Сталь 3 модуль упругости мпа

Обновлено: 16.04.2024

Сталь 3, ст3 или ст3Гсп конструкционная углеродистая сталь обыкновенного качества. Является материалом широкого применения для всех сфер промышленности, популярным, хорошо продающимся. Универсальная сталь для сварных и несварных конструкций, работающих в нормальных условиях. Применяют в несущих фермах, ограждениях или элементах декора. Сталь 3 не подходит для использования при низких температурах и в условиях агрессивной внешней среды.

Расшифровка

В соответствии с ГОСТ 380-2005 полное имя стали 3 ст3Гсп. Марка указывает на химический состав, порядковый номер и степень раскисления.

  • Ст означает, что это марка стали обыкновенного качества. Качество стали определяется по уровню содержания серы и фосфора чем ниже концентрация, тем выше качество. Различают обыкновенные, качественные, высококачественные и особо высококачественные стали. Содержание серы и фосфора в обыкновенных сплавах не превышают 0,06% и 0,07%.
  • Цифра 3 условный номер марки по ГОСТу. ГОСТ 380-2005 регламентирует углеродистые стали обыкновенного качества, номер марки присваивается сплаву согласно его химическому составу.
  • Буква Г указывает на содержание марганца.
  • Сп степень раскисления стали. Раскисление стали, это процесс удаления из нее кислорода, препятствующий окислению и «кипению» выделению газа при затвердевании. Различают спокойные (сп), полуспокойные (пс) и кипящие (кп) стали. Стали сильного раскисления называются спокойными, а слабого кипящими. Чем слабее раскисление, тем выше пористость стали. Сталь ст3Гсп относится к спокойным, у нее есть полуспокойный вариант - сталь ст3пс.

Химический состав

98% состава стали ст3 составляет железо. Содержание углерода в составе ст3 невысоко. Его достаточно, чтобы обеспечить сплаву твердость, в то же время он не снижает вязкость стали и ее пластичность. В составе также можно обнаружить:

  • Кремний. Этот элемент является основным раскислителем сплава. Благодаря ему сталь ст3 приобретает мелкозернистую структуру, а еще он увеличивает прочность, не снижая пластичности.
  • Марганец. Раскислитель, способствующий выводу серы. Благодаря марганцу сталь улучшается качество поверхности, сталь лучше сваривается, куется, становится устойчивой к износу.
  • Сера. Вредная примесь, которая становится причиной повышения красноломкости риска растрескивания при высокотемпературной обработке.
  • Фосфор. Вредная примесь, сильно снижающая температурный диапазон применения сталей. Из-за фосфора при высоких температурах сталь теряет пластичность, а при низких становится склонной к хрупкости.
  • Никель, медь, хром, азот, алюминий. Элементы могут присутствовать в составе стали 3, но не влиять на ее характеристики из-за незначительной концентрации.

Фосфор и сера негативно сказываются на свариваемости из-за них сварные швы становятся пористыми и склонными к трещинам.


Химический состав в % материала Ст3сп

C

Si

Mn

Ni

S

P

Cr

N

Cu

As

0.14 - 0.22

0.15 - 0.3

0.4 - 0.65

до 0.3

до 0.05

до 0.04

до 0.008

до 0.08

Химический состав, % (ГОСТ 380-2005)

Массовая доля химических элементов

Сталь 3

Назначение

Сталь 3 и другие сплавы этого класса превосходят по объему применения все остальные разновидности стали. Ее используют для производства кованых изделий ограждений, ворот, декоративных элементов. В строительстве как материал для несущих, не несущих, сварных и не сварных строительных конструкций. Из нее изготавливают трубы и арматуру, детали механизмов для эксплуатации при положительных температурах. Сталь ст3 применяется в химической и нефтегазовой промышленностях, а также в машиностроении.

Благодаря простому химическому составу, доступности, эксплуатационным характеристикам, физическим свойствам, сталь 3 входит в число самых распространенных материалов в отраслях, которым требуется много стали. Например, в строительстве железных дорог и трубопроводов для транспортировки природного газа или воды.

ГОСТ 380-2005

Свойства стали ст3, требования к химическому составу, методы контроля и данные о международном стандарте качества перечисляются в ГОСТ 380-2005. Данный стандарт регламентирует углеродистую сталь обыкновенного качества. К таковой относятся 7 марок стали, различных по химическому составу и содержанию углерода (ст0 ст6) и их разновидности по степени окисления (сп, пс, кп). Всего насчитывается 20 марок в этом классе. Подробнее о них - в материалах нашего сайта.

Преимущества и недостатки

Главной отличительной особенностью стали ст3 является совокупность положительных характеристик или универсальность. Это значит, что у нее нет какого-то одного ключевого достоинства, она показывает достойные характеристики со всех сторон, что и делает ее первой на рынке. Эта сталь не предназначена для узкоспециализированного применения в особых условиях, но идеально подходит для широкого повседневного применения.

К недостаткам стали нужно отнести невысокие показатели работы при низких температурах.

Достоинства стали ст3Гсп:

  1. гомогенная структура, благодаря которой сталь становится однородной, пластичной и защищенной от неблагоприятных воздействий окружающей среды;
  2. устойчивость к атмосферной коррозии;
  3. высокие показатели упругости и твердости;
  4. нечувствительность к флокенам;
  5. ударная вязкость, позволяющая хорошо переносить динамические нагрузки;
  6. не подвержена отпускной хрупкости;
  7. простой процесс производства, отсутствие дорогостоящих легирующих добавок;
  8. сравнительно низкая стоимость.

Отдельно следует упомянуть, что материал отлично поддается сварке. Ее можно проводить по любой известной технологии без предварительной и последующей обработок.

Характеристики

Ст3 характеризуется как углеродистая конструкционная сталь обыкновенного качества. Сталь не имеет в составе легирующих добавок, защищающих от внешнего воздействия. Для использования в агрессивной химической среде или условиях повышенной влажности необходимо покрывать сталь защитным слоем. Ст3 обладает хорошей свариваемостью, высокими показателями прочности, хорошо противостоит нагрузкам, что и позволяет использовать ее в несущих конструкциях. Цена стали ст3 оптимальна для строительства объектов или прокладки коммуникаций, требующих большого количества металла. Плотность Ст3 - 7850 кг/м3.

Сортамент

  • Швеллеры параллельные (П), с уклоном полок (У), равнополочные гнутые;
  • круглые сечения круг и арматура;
  • трубы ВГП, электросварные (ЭС), бесшовные (БГД);
  • двутавры балочные, широкополочные, колонные, специальные, с уклоном полок;
  • квадрат стальной;
  • уголки равнополочные и неравнополочные;
  • профиль квадратный и прямоугольный;
  • листовая сталь горячекатаная, рифленая, просечно-вытяжная, полосовая.

Виды поставки

  • Горячий листовой прокат, в том числе лента и полоса;
  • поковки;
  • рельсы;
  • трубы;
  • пруток и проволока.

Заменители

Заменитель это сплав, наиболее близкий по эксплуатационным характеристикам к основному. В качестве заменителей для ст3 обычно выступает одна из трех отечественных марок: С245, С285, ВСт3Сп.

Допустимо применение зарубежных аналогов, отличающихся по маркировке, но доступных в любом уголке карты мира. Ими являются:

В США:

В Великобритании:

В Германии:

Во Франции:

В Японии:

В Китае:

В Австрии:

В Венгрии

Сравнение с легированными конструкционными сталями

Сталь ст3 является углеродистой конструкционной сталью обыкновенного качества. Она используется для получения сварных и несварных конструкций, тяжелонагруженных ферм и других несущих элементов. Ст3 устойчива к атмосферной коррозии, но без защитного покрытия будет разрушаться при длительном контакте с влагой или агрессивной химической средой.

Легированная конструкционная сталь защищена от коррозии легирующими элементами, благодаря чему может использоваться без защитного слоя при контакте с влагой и агрессивными средами. Легированная сталь сложнее в производстве, дороже и более склонна к хрупкости. Обработка такой стали может требовать особых условий, в то время как более доступная и простая в производстве ст3 не требует никаких специальных условий обработки.

Сравнение с легированными инструментальными сталями

Легированная инструментальная сталь применяется в производстве инструмента. Легирующие добавки направлены на повышение качеств стали, благодаря им, удается добиться значительного преимущества перед углеродистыми сплавами. К ним относятся:

  • красностойкость;
  • высокая прокаливаемость;
  • стойкость к ударным нагрузкам (особенно важная для ударного инструмента);
  • износоустойчивость.

Сталь ст3 является конструкционной и, как правило, не применяется для изготовления подвижных деталей инструментов.

Все о модули упругости стали

Инженерное проектирование – направление строительства, которое решает сразу несколько задач. Перед возведением любых зданий и сооружений разрабатывается проект. Одной из задач инженерного проектирования является подбор оптимального сечения профиля стальной конструкции. Сделать это можно путем проведения определенных расчетов, благодаря которым удастся подобрать лучшее поперечное сечение и предотвратить разрушение здания, сооружения.

Модуль упругости стали – показатель, который поможет ответить на вопрос, какой профиль нужен для надежной эксплуатации объекта. Кроме того, расчет конструкции с учетом модуля упругости предотвратит преждевременные деформации металлопроката.



Что это такое?

Модуль упругости (модуль Юнга) – показатель, определяющий механическую реакцию материала. При помощи данного параметра удается охарактеризовать поведение образца при растяжении. Если говорить более простым языком, то модуль упругости означает пластичные свойства стали, и чем выше показатель, тем меньше растяжение. В теории модуль Юнга обозначают буквой «Е». Это один из компонентов закона Гука, в котором рассматриваются возможные деформации упругих тел. Посредством данной величины удается связать возникающие в материале напряжения с деформацией, которую он испытывает. Единица измерения модуля упругости – паскали (Па) или мегапаскали (МПа). Однако часто инженеры при проведении расчетов отдают предпочтение кгс/см2. Показатель определяют путем исследований в лабораториях, фиксируя образцы на специальном оборудовании. В основе методики лежит разрыв образцов в форме гантелей на автоматизированных установках.

В ходе эксперимента автоматика отслеживает показатели изменения длины и натяжения заготовки, при которых она разрушается, а затем делит результаты. Полученное число и будет модулем Юнга или модулем упругости. Примечательно, что подобная методика определения показателя используется для определения Е:

  • стали;
  • меди;
  • других упругих образцов.



В хрупких материалах параметр определяют путем сжатия до момента появления трещин. Стоит подробнее остановиться на разборе модуля Юнга с точки зрения физики. В процессе принудительного нагружения, которое приводит к изменению формы материала, внутри него возникают ответные усилия. Силы начинают оказывать сопротивление напряжениям извне и стремятся вернуть форму тела. Если образец совершенно не реагирует на нагрузку (точнее, полностью меняет форму и не восстанавливает ее при снятии усилий), его принято считать пластичным. В качестве примера стоит назвать пластилин, который наглядно отражает теорию на практике. Исследованием упругости материалов занимался ученый Р. Гук, которого интересовало, как будут меняться и удлиняться стержни разных материалов под воздействием гирь. Благодаря ранее проведенной серии опытов удалось доказать, что величины абсолютного удлинения и исходной длины прямо пропорциональны. В то же время абсолютное удлинение обратно пропорционально площади поперечного сечения исследуемого стержня.



Гук вывел целый закон, а также ввел параметр Е для характеристики свойств упругого материала. Таким образом, физический смысл модуля заключается в том, что параметр соответствует напряжению, вызываемому в стержне при растягивании на длину, которая в два раза выше при условии отсутствия видимых разрушений образца.

Посредством модуля Е удается предугадать, как будет вести себя материал при определенных нагружениях. Однако он не дает понимания того, что с ним произойдет при других способах нагружения. Поэтому для проведения эффективных расчетов необходимо введение дополнительных параметров.

  • Жесткость. Показатель демонстрирует степень пластичности узла исследуемого образца. Единица измерения параметра – кгс.
  • Относительное удлинение в продольном направлении. При расчете используются два показателя: величина абсолютного удлинения и общая длина образца. Показатель не имеет единицы измерения, однако для упрощенного понимания его умножают на 100%.
  • Относительное удлинение в поперечном направлении. Высчитывается таким же образом, как и предыдущий параметр, только вместо длины используют диаметр стержня-образца. Как показали испытания, поперечное удлинение обычно меньше продольного.
  • Коэффициент Пуассона. Представляет собой соотношение двух последних показателей. Параметр делает возможным описание того, как материал будет менять свою форму, опираясь на величину нагрузки и место ее приложения.
  • Модуль сдвига. С его помощью удается описать поведение материала с упругими свойствами при воздействии сил по касательной. Другими словами, помогает оценить работу конструкции при воздействии на нее ветра под углом в 90 градусов.

Дополнительно стоит выделить модуль, который описывает изменения объема образца при неравномерном приложении нагрузки.



Модуль Юнга E непосредственно связан с модулем сдвига и рядом других параметров, характеризующих поведение упругих и неупругих материалов. Возможные варианты следующие.

  • Модуль Е. Определяется в момент растяжения образца и называется стандартным модулем Юнга нормальной упругости.
  • Модуль G. Представляет модуль касательной упругости и определяется при испытаниях образца на сдвиг.
  • Модуль К. Показатель объемной упругости, который характеризуют дополнительные параметры в виде гидростатического давления, относительного уменьшения объема.

Также упругость вычисляют при кручении и других деформациях. Все перечисленные модули имеют размерность напряжения. Первый при этом определяет жесткость материала и не зависит от знака деформации. Физический смысл оставшихся параметров заключается в том, что они описывают, как будет сопротивляться материал упругой деформации. Если чуть проще, то при повышении модуля упругости деформации при заданной нагрузке будут значительно меньшими.

Размеры показателей определяются строением металла. Например, механизм, которого придерживается упругая деформация, кроется в обратимых смещениях атома внутри решетки. Мелкие частицы под воздействием усилий уходят из положения равновесия в кристаллической стальной решетке. По мере приложения нагрузки дистанция между атомами постепенно возрастает, однако этих усилий не хватает, чтобы окончательно разорвать связь. Поэтому при небольших нагружениях, не превышающих прочность материала, атомы возвращаются в исходное положение.

Модули упругости G и K растут вместе с увеличением сил, которые возникают в связах между атомами и препятствуют смещению последних из положения равновесия. Поэтому не стоит останавливаться на изучении размеров зерна или дисперсности материала и думать, что от них зависят важные параметры.



Модуль упругости разных марок

Сталь – прочный материал с высоким модулем Юнга. Наибольшей устойчивостью к воздействиям обладают стальные сплавы с измененной кристаллической решеткой, характеризуемые достаточно большим пределом текучести, который определили опытным путем.

Итак, характеристики упругого поведения стальных элементов, как уже было отмечено, зависят от сложности связей в кристаллической решетке, которая, в свою очередь, формируется исходя из типа материала – легирующей стали. Углерод делает решетку более твердой, однако при чрезмерных концентрациях понижает пластичные и пружинистые свойства металла, что также отражается на модуле упругости. Изменить ситуацию можно с помощью легирующих добавок:

  • кремния;
  • никеля;
  • вольфрама;
  • марганца.

Добавки повышают упругие свойства материала, однако добиться желаемого результата удается не всегда. В этом случае существует еще один вариант – термообработка. Под воздействием температуры сталь меняет первоначальные свойства: слабые участки исключаются, а фрагменты приобретают единый показатель текучести.



Путем нехитрых экспериментов металлургам удалось выпустить свыше нескольких сотен разных по характеристикам марок сталей. В таблице показано, чему равен модуль упругости E у популярных марок.

Модуль упругости разных материалов, включая сталь

Модуль упругости

Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

Таблица модулей упругости

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Модуль упругости разных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

МатериалПоказатели модуля упругости (Е, G; Н*м2, кг/см^2, МПа)
Сталь20,6*10^10 ньютон*метр^2
Сталь углеродистаяЕ=(2,0…2,1)*10^5 МПа; G=(8,0…8,1)*10^4 МПа
Сталь 45Е=2,0*10^5 МПа; G=0,8*10^5 МПа
Сталь 3Е=2,1*10^5 МПа; G=0,8*10^5 МПа
Сталь легированнаяЕ=(2,1…2,2)*10^5 МПа; G=(8,0…8,1)*10^4 МПа

Каков модуль упругости стали

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Расшифровка марки стали Ст3сп и ее использование

Сталь Ст3сп относится к наиболее востребованным отечественным маркам. Она считается универсальной и подходит для самых разных задач – от болтов и деталей скамеек до нагруженных балок перекрытий, сложных сварных ферм. В статье рассмотрим характеристики данного сплава, сортамент, особенности применения и сварки.



Состав и расшифровка

Ст3сп – это обозначение марки стали в соответствии с ГОСТом, которое указывает на тип и основные характеристики материала. Расшифровать его следует таким образом.

  • Ст – с этих букв начинается обозначение всех нелегированных углеродистых сталей обыкновенного качества, и по ним специалист понимает, что материал относится именно к данному классу. Сами буквы – сокращение от слова «сталь».
  • После букв «Ст» в обозначении сталей данного типа указывается условный номер марки (от 0 до 6) в зависимости от содержания углерода. Цифра 3 соответствует содержанию элемента в диапазоне от 0,14 до 0,22% (это низкоуглеродная сталь).
  • Сокращение «сп» показывает, что по степени раскисления данная сталь – спокойная. Это значит, что из ее расплава химическим путем было удалено максимальное количество кислорода, и при затвердевании такой расплав не «кипит» (в нем не образуются пузырьки газа) – он застывает спокойно.
  • Отсутствие индекса после букв «сп» обозначает принадлежность 1-ой категории проката. Остальные категории обязательно обозначаются соответствующей цифрой. Например, Ст3сп3 – сталь марки Ст3сп 3-ей категории, Ст3сп5 – прокат 5-ой категории. Всего марка Ст3сп делится на 7 категорий, каждая из которых имеет свои нормируемые стандартами показатели.

Таким образом, Ст3сп – нелегированная конструкционная углеродистая сталь обыкновенного качества, спокойная.



Согласно ГОСТ 380-2005, она должна иметь строго определенный химический состав:

  • железо (Fe) – около 97%;
  • углерод (C) – 0,14-0,22%;
  • марганец (Mn) – 0,40-0,65%;
  • кремний (Si) – 0,12-0,30%;
  • никель (Ni) – до 0,3-0,40%;
  • хром (Cr) – до 0,30- 0,35%;
  • медь (Cu) – до 0,30 – 0,35%;
  • сера (S) – до 0,05%;
  • фосфор (P) – до 0,04%;
  • мышьяк (As) – 0,08%;
  • азот (N) – до 0,008%.



Характеристики и свойства

Ст3сп – одна из самых распространенных марок стали. Это обусловлено тем, что, как и все низкоуглеродные нелегированные стали, она обладает великолепной свариваемостью, легко обрабатывается. И при этом для своей группы у нее хорошие показатели прочности и пластичности, ударной вязкости, которые достигаются как за счет доли углерода (0,14-0,22%) и других добавок, так и обусловлены однородной структурой спокойного сплава.

Спокойная сталь отличается более высокой прочностью, пластичностью, ударной вязкостью, устойчивостью к коррозии, чем другие стали той же группы «Ст3», но с меньшей степенью раскисления (полуспокойная – Ст3пс, кипящая – Ст3кп). Поэтому Ст3сп применяют для несущих и ответственных деталей и конструкций, тогда как Ст3кп – для второстепенных. Перечислим основные свойства, которыми сталь Ст3сп должна обладать по ГОСТу.

Физические

Перечислим основные физические и механические свойства:



Технологические

Сталь отличается и своими технологическими свойства:

  • отличная свариваемость – доступны все виды сварки без ограничений;
  • нечувствительна к образованию флокенов (опасных внутренних трещин);
  • не подвержена отпускной хрупкости;
  • имеет хорошую для своей группы коррозионную стойкость;
  • магнитна;
  • коэффициенты обрабатываемости резанием твердым сплавом – 1,8, быстрорежущей сталью – 1,6;
  • ковка при температуре от 1300 до 750 градусов.

Сталь Ст3сп выплавляется мартеновским или кислородно-конвертерным способом. Расплав разливается в специальные емкости, в которых он охлаждается и принимает вид больших слитков (массой до 60 тонн). Эти слитки подаются на прокатные станы, где под очень сильным давлением вращающихся валов их прессуют, обжимают и придают форму заготовок и изделий различных сечений и размеров – то есть, получают металлопрокат.

В виде металлопроката сталь Ст3сп и поставляется потребителю. Выпускаются все основные виды сортового (простых сечений) и фасонного (более сложных сечений) проката.

Самые востребованные изделия представлены следующим сортаментом.

Для всех видов металлопроката важной характеристикой является масса: она необходима, чтобы правильно рассчитать нагрузки на конструкции, вес и количество нужного материала. Для стали Ст3сп в общем случае номинальную массу вычисляют, принимая плотность за 7,85 г/см3 (соответственно вес 1 м кубического составляет 7850 кг). Номинальная масса для изделий стандартных типоразмеров регламентирована ГОСТ, исходя из этих же цифр. Посмотреть ее можно в соответствующих стандартах и в справочных таблицах.

Например, из них мы узнаем, что горячекатаный лист из стали Ст3сп размерами 3х1250х2500 мм весит 73,59 кг, лист 10х1500х6000 мм – 706,5 кг, а горячекатаный уголок 35х35х3 в соответствии с ГОСТ 8509-93 должен иметь массу 1,6 кг, 75х75х5 – 5,8 кг.



Аналоги

Для ряда задач сталь можно заменить близкими по характеристикам марками. Среди отечественных (по ГОСТу) ближайшими аналогами являются: Ст3пс, ВСт3сп, С245, С285.

Сталь с похожими качествами выпускается и в других странах:

  • США (стандарт AISI, ASTM) – A238/C;
  • Общий стандарт ЕС- S235JR (1.0038);
  • Германия (стандарт DIN) – RSt37-2, USt37-2;
  • Великобритания – S235JR, S235JRG2;
  • Франция – E24-2, E24-2NE, E24-4, S235J0, S235J2G3;
  • Финляндия – FORM300H, RACOLD03F;
  • Япония – SS330, SS34, SS400;
  • Китай – марки серии Q235 (Q235A, Q235A-B, Q235B и другие).



Применение

Благодаря сочетанию универсальных технологических характеристик и доступной цены, сталь Ст3сп находит применение во всех сферах жизни и отраслях производства. Наиболее востребован прокат 5-й категории (Ст3сп5). Он может применяться в стандартных условиях как в помещении, так и на открытом воздухе во всех климатических зонах, за исключением тех северных регионов, где температура опускается ниже минус 40 градусов (при условии применения на открытом воздухе). Для изделий больших сечений (от 25 мм) и ответственных конструкций требования могут быть более строгими: температура эксплуатации до минус 20 градусов. Верхний интервал температур, которые должен выдерживать материал – плюс 425 градусов. Прокат 2, 3 и 6 категорий предназначен для эксплуатации только при положительных температурах. Но в любом случае диапазон применения по климатическим условиям довольно широк, и в указанных условиях сталь Ст3сп позволяет создавать надежные и долговечные сварные конструкции. Причем сварка электродуговым способ возможна даже при температуре окружающей среды до минус 30-40 градусов. Сварные и несварные элементы из сплава Ст3сп могут выполнять роль несущих, выдерживая существенные нагрузки.

Сталь с такими характеристиками используется в первую очередь в строительстве различных объектов гражданского и промышленного назначения. Из нее создают несущие балки для перекрытий, лестниц, опорные плиты, колонны, ригели, стойки, площадки, ограждения, жесткие фермы (например, решетчатые стальные опоры линий электропередачи, башни и мачты сотовой связи, некоторые части мостов и буровых вышек) и многие другие элементы. Востребованные виды арматуры для железобетонных конструкций также создаются из сплава Ст3сп. В частности, материал позволяет выпускать сварную арматуру (тип Ат400С), которую можно стыковать сваркой для создания армирующих стальных каркасов, сеток нужных размеров. Очень широкое применение находят трубы из данной стали. Из Ст3сп делают как трубы, которые выступают основой каркасов различных сооружений, ферм, так и специальные трубы для водопроводов и газопроводов, систем отопления. Последние очень широко применяются в коммуникациях ЖКХ. В быту и в частном строительстве прокат из сплава Ст3сп также очень популярен, поскольку это недорогой и надежный материал, сварку в простых случаях может выполнить даже неспециалист. Поэтому для изготовления различных простых металлокаркасов своими руками (теплицы, беседки и подобное) часто используются уголки и другие элементы именно из этой стали.

А также уголки из Ст3сп широко используются в отделочных работах – например, для оформления дверных проемов.

Модуль упругости стали

При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции. В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры. Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.

Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке. Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.

Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

  • Упругая — последствия исчезают по окончании действия внешних сил;
  • Пластическая — необратимое изменение формы.

Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.

Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

Сегодня определение объединяет ряд свойств физических тел:

Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.


Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

  • Соотношение жесткости и пластичности;
  • Ударная вязкость;
  • Предел текучести;
  • Относительное сжатие и растяжение (продольное и поперечное);
  • Пределы прочности при ударных, динамических и др. нагрузках.

Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

Модуль упругости разных марок стали

Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены. В противном случае изделие может надломиться, лопнуть или растрескаться. Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.


Таблица модулей прочности марок стали

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвигаG, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65—72
Дюралюминий 69—76
Железо, содержание углерода менее 0,08 % 165—186
Латунь 88—99
Медь (Cu, 99 %) 107—110
Никель 200—210
Олово 32—38
Свинец 14—19
Серебро 78—84
Серый чугун 110—130
Сталь 190—210
Стекло 65—72
Титан 112—120
Хром 300—310

Упругость сталей

Наименование стали Значение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая 165—180
Сталь 3 179—189
Сталь 30 194—205
Сталь 45 211—223
Сталь 40Х 240—260
65Г 235—275
Х12МФ 310—320
9ХС, ХВГ 275—302
4Х5МФС 305—315
3Х3М3Ф 285—310
Р6М5 305—320
Р9 320—330
Р18 325—340
Р12МФ5 297—310
У7, У8 302—315
У9, У10 320—330
У11 325—340
У12, У13 310—315

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Читайте также: