Сталь 314 аналог российский

Обновлено: 18.04.2024

Ниже перечислены страны и действующие в них стандарты на металлы:

  • Австралия - AS (Australian Standart)
  • Австрия - ONORM
  • Бельгия - NBN
  • Болгария - BDS
  • Венгрия - MSZ
  • Великобритания - B.S. (British Standart)
  • Германия - DIN (Deutsche Normen), WN
  • Европейский союз - EN (European Norm)
  • Италия - UNI (Italian National Standards)
  • Испания - UNE (Espaniol National Standards)
  • Канада - CSA (Canadian Standards Association)
  • Китай - GB
  • Норвегия - NS (Standards Norway)
  • Польша - PN (Poland Norm)
  • Румыния - STAS
  • Россия - ГОСТ (Государственный стандарт), ТУ (Технические условия)
  • США - AISI (American Iron and Steel Institute), ACI (American Concrete Institute), ANSI (American National Standards Institute), AMS (American Mathematical Society: Mathematics Research and Scholarship), API (American Petroleum Institute), ASME (American Society of Mechanical Engineers), ASTM (American Society of Testing and Materials), AWS (American Welding Society), SAE (Society of Automotive Engineers), UNS
  • Финляндия - SFS (Finnish Standards Association)
  • Франция - AFNOR NF (association francaise de normalisation)
  • Чехия - CSN (Czech State Norm)
  • Швеция - SS (Swedish Standart)
  • Швейцария - SNV (Schweizerische Normen-Vereinigung)
  • Югославия - JUS
  • Япония - JIS (Japanese Industrial Standart)
  • Интернациональный стандарт - ISO (International Organization for Standardization)

В США используется несколько систем обозначения металлов и сплавов, связанных с существующими организациями по стандартизации. Наиболее известными организациями являются :

  • AISI - Американский Институт Чугуна и Стали
  • ACI - Американский Институт Литья
  • ANSI - Американский Национальный Институт Стандартизации
  • AMS - Спецификация Аэрокосмических Материалов
  • ASME - Американское Общество Инженеров - Механиков
  • ASTM - Американское Общество Испытания Материалов
  • AWS - Американское Общество Сварщиков
  • SAE - Общество Инженеров - Автомобилистов

Ниже приведены наиболее популярные системы обозначений стали, используемые в США.

Система обозначений AISI:

Углеродистые и легированные стали:
В системе обозначений AISI углеродистые и легированные стали, как правило, обозначаются с помощью четырех цифр. Первые две цифры обозначают номер группы сталей, а две последние - среднее содержание углерода в стали, умноженное на 100. Так сталь 1045 относится к группе 10ХХ качественных конструкцион-ных сталей (несульфинированных с содержанием Mn менее 1%) и содержит углерода около 0.45%.
Сталь 4032 является легированной (группа 40ХХ), со средним содержанием С - 0.32% и Mo - 0.2 или 0.25% (реальное содержание C в стали 4032 - 0.30 - 0.35%, Mo - 0.2 - 0.3%).
Сталь 8625 также является легированной (группа 86ХХ) со средним содержанием: С - 0.25% (реальные значения 0.23 - 0.28%), Ni - 0.55% (0.40 - 0.70%), Cr - 0.50% (0.4 - 0.6%), Mo - 0.20% (0.15 - 0.25%).
Помимо четырех цифр в наименованиях сталей могут встречаться также и буквы. При этом буквы B и L, означающие, что сталь легирована соответственно бором (0.0005 - 0.03%) или свинцом (0.15 - 0.35%), ставятся между второй и третьей цифрой ее обозначения, например: 51B60 или 15L48.
Буквы M и E ставят впереди наименования стали, это означает, что сталь предназначена для производства неответственного сортового проката (буква M) или выплавлена в электропечи (буква E). В конце наименования стали может присутствовать буква H, означающая, что характерным признаком данной стали является прокаливаемость.

Нержавеющие стали:
Обозначения стандартных нержавеющих сталей по AISI включает в себя три цифры и следующие за ними в ряде случаев одну, две или более буквы. Первая цифра обозначения определяет класс стали. Так обозначения аустенитных нержавеющих сталей начинаются с цифр 2ХХ и 3ХХ, в то время как ферритные и мартенсистные стали определяются в классе 4ХХ. При этом последние две цифры, в отличие от углеродистых и легированных сталей, никак не связаны с химическим составом, а просто определяют порядковый номер стали в группе.

Обозначения в углеродистых сталях:
10ХХ - Нересульфинированные стали, Mn : менее 1%
11ХХ - Ресульфинированные стали
12ХХ - Рефосфорированные и ресульфинированные стали
15ХХ - Нересульфинированные стали, Mn : более 1%

Обозначения в легированных сталях:
13ХХ - Mn : 1.75%
40ХХ - Mo : 0.2, 0.25% или Mo : 0.25% и S : 0.042%
41ХХ - Cr : 0.5, 0.8 или 0.95% и Mo : 0.12, 0.20 или 0.30%
43ХХ - Ni : 1.83%, Cr : 0.50 - 0.80%, Mo : 0.25%
46ХХ - Ni : 0.85 или 1.83% и Mo : 0.2 или 0.25%
47ХХ - Ni : 1.05%, Cr : 0.45% и Mo : 0.2 или 0.35%
48ХХ - Ni : 3.5% и Mo : 0.25%
51ХХ - Cr : 0.8, 0.88, 0.93, 0.95 или 1.0%
51ХХХ - Cr : 1.03%
52ХХХ - Cr : 1.45%
61ХХ - Cr : 0.6 или 0.95% и V : 0.13% min или 0.15% min
86ХХ - Ni : 0.55%, Cr : 0.50% и Mo : 0.20%
87ХХ - Ni : 0.55%, Cr : 0.50% и Mo : 0.25%
88XX - Ni : 0.55%, Cr : 0.50% и Mo : 0.35%
92XX - Si : 2.0% или Si : 1.40% и Cr : 0.70%
50BXX - Cr : 0.28 или 0.50%
51BXX - Cr : 0.80%
81BXX - Ni : 0.30%, Cr : 0.45% и Mo : 0.12%
94BXX - Ni : 0.45%, Cr : 0.40% и Mo : 0.12%

Дополнительные буквы и цифры, следующие за цифрами, используемые для обозначения нержавеющих сталей по AISI означают:
xxxL - Низкое содержание углерода < 0.03%
xxxS - Нормальное содержание углерода < 0.08%
xxxN - Добавлен азот
xxxLN - Низкое содержание углерода < 0.03% + добавлен азот
xxxF - Повышенное содержание серы и фосфора
xxxSe - Добавлен селен
xxxB - Добавлен кремний
xxxH - Расширенный интервал содержания углерода
xxxCu - Добавлена медь

Примеры :
Сталь 304 относится к аустенитному классу, содержание углерода в ней < 0.08%. В то же время в стали 304 L углерода всего < 0.03%, а в стали 304 H углерод определяется интервалом 0.04 - 0.10%. Указанная сталь, кроме того, может быть легирована азотом (тогда ее наименование будет 304 N) или медью (304 Cu).
В стали 410, относящейся к мартенсито - ферритному классу, содержание углерода 410 S - углерода < 0.08%. В стали 430 F в отличие от стали 430 повышенное содержание серы и фосфора, а в сталь 430 F Se добавлен еще и селен.

Система обозначений ASTM:

Обозначение сталей в системе ASTM включает в себя :

  • букву A, означающую, что речь идет о черном металле;
  • порядковый номер нормативного документа ASTM (стандарта);
  • собственно обозначение марки стали.

Обычно в стандартах ASTM принята американская система обозначений физических величин. В том же случае, если в стандарте приводится метрическая система обозначений, после его номера ставится буква М. Стандарты ASTM, как правило, определяют не только химический состав стали, но и полный перечень требований к металлопродукции. Для обозначения собственно марок сталей и определения их химического состава может быть использована как собственная система обозначений ASTM (в этом случае химический состав сталей и их маркировка определяется непосредственно в стандарте), так и другие системы обозначений, например AISI - для прутков, проволоки, заготовки и др., или ACI - для отливок из нержавеющих сталей.

Примеры :
A 516 / A 516M - 90 Grade 70 Здесь A определяет то, что речь идет о черном металле; 516 - это порядковый номер стандарта ASTM (516M - это тот же стандарт, но в метрической системе обозначений); 90 - год издания стандарта; Grade 70 - марка стали. В данном случае используется собственная система обозначений сталей ASTM, здесь 70 определяет минимальный предел прочности стали при испытаниях на растяжение (в ksi, что составляет около 485 МПа).
A 276 Type 304 L. В данном стандарте используется обозначение марки стали в системе AISI - 304 L.
A 351 Grade CF8M. Здесь используется система обозначений ACI: первая буква C означает, что сталь относится к группе коррозионно-стойких, 8 - определяет среднее содержание в ней углерода (0.08%), M - означает, что в сталь добавлен молибден.
A 335 / A 335M grade P22; A 213 / A 213M grade T22; A 336 / A 336M class F22. В данных примерах используется собственная маркировка сталей ASTM. Первые буквы означают, что сталь предназначена для производства труб (P или T) или поковок (F).
A 269 grade TP304. Здесь используется комбинированная система обозначений. Буквы TP определяют, что сталь предназначена для производства труб, 304 - это обозначение стали в системе AISI.

Универсальная система обозначений UNS:

UNS - это универсальная система обозначений металлов и сплавов. Она была создана в 1975 с целью унификации различных систем обозначений, используемых в США. Согласно UNS обозначения сталей состоят из буквы, определяющей группу сталей и пяти цифр.
В системе UNS проще всего классифицировать стали AISI. Для конструкционных и легированных сталей, входящих в группу G, первые четыре цифры наименования - это обозначение стали в системе AISI, последняя цифра заменяет буквы, которые встречаются в обозначениях по AISI. Так буквам B и L, означающим, что сталь легирована бором или свинцом, соответствуют цифры 1 и 4, а букве E, означающей, что сталь выплавлена в электропечи, - цифра 6.
Наименования нержавеющих AISI-сталей начинаются с буквы S и включают в себя обозначение стали по AISI (первые три цифры) и две дополнительные цифры, соответствующие дополнительным буквам в обозначении по AISI.

Обозначения сталей в системе UNS:
Dxxxxx - Стали с предписанными механическими свойствами
Gxxxxx - Углеродистые и легированные стали AISI (за исключением инструментальных)
Hxxxxx - То же, но для прокаливаемых сталей
Jxxxxx - Литейные стали
Kxxxxx - Стали, не включенные в систему AISI
Sxxxxx - Жаростойкие и коррозионностойкие нержавеющие стали
Txxxxx - Инструментальные стали
Wxxxxx - Сварочные материалы

Дополнительные буквы и цифры, следующие за цифрами, используемые для обозначения нержавеющих сталей по UNS означают:
хxx01 - Низкое содержание углерода < 0.03%
хxx08 - Нормальное содержание углерода < 0.08%
хxx09 - Расширенный интервал содержания углерода
хxx15 - Добавлен кремний
хxx20 - Повышенное содержание серы и фосфора
хxx23 - Добавлен селен
хxx30 - Добавлена медь
хxx51 - Добавлен азот
хxx53 - Низкое содержание углерода < 0.03% + добавлен азот

Примеры :
Углеродистая сталь 1045 имеет обозначение в системе UNS G 10450, а легированная сталь 4032 - G 40320.
Сталь 51B60, легированная бором, называется в системе UNS G 51601, а сталь 15L48, легированная свинцом, - G 15484.
Нержавеющие стали обозначаются: 304 - S 30400, 304 L - S 30401, 304 H - S 30409, а 304 Cu - S 30430.

Марка стали AISI-314

Относится к жаростойким жаропрочным сталям. Рекомендованная температура использования – до 800°С.

В температурном диапазоне 600-800°С сталь из-за образования окалины склонна к охрупчиванию. Интенсивное образование окалины начинается при t° 1050°С.

Высокое содержание никеля и хрома обеспечивает отличное сопротивление окислению и высокую прочность при высокой температуре. Эта марка нержавеющей стали очень пластична и обладает хорошей свариваемостью.

Применение AISI 314:

Производство деталей установок для конверсии метана, пиролиза в нефтяной и химической промышленности, камер сгорания и газопроводов.

Также AISI 314 может использоваться в нагревательных элементах сопротивления.

Данная марка стали широко применяется во всех окружающих высокотемпературных средах, где необходимы коррозионная стойкость, жаропрочность и отличное сопротивление ползучести.

Марка. Аналоги Mn Si C Cr S P Ni V Mo N Ti Fe W Cu
314 < 2,01,5 — 3,0 < 0,2523,0 — 26,0 < 0,030 < 0,04519,0 — 22,0 Основа
20х25н20с2 < 1,52,0- 3,0 < 0,2024,0 — 27,0 < 0,020 < 0,03518,0 — 21,0 < 0,2 < 0,3 < 0,2Основа < 0,2 < 0,3
1.4841 < 2,01,5 — 2,5 < 0,2024,0 — 26,0 < 0,015 < 0,04519,0 — 21,0 < 0,11Основа

Максимальная рекомендованная температура обслуживания:

Температура образования окалины:

прерывистые воздействия 1035°C;
непрерывное воздействие 1150°C.

Характеристики при высоких температурах.

Предел прочности при повышенной температуре.

Предел прочности (при растяжении), Rp m N/mm2 390 329 280 230 190 140
Температура, °C 600 650 700 750 800 850

Механические характеристики стали AISI 314 при комнатной температуре.

Свойства Минимум Типичный
Предел упругости Rp 0,2, (0.2 %),N/mm2(текучесть) 205 280
Предел прочности Rp m, N/mm2(при растяжении) 515 580
относительное удлинение A80 до разрыва в % 40 60
Усталостная прочность, N/mm2 260
Твердость по Бринеллю — НВ 156

Минимальная величина предела упругости при высоких температурах (деформация за установленное время 1% при заданной температуре).

Температура,°C Время 800 700 650 600 550
Rp1,0 1.0% пластичная деформация (текучесть), N/mm2 10 000 ч 10 40 70 100 180
Rp1,0 1.0% пластичная деформация (текучесть), N/mm2 100 000 ч 5 25 50 80 120

Предел упругости до разрыва (текучести).

Температура,°C Время 800 700 650 600 500
Stress MPa 1 000 h 30 70 140 180 270
Stress MPa 10 000 h 10 50 90 130 240
Stress MPa 100 000 h 5 15 50 90 200

Тепловая обработка.

Снятие напряжения (отпуск) при t° 1050 – 1150°C с быстрым охлаждением водой гарантирует полное растворение углерода. Отжиг при 1010 – 1120°C с резким охлаждением водой или холодным воздухом обеспечивает максимальную технологичность стали.

Наилучшее сопротивление коррозии достигается при отжиге 1070°C и резком охлаждении. Температура в начале процесса ковки: 1150 – 1200°C, в конце процесса – 950°C.

Горячая обработка сопровождается отжигом. Время для достижения однородности прогрева нержавеющих сталей дольше, чем углеродистых примерно в 12 раз.

Холодная обработка.

Данная сталь является одновременно прочной и пластичной. Холодная обработка включают формовку растяжением, изгиб, ротационную и глубокую вытяжку. При холодной обработке применяют те же инструменты и технологии, как и для углеродистой стали.

Однако применяемые механические усилия возрастают в 1,5-2 раза. Связано это с упрочнением аустенитной стали при формовке.

Формовка с растяжением.

Технология обработки предусматривает, что заготовка подвергается во время вытяжки «торможению». Стенки заготовки истончаются, поэтому при формовке во избежание разрывов используются термически упрочняемые стали.

Ротационная и глубокая вытяжка.

При настоящей глубокой вытяжке на прессе заготовку не растягивают, что на практике случается нечасто, материал свободно проходит между валками. К примеру, при вытяжке хозяйственной посуды формовка всегда происходит с растяжением. При этом сплав для глубокой вытяжки, должен отличаться минимальной степенью упрочнения, то есть быть максимально стабильным, а показатель Md30(N) должен быть «на минусе».

Для производства кухонных нержавеющих приборов обычно используется т.н. суб-анализ нержавеющего проката, как и в производстве кастрюль, путем глубокой вытяжки.

Ротационной вытяжкой на токарно-давильном станке является формовка с точением. Стандартными объектами использования являются, к примеру, ведра или аналогичные симметричные конусные изделия, которые обычно не полируют.

Сварка

Сталь AISI 314 легко поддается сварке. Как правило, после сварки нержавейки тепловая обработка не требуется. Но, при риске межкристаллитной коррозии осуществляют дополнительный отжиг при t° 1050-1150°С.

Сварочный шов должен быть очищен химическим и механическим способом от окалины и после пассивирован при помощи травильной пасты.

AISI 201, AISI 304, AISI 321, AISI 316, AISI 403. Что выбрать?

Виды нержавеющих стали и их сравнение 1

Сетку можно изготовить из разных марок нержавеющей стали, различных по стоимости и назначению: AISI 201, AISI 304, AISI 321, AISI 316, AISI 403

Но как понять, подходит ли тот или иной тип стали для Ваших нужд? Как выбрать, чтобы не переплачивать за ненужную перестраховку? Как найти баланс цены и необходимой защиты от коррозии? Почему мы стали предлагать клиентам сетку из стали AISI 201? Попробуем разобраться…

Виды нержавеющих стали

Что такое нержавеющая сталь?

Нержавеющая сталь — это сплав железа, углерода и хрома, где максимальное содержание углерода – 1%, а минимальное содержание хрома – 8%. Такой состав необходим для формирования на поверхности тонкого самовосстанавливающегося слоя нерастворимых окислов, который противостоит коррозии.

Нержавеющая сталь делится по строению на три основных класса 3 :

Аустенитный класс

Составляет около 70% общей продукции нержавеющей стали. Содержит достаточное количество никеля и/или магния для поддержания аустенитной структуры, которая даёт высокую сопротивляемость коррозии. Ее легко отличить от другой стали - аустенитная сталь практически не магнитится магнитом. (AISI 201, 304, 321, 316 - являются аустенитными).

Ферритный класс

Содержит хром для достижения устойчивости к коррозии, но не имеет ни никеля, ни другого стабилизатора (или же в недостаточных количествах), которые бы поддерживали аустенитную структуру. Этот класс стойкий к коррозии, но менее долговечный, чем аустенитный класс. (AISI 430 принадлежит ферритному классу)

Мартенситный класс

Содержит большой процент углерода, что делает сталь очень твёрдой и прочной. Но эта сталь менее стойкая к коррозии, чем другие классы, в основном из-за низкой концентрации хрома.

Содержание основных элементов в зависимости от класса нержавеющей стали, % от массы 4

Углерод – повышает механические качества, но понижает устойчивость против коррозии при С > 0,15%;
Хром – элемент наиболее ответственный за сопротивление коррозии;
Никель – стабилизатор, поддерживающий аустенитную структуру при стандартных температурах. Самый дорогостоящий элемент входящий в состав стали и существенно удорожающий материал.

Классы нержавеющей стали разделяются на марки, различающиеся по составу и, следовательно, по своим свойствам:

Приблизительный состав марок нержавеющей стали для сеток, %

Марка Углерод Хром Никель Марганец Азот Титан Молибден Кремний Железо
201 0,10 18 4,5 7,0 0,3 -- -- 1,2 остальное
304 0,06 18 10 1,5 -- -- -- 1,2 остальное
321 0,06 18 10 1,5 -- 0,5 -- 1,2 остальное
316 0,03 18 10 1,5 -- -- 2,5 1,2 остальное
430 0,1 18 -- 1,0 -- -- -- 1,2 остальное

Марганец – стабилизатор аустенита, который может заменять никель при определённых соотношениях;
Азот – значительно повышает сопротивление коррозии в аустенитных сталях;
Титан – стабилизатор, сохраняющий сталь при температурах более 5000С и агрессивных средах;
Молибден – значительно повышает сопротивление коррозии в особо агрессивных средах.

Существует множество марок нержавеющей стали, и все они были созданы для применения в определенных условиях, в том числе в критических температурах, в растворах концентрированных кислот, щелочей и т.п., находящихся под электрическим и механическим напряжением и т.д.

В каких условиях эксплуатируется изделие?

Окружающая среда, в которой эксплуатируется изделие, может существенно различаться по степени своей «агрессивности» и должна быть четко определена. Для целей настоящей статьи ее можно условно разделить на 4 группы:
- «комнатные условия» - слабо агрессивная атмосферная среда характерная для помещений пригодных для постоянного проживания человека (комнатная температура, влажность до 60%, содержание вредных веществ не превышает установленные нормы), постоянный контакт с водой отсутствует;
- «обычные атмосферные условия» - средне агрессивная атмосферная среда - с периодическим контактом с трубопроводной водой и атмосферными осадками;
- «агрессивная бытовая среда» – при постоянном контакте с трубопроводной водой и атмосферными осадками, почвой, паром, продуктами питания (органические кислоты и щелочи), ПАВ, бытовой химией (кроме постоянного контакта с хлором) т.п., в том числе в печах, духовых шкафах, сушилках и т.п.
- «агрессивная промышленная среда» - при контакте с хлорсодержащими или сернокислыми веществами, в т.ч. бассейнах, в морской воде и т.п. и температурой среды до +8000С.

Что такое коррозия?

Питтинговая (язвенная, точечная) коррозия

В общем, коррозия — это потеря сталью своих начальных свойств и внешнего вида под воздействием окружающей среды. И хотя стойкость нержавеющий сталей в сотни раз превосходит стойкость обычной и оцинкованной стали, нержавеющая сталь тоже может быть подвержена коррозии в определённых условиях. Существуют несколько видов коррозии. Рассмотрим самые распространённые виды коррозии нержавеющих сталей:
Питтинговая (язвенная, точечная) коррозия. Когда сталь лишена доступа к кислороду или когда такие элементы, как хлор, вытесняют железо, нержавеющей стали недостаёт способности восстанавливать на поверхности свою защитную плёнку из окислов. Эта плёнка разрушается в некоторых критичных точках, таких как царапины, сколы, раковины и т.п. и сталь начинает в этом месте ржаветь. Коррозия может развиваться дальше в глубину материала, даже когда нормальные условия восстановлены, но внутри коррозионной язвы по-прежнему нет кислорода. Питтинговая коррозия может возникать, когда сталь находится в среде с высокой концентрацией ионов хлора (в морской воде, например), смеси азотной и соляной кислот при умеренно высокой температуре и отсутствии постоянного контакта с кислородом. Качественная обработка поверхности (полировка), в определенной степени, препятствует образованию язв.
Устойчивость против питтинговой коррозии зависит от структуры и состава. Три элемента, которые могут значительно её повысить – это хром, молибден и азот. Для оценки стойкости стали к язвенной коррозии часто используют коэффициент ЭСПК (числовой эквивалент стойкости к питтинговой коррозии):
ЭСПК = (%Cr) + (3,3 * %Mo) + (A * %N)
Для аустенитной структуры А = 30, для ферритной А = 0.

Следующий график показывает ЭСПК разных марок, подсчитанные на основе их структур и минимальных и максимальных значений присутствия хрома, молибдена и азота:

ЭСПК нержавеющей стали

Межкристаллитная коррозия. Это коррозия на границах кристаллов стали, которая может проникать в глубину изделия. Внешний вид стали остается неизменным, но снижается прочность и пластичность материала, вплоть до разрушения при нагрузке. Межкристаллитная коррозия возникает при длительном нагреве стали более 5000С, в том числе при сварке (кроме контактной) – поэтому этот вид коррозии еще называют «коррозией сварочного шва», а также вследствие нарушения технологии термообработки стали при ее производстве. Высоко агрессивная среда – особенно концентрированная серная кислота при контакте с медью при высоких температурах – значительно ускоряют межкристаллитную коррозию. В то же время, высокое качество стали с минимальным содержанием посторонних примесей, пониженное содержание углерода, внесение в состав стали титана, ниобия и тантала – существенно повышают стойкость к межкристаллитной коррозии.

Сравнительные свойства стойкости сталей к межкристаллитной коррозии

Сравнительные свойства стойкости сталей к межкристаллитной коррозии

Разница в механической стойкости стали

Из-за структуры и химического состава нержавеющие стали отличаются механической стойкостью: пределом упругости и пределом прочности. Содержание углерода – один из определяющих параметров.
Предел упругости: нагрузка, при которой упругая деформация сменяется пластической, оставляя изгиб (вместо того, чтобы вернуться к первоначальной форме, деталь остаётся в деформированном состоянии после нагрузки).
Предел прочности: максимальная нагрузка, которую материал может вынести не разорвавшись.

Механическая стойкость марок нержавеющей стали

AISI 201: высокая механическая стойкость – более жесткая и прочная чем другие марки из-за высокого содержания углерода (тяжело гнётся и ломается).

AISI 304, 321 и 316: содержат меньше углерода, чем AISI 201, а поэтому менее стойкие и долговечные к механическим нагрузкам (легче согнуть и сломать).

AISI 430: как и AISI 201, содержит много углерода, сталь тяжело гнётся, но, как и у большинства ферритных марок, предел прочности низкая, и с ломать её даже легче, чем марки 304 и 316.

Какую марку стали выбрать чтобы не переплачивать?

Оптимальный выбор – залог получения требуемого качества по разумной цене. Заказывая сетку из стали AISI 201 вы можете сэкономить до 20%. Наша компания специально разработала и наладила производство сварной сетки из этой стали, чтобы предоставить покупателям возможность экономии при полном выполнении задач защиты от коррозии.

Если вы определили в каких условиях будет использоваться сетка – оценили агрессивность среды, температуру эксплуатации и степень механической нагрузки – выбор можно сделать при помощи следующей таблицы:

Читайте также: