУС N 1, 2022 год, введенная в действие с 23.08.2021

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на нержавеющие* деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

* Изменением N 1 по всему тексту стандарта заменены слова: "легированные нержавеющие" на "нержавеющие". - Примечание изготовителя базы данных.

ГОСТ 7565-81 (ИСО 377-2:1989) Чугун, сталь и сплавы. Метод отбора проб для определения химического состава

ГОСТ 12344-2003 Стали легированные и высоколегированные. Методы определения углерода

ГОСТ 12345-2001 (ИСО 671:1982, ИСО 4935:1989) Стали легированные и высоколегированные. Методы определения серы

ГОСТ 12346-78 (ИСО 439:1982, ИСО 4829-1:1986) Стали легированные и высоколегированные. Методы определения кремния

ГОСТ 12347-77 Стали легированные и высоколегированные. Методы определения фосфора

ГОСТ 12349-83 Стали легированные и высоколегированные. Методы определения вольфрама

ГОСТ 12350-78 Стали легированные и высоколегированные. Методы определения хрома

ГОСТ 12351-2003 (ИСО 4942:1988, ИСО 9647:1989) Стали легированные и высоколегированные. Методы определения ванадия

ГОСТ 12352-81 Стали легированные и высоколегированные. Методы определения никеля

ГОСТ 12353-78 Стали легированные и высоколегированные. Методы определения кобальта

ГОСТ 12354-81 Стали легированные и высоколегированные. Методы определения молибдена

ГОСТ 12355-78 Стали легированные и высоколегированные. Методы определения меди

ГОСТ 12356-81 Стали легированные и высоколегированные. Методы определения титана

ГОСТ 12357-84 Стали легированные и высоколегированные. Методы определения алюминия

ГОСТ 12359-99 (ИСО 4945:1977) Стали углеродистые, легированные и высоколегированные. Методы определения азота

ГОСТ 12360-82 Стали легированные и высоколегированные. Методы определения бора

ГОСТ 12361-2002 Стали легированные и высоколегированные. Методы определения ниобия

ГОСТ 12362-79 Стали легированные и высоколегированные. Методы определения микропримесей сурьмы, свинца, олова, цинка и кадмия

ГОСТ 12363-79 Стали легированные и высоколегированные. Методы определения селена

ГОСТ 12364-84 Стали легированные и высоколегированные. Методы определения церия

ГОСТ 12365-84 Стали легированные и высоколегированные. Методы определения циркония

ГОСТ 17051-82 Стали легированные и высоколегированные. Методы определения тантала

ГОСТ 17745-90 Стали и сплавы. Методы определения газов

ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа

ГОСТ 24018.0-90 Сплавы жаропрочные на никелевой основе. Общие требования к методам анализа

ГОСТ 24018.1-80 Сплавы жаропрочные на никелевой основе. Методы определения олова

ГОСТ 24018.2-80 Сплавы жаропрочные на никелевой основе. Методы определения сурьмы

ГОСТ 24018.3-80 Сплавы жаропрочные на никелевой основе. Методы определения свинца

ГОСТ 24018.4-80 Сплавы жаропрочные на никелевой основе. Методы определения висмута

ГОСТ 24018.5-80 Сплавы жаропрочные на никелевой основе. Метод определения свинца и висмута

ГОСТ 24018.6-80 Сплавы жаропрочные на никелевой основе. Методы определения мышьяка

ГОСТ 24018.7-91 Сплавы жаропрочные на никелевой основе. Методы определения углерода

ГОСТ 27809-95 Сталь и чугун. Методы спектрографического анализа

ГОСТ 28033-89 Сталь. Метод рентгенофлюоресцентного анализа

ГОСТ 28473-90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

ГОСТ 29095-91 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения железа

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

ГОСТ 5632-14 Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

Настоящий стандарт распространяется на легированные нержавеющие деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

Марки
стали
C
(Углерод)
Si
(Кремний)
Mn
(Марганец)
P
(Фосфор)
S
(Сера)
Cr
(Хром)
Mo
(Молибден)
Ni
(Никель)
V
(Ванадий)
Nb
(Ниобий)
Ti
(Титан)
Al
(Алюминий)
Cu
(Медь)
W
(Вольфрам)
B
(Бор)
Fe
(Железо)
07Х16Н4Б 0,05 - 0,1 0,2 - 0,5 15 - 16,5 3,5 - 4,5 0,2 - 0,4 остальное
10Х11Н20Т3Р 10 - 12,5 18 - 21 2,6 - 3,2 0,008 - 0,02 остальное
18Х12ВМБФР 0,15 - 0,22 11 - 13 0,4 - 0,6 0,15 - 0,3 0,2 - 0,4 0,4 - 0,7 остальное
40Х10С2М 0,35 - 0,45 1,9 - 2,6 9 - 10,5 0,7 - 0,9 остальное
45Х14Н14В2М 0,4 - 0,5 13 - 15 0,25 - 0,4 13 - 15 2 - 2,8 остальное
65Х13 0,60 - 0,70 0,2 - 0,5 0,25 - 0,80 12,0 - 14,0 остальное

Классификация

Легированные нержавеющие стали в зависимости от структуры подразделяют на классы:

  • Мартенситный - стали с основной структурой мартенсита;
  • Мартенсито-ферритный - стали, содержащие в структуре кроме мартенсита не менее 10% феррита;
  • Ферритный - стали, имеющие структуру феррита;
  • Аустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;
  • Аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10%);
  • Аустенитный - стали, имеющие структуру устойчивого аустенита.

Подразделение стали на классы по структурным признакам является условным, так как предполагает только одну термическую обработку, а именно - охлаждение на воздухе после высокотемпературного нагрева (свыше 900°С) образцов небольших размеров. Поэтому структурные отклонения в стали браковочным признаком не являются.

Марки и химический состав легированных нержавеющих сталей и сплавов

Марки и химический состав легированных нержавеющих сталей и сплавов по маркировочному анализу должны соответствовать указанным в таблице 1. Химический состав сталей и сплавов, полученных специальными методами выплавки и переплава, должен соответствовать нормам, указанным в таблице 1, если иная массовая доля элементов не оговорена в стандартах или нормативных документах на металлопродукцию.

Массовая доля серы в сталях, полученных методом электрошлакового переплава, не должна превышать 0,015%, за исключением стали марки (6-32) 10Х11Н23ТЗМР (ЭПЗЗ), массовая доля серы в которой не должна превышать норм, указанных в таблице 1 или установленных по соглашению сторон.

В готовой продукции допускаются отклонения по химическому составу от норм, указанных в таблице 1.

Предельные отклонения не должны превышать указанных в таблице 2, если иные отклонения, в том числе и по элементам, не указанным в таблице 2, не оговорены в стандартах или нормативных документах на готовую металлопродукцию.

Примечание: предельные отклонения, указанные в таблице 2, не распространяются на остаточные химические элементы.

В сталях, не легированных титаном, кроме перечисленных далее, допускается массовая доля титана не более 0,20%, в стали марок (6-4) 03Х17Н14МЗ, (6-6) 03Х18Н11 - не более 0,05%, в стали марок (6-22) 08X18Н10, (6-40) 12Х18Н9, (6-46) 17Х18Н9 - не более 0,50%, если иная массовая доля титана не оговорена в стандартах или нормативных документах на металлопродукцию.

По согласованию изготовителя с заказчиком в стали марок (4-2) 07X16Н6 (ЭП288), (4-3) 08Х17Н5М3 (ЭИ925), (4-5) 09Х15Н8Ю1 (ЭИ904), (5-2) 03Х23Н6, (5-3) 03Х22Н6М2 массовая доля титана не должна превышать 0,05%.

В сталях, не легированных медью, кроме сталей аустенитного класса, ограничивается остаточная массовая доля меди - не более 0,30%.

В сталях аустенитного класса остаточную массовую долю меди не нормируют и не контролируют, если в стандартах и нормативных документах на металлопродукцию не оговорено иное.

В стали марки (6-34) 10Х14АГ15 (ДИ-13) остаточная массовая доля меди не должна превышать 0,60%.

В хромистых сталях с массовой долей хрома до 20%, не легированных никелем, допускается остаточная массовая доля никеля до 0,60%, с массовой долей хрома более 20% - до 1,00%, а в хромомарганцевых аустенитных сталях - до 2,00%.

В хромоникелевых и хромистых сталях, не легированных вольфрамом и ванадием, допускаются остаточные массовые доли вольфрама и ванадия не более чем 0,20% каждого.

В стали марок (6-12) 05Х18Н10Т, (6-23) 08Х18Н10Т (ЭИ914), (6-40) 12Х18Н9, (6-41) 12Х18Н9Т, (6-42) 12Х18Н10Т, (6-44) 12Х18Н12Т, (6-46) 17Х18Н9 остаточная массовая доля молибдена не должна превышать 0,50%. Для предприятий авиационной промышленности в стали марок (6-12) 05Х18Н10Т, (6-23) 08Х18Н10Т, (6-40) 12Х18Н9, (6-41) 12Х18Н9Т, (6-42) 12Х18Н10Т, (6-44) 12Х18Н12Т остаточная массовая доля молибдена не должна превышать 0,30%. В остальных сталях, не легированных молибденом, остаточная массовая доля молибдена не должна превышать 0,30%.

По требованию заказчика, указанному в заказе, сталь марок (6-12) 05X18Н10Т, (6-23) 08X18Н10Т (ЭИ914) изготовляют с остаточной массовой долей молибдена не более 0,10% или не более 0,30%, сталь марок (6-40) 12Х18Н9, (6-41) 12Х18Н9Т, (6-42) 12Х18Н10Т, (6-44) 12Х18Н12Т, (6-46) 17Х18Н9 - с массовой долей остаточного молибдена не более 0,30%, сталь марок (5-2) 03Х23Н6, (6-6) 03Х18Н11, (6-24) 08Х18Н12Т, (6-25) 08Х18Н12Б (ЭИ402) - с остаточной массовой долей молибдена не более 0,10%.

В сплавах на никелевой и железоникелевой основах, не легированных титаном, алюминием, ниобием, ванадием, молибденом, вольфрамом, кобальтом, медью, остаточная массовая доля перечисленных химических элементов не должна превышать норм, указанных в таблице 3.

По согласованию изготовителя с заказчиком допускаются другие остаточные массовые доли химических элементов. Требование указывают в заказе.

Массовую долю остаточных химических элементов допускается не определять, если иное не указано в заказе.

В стали марки (3-10) 15X28 (ЭИ349) при применении ее для сварки со стеклом массовая доля кремния не должна превышать 0,40%, что должно быть указано в заказе.

По требованию заказчика, указанному в заказе, стали и сплавы изготовляют:

Отбор проб для определения химического состава проводят по ГОСТ 7565. Химический состав нержавеющих сталей и сплавов определяют по ГОСТ 12344, ГОСТ 12345, ГОСТ 12346, ГОСТ 12347, ГОСТ 12348, ГОСТ 12349, ГОСТ 12350, ГОСТ 12351, ГОСТ 12352, ГОСТ 12353, ГОСТ 12354, ГОСТ 12355, ГОСТ 12356, ГОСТ 12357, ГОСТ 12358, ГОСТ 12359, ГОСТ 12360, ГОСТ 12361, ГОСТ 12362, ГОСТ 12363, ГОСТ 12364, ГОСТ 12365, ГОСТ 17051, ГОСТ 17745, ГОСТ 18895, ГОСТ 24018.0, ГОСТ 24018.1, ГОСТ 24018.2, ГОСТ 24018.3, ГОСТ 24018.4, ГОСТ 24018.5, ГОСТ 24018.6, ГОСТ 24018.7, ГОСТ 24018.8, ГОСТ 27809, ГОСТ 28033, ГОСТ 28473, ГОСТ 29095, 4 или другими методами, обеспечивающими требуемую точность определения. При возникновении разногласий определение химического состава сталей и сплавов проводят стандартными методами, предусмотренными настоящим стандартом.

Рекомендации по применению нержавеющих сталей и сплавов указаны в приложении А.

Нержавеющая сталь 12Х18Н10Т

Cортовой прокат, в том числе фасонный: ГОСТ 5949-75, ГОСТ 2590-88, ГОСТ 2879-88.
Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78.
Шлифованный пруток и серебрянка ГОСТ 14955-77, ГОСТ 18907-73.
Лист толстый ГОСТ 7350—77.
Лист тонкий ГОСТ 5582—75.
Лента ГОСТ 4986—79.
Проволока ГОСТ 18143—72.
Поковки и кованые заготовки ГОСТ 25054—81, ГОСТ 1133-71.
Трубы ГОСТ 9940-72, ГОСТ 9941-72, ГОСТ 14162-79.

Свариваемость

Сталь 12Х18Н10Т является свариваемой без ограничений. Способы сварки: РДС, ЭШС и КТС (Контактно Точечная Сварка). Рекомендуется последующая термообработка.

Технологические свойства

Температура ковки, °С: начала 1200, конца 850. Сечения до 350 мм охлаждаются на воздухе.
Обрабатываемость резанием — Kv тв.спл = 0,85 и Kv б.ст = 0,35 в закаленном состоянии при НВ 169 и σв = 610 МПа.
Флокеночувствительность — не чувствительна.

Химический состав, % (ГОСТ 5632-2014)

Сталь C Si Mn Cr Ni Ti S P
12Х18Н10Т не более 0,12 не более 0,80 не более 2,00 17,0-19,0 9,0-11,0 5,0-8,0 не более 0,02 не более 0,40

Применение 12Х18Н10Т

Назначение — детали, работающие до 600 °С; сварные аппараты и сосуды, работающие в разбавленных растворах азотной, уксусной, фосфорной кислот, растворах щелочей и солей и другие детали, работающие под давлением при температуре от -196 до +600 °С, а при наличии агрессивных сред — до +350 °С.

Сталь коррозионностойкая (нержавеющая) аустенитного класса и преимущественно применяется как коррозионостойкая, но может применяться и как жаростойкая и жаропрочная. По жаростойкости близка к стали 12Х18Н9Т.

Применяется для изготовления свариваемой аппаратуры в разных отраслях промышленности.

Примерное применение как жаростойкой стали

Назначение — трубы, детали печной арматуры, теплообменники, муфели, реторты, патрубки и коллекторы выхлопных систем, электроды искровых зажигательных свечей. Рекомендуемая максимальная температура применения в течение длительного времени (до 10000 ч), 800°С.

Температура начала интенсивного окалинообразования в воздушной среде, 850°С.

Неустойчива в серосодержащих средах. Применяются в случаях, когда не могут быть применены безникелевые стали.

Примерное применение как жаропрочной стали

Детали выхлопных систем, трубы, листовые и сортовые детали.

Рекомендуемая максимальная температура применения, 600°С.

Срок службы — Весьма длительный.

Применение стали 12Х18Н10Т для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка стали НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
12Х18Н10Т
ГОСТ 5632
Сортовой прокат
ГОСТ 5949.
Листы ГОСТ 7350.
Поковки ГОСТ
25054.
Трубы ГОСТ 9940,
ГОСТ 9941 (из
12Х18Н10Т)
От -270 до 350 Для сварных узлов арматуры,
работающих в агрессивных средах:
HNO3, щелочей, аммиачной
селитры, пищевых сред, сред
спецтехники, судовой арматуры,
криогенных сред,
сероводородсодержащих сред;
для мембран
Св. 350 до 610 Для сварных узлов арматуры при
отсутствии требования стойкости к
межкристаллитной коррозии

Применение стали 12Х18Н10Т для крепежных деталей арматуры (ГОСТ 33260-2015)

Марка стали,
по ГОСТ 1759.0
Стандарт или
технические
условия на
материал
Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Темпера-
тура
среды, °С
Давление
номи-
нальное Pn,
МПа (кгс/см 2 )
Темпера-
тура
среды, °С
Давление
номи-
нальное Pn,
МПа (кгс/см 2 )
Темпера-
тура
среды, °С
Давление
номи-
нальное Pn,
МПа (кгс/см 2 )
12Х18Н10Т ГОСТ 5632 От -196 до 600 Не
регламен-
тируется
От -196 до 600 Не
регламен-
тируется
От -196 до 600 Не
регламен-
тируется

Применение стали 12Х18Н10Т для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка стали НД на
поставку
Температура
рабочей
среды, °С
Дополнительные
указания по
применению
12Х18Н10Т
ГОСТ 5632
Сортовой
прокат ГОСТ
5949
От -270 до 350 Применяется для работы
в агрессивных средах:
азотной кислоте,
щелочах, аммиачной
селитре, пищевых
средах, средах
спецтехники, судпрома,
криогенной техники и
сероводородсодержащих
средах. Применяется
для сварных узлов
Сортовой
прокат ГОСТ
5949
Св. 350 до 610 Применяется для работы
в средах, не
вызывающих
межкристаллитной
коррозии

Применение стали 12Х18Н10Т для сильфонов (ГОСТ 33260-2015)

Марка стали НД на
поставку
НД на
изготовление
сильфонов
Температура
рабочей
среды, °С
Давление
рабочее Pp,
МПа(кгс/см 2 ),
не более
Дополнительные
указания по
применению
12Х18Н10Т
ГОСТ 5632
Лист ГОСТ
5582.
Лента ГОСТ
4986,
(для стали
1.4541)
ГОСТ 21744,
ГОСТ 22388
От -260 до 550 От 0,6 до
25,0 (от 6
до 250)
Для воды, пара,
инертных газов и для
криогенных температур.
Для сред слабой
агрессивности — до
температуры 350°С.
Для коррозионных сред
— до 150°С
Труба
ГОСТ 10498
От -260 до 465 От 0,15 до
3,10 (от 1,5
до 31,0)

ПРИМЕЧАНИЕ
В таблице указаны предельные величины по температурам и рабочим давлениям. Конкретные сочетания параметров применения (рабочее давление, осевой ход, температура и полный назначенный ресурс) приведены в нормативной документации на сильфоны.

Применение стали 12Х18Н10Т для узла затвора арматуры

Марка стали Температура
рабочей
среды, °С
Твердость Дополнительные
указания по
применению
12Х18Н10Т
ГОСТ 5632
От -100 до 300 155…170 HB Работоспособность узла
затвора обеспечивается при
наличии наплавки или
другого износостойкого
покрытия в ответной детали

Применение стали 12Х18Н10Т для винтовых цилиндрических пружин

Марка стали НД на поставку Температура
применения,
°С
Дополнительные
указания по
применению
12Х18Н10Т
ГОСТ 5632
Проволока От -253 до 400 Предохранительные,
регулирующие клапаны,
маломагнитные пружины

Применение стали 12Х18Н10Т для прокладок

Марка стали Вид полуфабриката Температура
применения,
°С
Дополнительные
указания по
применению
Наименование НД на
поставку
12Х18Н10Т
ГОСТ 5632
Листы толстые
термически
обработанные
ГОСТ 7350 От -253
до 600
Применяется для
работы в коррозионных
средах

Стойкость стали 12Х18Н10Т к сульфидному коррозионному растрескиванию

Метод
формообразования
заготовок
Наименование деталей
Поковки, штамповки,
заготовки из проката
Корпус, крышка, шток,
шпиндель, детали уплотнения
затвора, концевые детали сильфона

Максимально допустимые температура применения стали 12Х18Н10Т в средах, содержащих аммиак

Максимально допустимые температура применения стали 12Х18Н10Т в водородосодержащих средах

Марка стали Температура, °С, при парциальном давлении водорода,
PH2, МПа (кгс/см 2 )
1,5(15) 2,5(25) 5(50) 10(100) 20(200) 30(300) 40(400)
12Х18Н10Т 510 510 510 510 510 510 510

  • Параметры применения сталей, указанные в таблице, относятся также к сварным соединениям.
  • Парциальное давление водорода рассчитывается по формуле:
    PH2 = (C*Pp)/100,
    где C — процентное содержание в системе;
    PH2 — парциальное давление водорода;
    Pp — рабочее давление в системе.

Коэффициент относительной эрозионной стойкости деталей арматуры из стали 12Х18Н10Т

Детали проточной
части арматуры
Материал деталей Коэффициент эрозионной
стойкости относительно
стали 12X18H10T
Максимальный перепад
давления, при котором
отсутствует эрозионный
износ, МПа
Корпус, патрубки,
шток, плунжер (шибер),
седло
12Х18Н10Т 1,0 4,0

  1. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).
  2. Материалы являются эрозионностойкими, если коэффициент относительной эрозионной стойкости Kn не менее 0,5 и твердость материала HRC≥28.

Стойкость стали 12Х18Н10Т против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Стойкие 2 0,75-1,5

Стойкость стали 12Х18Н10Т против ударной эрозии

Балл
стойкости
НВ не
более
Материалы
5 150 Аустенитная хромоникелевая
нержавеющая сталь
марки 12Х18Н10Т

Применение стали 12Х18Н10Т для изготовления основных деталей арматуры атомных станций

Марка стали Вид полуфабриката
или изделия
Максимально
допустимая
температура
применения, °С
12Х18Н10Т
ГОСТ 5632, ГОСТ 24030
Листы, трубы, поковки, сортовой
прокат. Крепеж
600

Характеристики

Плотность ρ при температуре испытаний, 20 °С — 7900 кг/см 3

Коэффициент теплопроводности λ Вт/(м*К) при температуре испытаний, °С

Сталь 20 100 200 300 400 500 600 700 800 900
12Х18Н10Т 15 16 18 19 21 23 25 27 26

Удельное электросопротивление ρ, нОм*м, при температуре испытаний °С —

Сталь 20 100 200 300 400 500 600 700 800 900
12Х18Н10Т 725 792 861 920 976 1028 1075 1115

Удельная теплоемкость c, Дж/(кг*К), при температуре испытаний, °С

20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
462 496 517 538 550 563 575 596

Коэффициент теплопроводности λ, Вт/(м*К), при температуре испытаний, °С

20 100 200 300 400 500 600 700 800 900
15 16 18 19 21 23 25 27 26

Коэффициент линейного расширения α*10 6 , К -1 , при температуре испытаний, °С

20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
16,6 17,0 17,2 17,5 17,9 18,2 18,6 18,9 19,3

Модуль нормальной упругости Е, ГПа, при температуре испытаний °С

Сталь 20 100 200 300 400 500 600 700 800 900
12Х18Н10Т 198 194 189 181 174 166 157 147

Модуль упругости при сдвиге на кручением G, ГПа, при температуре испытаний °С

Сталь 20 100 200 300 400 500 600 700 800 900
12Х18Н10Т 77 74 71 67 63 59 57 54 49

Механические свойства

ГОСТ Состояние поставки Сечение, мм σ0,2, МПа σb, МПа δ5, % ψ%
не менее
ГОСТ 5949-75 Пруток. Закалка с 1020-1100 °С на воздухе, в масле или в воде 60 196 510 40 55
ГОСТ 18907-73 Пруток шлифованный, обработанный на заданную прочность 590-830 20
Пруток нагартованный До 5 930
ГОСТ 7350-77 (образцы поперечные) Лист горячекатаный и холодно-катаный:
закалка с 1000-1080 °С в воде или на воздухе Св.4 236 530 38
ГОСТ 5582-75(образцы поперечные) закалка с 1050-1080 °С в воде или на воздухе До 3,9 205 530 40
нагартованный До 3,9 880-1080 10
ГОСТ 25054-81 Поковка. Закалка с 1050—
1100 °С в воде или на воздухе
До 1000 196 510 35 40
ГОСТ 18143-72 Проволока термообработанная 1,0-6,0 540-880 20
ГОСТ 9940-81 Труба бесшовная горячедеформированная без термообработки 3,5-32 529 40

Механические свойства при повышенных температурах

Примечание. Закалка с 1050—1100 °С на воздухе.

Механические свойства при испытании на длительную прочность (ГОСТ 5949-75)

tисп, °С Предел ползучести, МПа, не менее Скорость ползучести, %/ч
600 74 1/100000
650 29-39

Ударная вязкость KCU

Состояние поставки KCU, Дж/см 2 , при температуре, °С
+20 -40 -75
Полоса 8×40 мм 286 303 319

Примечание. Предел выносливости σ-1 = 279 МПа при n = 10 7 .


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ
КОРРОЗИОННО-СТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ

High-allоу steels аnd соrrosion-рrооf, heat-resisting
and hеаt trеаtеd аllоуs. Grades

Дата введения 1975-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

И.Н.Голиков, д-р техн. наук (директор института), А.П.Гуляев, д-р техн. наук (руководитель работы), А.С.Каплан, канд. техн. наук (руководитель работы), О.И.Путимцева

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27.12.72 N 2340

3. СТАНДАРТ РАЗРАБОТАН с учетом требований международных стандартов ИСО 683-13-85, ИСО 683-15-76, ИСО 683-16-76, ИСО 4955-83

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта, перечисления, приложения

5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-95)

6. ИЗДАНИЕ (ноябрь 1990 года) с Изменениями N 1, 2, 3, 4, 5, утвержденными в августе 1975 года, августе 1979 года, июне 1981 года, октябре 1986 года, июне 1989 года (ИУС 9-75, 10-79, 9-81, 12-86, 10-89), Поправками (ИУС 5-92, 7-93, 11-2001)

ВНЕСЕНЫ поправки, опубликованные в ИУС N 3, 2007 год, ИУС N 1, 2009 год

Поправки внесены изготовителем базы данных

Настоящий стандарт распространяется на деформируемые стали и сплавы на железоникелевой и никелевой основах, предназначенные для работы в коррозионно-активных средах и при высоких температурах.

К высоколегированным сталям условно отнесены сплавы, массовая доля железа в которых более 45%, а суммарная массовая доля легирующих элементов не менее 10%, считая по верхнему пределу, при массовой доле одного из элементов не менее 8% по нижнему пределу.

К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65% при приблизительном отношении никеля к железу 1:1,5).

К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50%).

Стандарт разработан с учетом требований международных стандартов ИСО 683-13, ИСО 683-15, ИСО 683-16, ИСО 4955.

1. КЛАССИФИКАЦИЯ

1.1. В зависимости от основных свойств стали и сплавы подразделяют на группы:

I - коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.;

II - жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии;

III - жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной стойкостью.

1.2. В зависимости от структуры стали подразделяют на классы:

мартенситный - стали с основной структурой мартенсита;

мартенситно-ферритный - стали, содержащие в структуре, кроме мартенсита, не менее 10% феррита;

ферритный - стали, имеющие структуру феррита (без превращений);

аустенито-мартенситный - стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;

аустенито-ферритный - стали, имеющие структуру аустенита и феррита (феррит более 10%);

аустенитный - стали, имеющие структуру аустенита.

Подразделение сталей на классы по структурным признакам является условным и произведено в зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева. Поэтому структурные отклонения причиной забракования стали служить не могут.

1.3. В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:

сплавы на железоникелевой основе;

сплавы на никелевой основе.

2. МАРКИ И ХИМИЧЕСКИЙ СОСТАВ

2.1. Марки и химический состав сталей и сплавов должны соответствовать указанным в табл.1. Состав сталей и сплавов при применении специальных методов выплавки и переплава должен соответствовать нормам табл.1, если иная массовая доля элементов не оговорена в стандартах или технических условиях на металлопродукцию. Наименования специальных методов выплавки и переплава приведены в примечании 7 табл.1.

Читайте также: