Сталь 36х18н25с2 характеристики применение

Обновлено: 11.05.2024

В данном разделе приведены технические, механические и технические свойства, а также характеристики марки 36Х18Н25С2 (другое обозначение 4Х18Н25С2 ).

36Х18Н25С2 (4Х18Н25С2) - классификация и применение

Марка: 36Х18Н25С2 (другое обозначение 4Х18Н25С2 )

Классификация материала: Сталь жаропрочная высоколегированная

Применение: головки форсунок, детали печей, ящики для цементации, длительно работающие при температурах до 1000 град.

36Х18Н25С2 (4Х18Н25С2) - химический состав материала

FeCSiMnNi SPCr
50.045 - 57.680.32 - 0.42 - 3до 1.523 - 26до 0.02до 0.03517 - 19

36Х18Н25С2 (4Х18Н25С2) - механические свойства

Приведены механические свойства 36Х18Н25С2 (4Х18Н25С2) при температуре 20°.

СортаментРазмерНапр.sвsTd5yKCUТермообр.
-мм-МПаМПа%%кДж / м 2 -
Пруток, ГОСТ 5949-75 Прод.6403452540 Закалка

Зарубежные аналоги 36Х18Н25С2 (4Х18Н25С2)

36Х18Н25С2 (4Х18Н25С2) - pасшифровка обозначений, сокращений, параметров материала

Механические свойства :
sв- Предел кратковременной прочности , [МПа]
sT- Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d5- Относительное удлинение при разрыве , [ % ]
y- Относительное сужение , [ % ]
KCU- Ударная вязкость , [ кДж / м 2 ]
HB- Твердость по Бринеллю , [МПа]

Физические свойства :
T - Температура, при которой получены данные свойства , [Град]
E- Модуль упругости первого рода , [МПа]
a- Коэффициент температурного (линейного) расширения (диапазон 20 o - T ) , [1/Град]
l- Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r- Плотность материала , [кг/м 3 ]
C- Удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
R- Удельное электросопротивление, [Ом·м]

Обращаем Ваше внимание! Вся информация о 36Х18Н25С2 (4Х18Н25С2) носит ознакомительный характер.

При обнаружение ощибок и несоответствий в описании информации о 36Х18Н25С2 (4Х18Н25С2), просим сообщать администрации сайта.

Марка 36Х18Н25С2

Наши цены

ТоварМарка
стали
Размер
мм
Дополнительные
характеристики
Кол-во
тн
Цена с НДС
руб/кг
Круг36Х18Н25С2 Ø 100×48000,910600 руб.

Информация о 36Х18Н25С2

Марка: 36Х18Н25С2

Класс: Сталь жаропрочная высоколегированная

Использование в промышленности: головки форсунок, детали печей, ящики для цементации, длительно работающие при температурах до 1000 град.

Химический состав в %

Железо (Fe): 50,045 - 57,68

Углерод (C): 0,32 - 0,4

Кремний (Si): 2 - 3

Марганец (Mn): до 1,5

Никель (Ni): 23 - 26

Сера (S): до 0,02

Фосфор (P): до 0,035

Хром (Cr): 17 - 19

Механические свойства марки 36Х18Н25С2 при Т=20 o С

СортаментРазмерНапр.Sв,МПаStМПаd5 %ψ %KCU, Дж/м2 %Термообработка
Пруток, ГОСТ 5949-75 Прод.6403452540 Закалка

Физические свойства марки 36Х18Н25С2

T o E 10 -5 , МПаa 10 6 , 1/Градl, Вт/(м*град)r, кг/м3C, Дж/(кг*град)R 10 9 , Ом*м
202 7800
100 1315
2001,9113,4
3001,8614,7
4001,78
5001.71 22,8
6001,62 1,62
7001.54 26,3
8001,47 37,4

Обозначения

Sв - временное сопротивление разрыву

St - предел пропорциональности

d5 - относительное удлинение после разрыва

ψ - относительное сужение

KCU - ударная вязкость

T - Температура, при которой получены данные свойства

Е - Модуль упругости первого рода

а - Коэффициент температурного (линейного) расширения

l - Коэффициент теплопроводности (теплоемкость материала)

r - Плотность материала

C - Удельная теплоемкость материала

R - Удельное электросопротивление

Наши контакты

г.Санкт-Петербург, шоссе Революции, д.84

В будние дни с 9ºº до 17ºº (перерыв в работе склада с 13ºº до 14ºº)

г.Санкт-Петербург, ул. Мельничная, д.24

Вконтакте

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов.

Сталь жаропрочная релаксационностойкая 36Х18Н25С2 (4Х18Н25С2)

Жаростойкие и жаропрочные стали и сплавы.

Жаропрочными называют стали и сплавы, сохраняющие при повышенных температурах в течение определенного времени высокую механическую прочность и обладающие при этом достаточной жаростойкостью.

Жаростойкими (окалиностойкими) называют стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 0 С, работающие в ненагруженном или слабонагруженном состоянии.

Жаропрочность характеризуется, в основном, пределами ползучести и длительной прочности. Ориентировочно о жаропрочности судят также по механическим свойствам, определяемым кратковременным испытанием на растяжение при рабочей температуре.

Дополнительные характеристики жаропрочности: длительная пластичность, релаксационная стойкость, предел выносливости, термостойкость и др.

Жаропрочность стали (сплава) определяется химическим составом и структурой; к числу элементов, повышающим жаропрочность, относятся молибден, вольфрам, ванадий, ниобий, титан, кобальт, алюминий и отчасти хром и никель. Последний, наряду с марганцем, имеет значение, главным образом, как аустенитообразующий элемент (поскольку аустенитная структура создает наибольшую жаропрочность стали). На жаропрочные свойства хром влияет меньше, чем многие другие элементы. Однако его присутствие в стали или сплаве наряду с алюминием и кремнием повышает их жаростойкость (окалиностойкость). Поэтому хром - обязательный компонент жаропрочных сталей и сплавов.

Классификация

К жаропрочным сталям относят сплавы на основе железа, если содержание последнего превышает 50 %.

В зависимости от суммарного содержания легирующих элементов жаропрочные стали могут быть низко-, средне- и высоколегированными.

В низколегированной стали суммарное содержание легирующих элементов не превышает 4-5 %. Среднелегированной называется сталь с суммарным содержанием легирующих элементов от 5 до 9 %, причем содержание каждого из них не должно превышать 5 %. Высоколегированной называют сталь, в которой содержание любого легирующего элемента превосходит 5 %, либо суммарное содержание всех легирующих элементов - более 10 %.

По микроструктуре (получаемой после охлаждения на воздухе с высокой температуры) жаропрочные стали подразделяют на семь классов: перлитный, мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный, аустенитный.

Низколегированные стали относятся к перлитному классу, среднелегированные - к перлитному, мартенситному или мартенситно-ферритному, высоколегированные - к любому из перечисленных классов, кроме перлитного.

К сплавам на железоникелевой основе относятся сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе. Суммарное содержание железа и никеля не менее 65 %.

К сплавам на никелевой основе относятся сплавы, содержащие не менее 50 % Ni, основная структура которых является твердым раствором хрома и других легирующих элементов в никеле (содержание железа не более 6-8 %).

Стали перлитного класса

Среди низколегированных сталей высокой жаропрочностью отличаются молибденосодержащие стали, например, хромомолибденовые, хромомолибденованадиевые, хромомолибденовольфрамованадиевые, имеющие достаточно высокие сопротивление ползучести и длительную прочность при температурах до 565-580 °С. Такие стали условно называют теплоустойчивыми.

Химический состав теплоустойчивых сталей перлитного класса приведен в ГОСТ 20072-74, ГОСТ 4543-71, ТУ 14-1-1391-75. Они содержат 0,5-3,3 % Cr; 0,25-1,2 % Мо; 0,15-0,8 % V. Некоторые марки содержат 0,3-0,8 % W либо Nb.

Эти стали применяют для изготовления различных деталей в котлостроении, работающих длительное время (10 000-100 000 ч) при температурах 500-580 °С, в частности, для паропроводных и пароперегревательных труб, а также для проката и поковок, используемых в турбинах и паровых котлах высокого давления.

Механические свойства сортового металла из перлитных сталей, предусмотренные ГОСТ или существующими ТУ, а также рекомендуемые режимы термической обработки приведены в табл. 1. Механические свойства при повышенных температурах, определяемые кратковременным испытанием на растяжение, как правило, не регламентируются. Решающее значение имеют нормы длительной прочности и ползучести при рабочих температурах в зависимости от длительности службы за время 10 000-100 000 ч (табл.2). Сведения о примерном назначении сталей перлитного класса и их рабочие температуры приведены в табл. 3.

Стали мартенситного класса

Стали мартенситного класса содержат 4,5-12 % Cr, а также в значительно меньшем количестве Ni, W, Mo, V.

Стали марок 15Х5, 15Х5М, 15Х5ВФ и 15Х8ВФ широко применяют для изготовления элементов аппаратуры нефтеперерабатывающих заводов - деталей насосов, задвижек, крепежных деталей, крекинговых труб, работающих при температурах 550-600 °С. Стали этой же группы с более высоким содержанием Cr (6-10 %) и с повышенным содержанием Si (2-3 %), в основном, применяют для изготовления клапанов двигателей внутреннего сгорания.

Сталь 11Х11Н2ВМФ(ЭИ962) применяют для дисков компрессоров и для других деталей, работающих при температурах до 600 °С с ограниченным сроком службы.

Механические характеристики мартенситных сталей приведены в табл. 1 характеристики жаропрочности - в табл. 12.2.

Стали мартенситно-ферритного класса

Стали мартенситно-ферритного класса содержат в структуре кроме мартенсита 10-25 % феррита. Основная легирующая добавка и в этих сталях - Cr (11-13 %), наряду с которым присутствуют менее значительные присадки Ni, W, Mo, Nb, V (модифицированные хромистые стали). Их термическая обработка заключается либо в закалке с отпуском, либо в нормализации с отпуском. Механические свойства при надлежащей температуре отпуска практически равноценны. Уровень жаропрочных свойств после оптимальной термической обработки для большинства сталей мартенситно-ферритного класса также примерно одинаков. Однако наиболее высокие (при обработке на одинаковую твердость) характеристики жаропрочности при 500-600 °С у стали 18Х12ВМБФР(ЭИ993).

Эти стали изготовляют в виде сортового проката и применяют в турбостроении для лопаток и дисков турбин, а также для крепежных деталей. Ориентировочная рабочая температура для стали 15Х12ВНМФ(ЭИ802) - 550-580 °С и 570-600 °С - для стали 18Х12ВМБФР(ЭИ993).

Стали аустенитного класса

Стали аустенитногокласса - в основном хромоникелевые стали с содержанием Cr и Ni в пределах от 7 до 25 % каждого, наряду с которыми присутствуют W, Mo, Ti, Nb и др.

Это самая многочисленная группа жаропрочных (и жаростойких) сталей (см. ГОСТ 5632-72).

Режимы термообработки и характеристики механических свойств сортового проката из жаропрочных сталей при нормальной температуре

Характеристики механических свойств

Температура закалки или нормализации,°С

Температура отпуска (или отжига), °С

воздух или масло

воздух, масло, вода

* Сталь применяется в отожженном состоянии

Режимы термической обработки, пределы ползучести и длительной прочности легированных сталей перлитного и мартенситного классов, применяемых для длительной службы

Предел длительной прочности , МПа за время, ч

Предел ползучести, МПа, соответствующий 1% деформации за время, ч

Температура отпуска, °С

Мартенситный и мартенситно-ферритный, аустенитно-ферритный

Примерное назначение низколегированных жаропрочных сталей перлитного класса

Рабочая
температура, ˚ С

Температура начала интенсивного окалинообразования, ˚ С

Трубы паронагревателей, паропроводов и коллекторов энергетических установок; арматура паровых котлов и паропроводов

Трубы для гидрогенизационных установок и нефтехимической аппаратуры

Поковки (роторы, диски), болты

Крепежные детали (болты, шпильки), плоские пружины

Режимы термической обработки и характеристики механических свойств сортового проката из жаропрочных аустенитных сталей (при нормальной температуре)

Температура закалки, °С.

Т, °С, длительность отпуска или старения

Временное сопротивление σв, МПа

Предел текучести σ0,2, МПа

Относительное удлинение δ5, %

Относительное сужение ψ, %

Ударная вязкость КСU, Дж/см 2

670 (12-14 ч)
770-800 (10-12 ч)

* Применяются без отпуска. **Без закалки

В марках этих сталей приняты следующие обозначения для легирующих элементов: А - N, Б - Nb, В - W, Г - Mn, К - Co, М - Mo, Н - Ni, P - B, C - Si, T - Ti, Ф - V, X - Cr, Ю - Al. Цифра после буквы указывает на округленное (среднемарочное) содержание этого элемента в процентах (при содержании менее 1 % цифру не пишут). Исключение - углерод, содержание которого первые две цифры марки выражают в десятых процента. Например, марка 45Х14Н14В2М(ЭИ69) следующего состава: 0,45 % С, 14 % Cr, 14 % Ni, 2 % W, и ≤ 1 % Мо. Характеристики механических свойств сортового проката из жаропрочных аустенитных сталей, а также оптимальные режимы термической обработки приведены в табл. 4.

В соответствии с особенностями легированного аустенита характеристики жаропрочных свойств аустенитных сталей более высокие (табл. 5), чем у жаропрочных сталей перлитного или мартенситного классов.

Сталь 08Х18Н10Т(ЭИ914) применяют как жаропрочную и жаростойкую. При температуре до 600 °С у стали стабильные механические свойства, она устойчива против межкристаллитной коррозии и хорошо сваривается. Сталь этой марки изготовляют в виде сортового проката, поковок, листа, труб для энергетического и химического оборудования. Аналогичные свойства у стали 12Х18Н12Т, которую применяют в тех же областях техники.

У хромоникельвольфрамовых аустенитных сталей (45Х14Н14В2М(ЭИ69)) повышенные жаропрочность и сопротивление усталости при высоких температурах. Сталь 45Х14Н14В2М(ЭИ69) находит применение для выпускных клапанов двигателей внутреннего сгорания. Для длительных сроков службы при температурах 600-650 °С рекомендуется сталь того же типа с пониженным содержанием С (до 0,15 %).

Аустенитные стали применяют, как правило, для изготовления деталей, работающих при температурах 650-700 °С весьма длительное время. Механические свойства этих сталей при температуре 20 °С похожи, но пределы длительной прочности и ползучести отличаются весьма существенно (табл. 4, 5). Наиболее жаропрочные из них стали 09Х14Н19В2БР(ЭИ695)

, которые применяют для изготовления пароперегревательных и паропроводных труб установок сверхвысокого давления.

Хромомарганцевые стали марок 30Х13Г18Ф и 37Х12Н8Г8МФБ-Ш (ЭИ-481Ш, 4Х12Н8Г8МФБ) - заменители жаропрочных сталей с более высоким содержанием никеля. Эти стали имееют достаточно высокую длительную прочность при температурах 500-650 °С.

Пределы ползучести и длительной прочности жаропрочных аустенитных сталей, применяемых для длительной службы *

Предел ползучести , МПа, соответствующий 1 % деформации за время, ч

* Режимы термической обработки см. табл. 4.

** Данные из зарубежных источников для сталей близкого химического состава.

Сплавы на железо-никелевой основе

Сплавы на железо-никелевой основе могут быть разделены на две группы: 1) с содержанием 14-16 % Cr и 32-38 % Ni и 2) с содержанием 20-25 % Cr и 25-45 % Ni (либо Ni + Mn). Сплавы первой группы дополнительно легированы вольфрамом и титаном и обладают высокой (приблизительно равной) жаропрочностью (табл. 6). Сплавы второй группы благодаря повышенному содержанию Cr жаростойкие, по жаропрочным свойствам они уступают сплавам первой группы, например, сплав ХН38ВТ(ЭИ703).

Сплавы ХН35ВТ(ЭИ612), ХН35ВМТ, ХН35ВТЮ(ЭИ787) поставляют преимущественно в виде горячекатаных и кованных прутков и полос, а также поковок. Из сплавов ХН35В5Т, ХН38ВТ(ЭИ703) и 12Х25Н16Г7АР(ЭИ835), в основном, изготовляют горячекатаный и холоднокатаный лист и ленту, а из сплава ХН45Ю(ЭП747) - также и трубы. В основном, сплавы на железо-никелевой основе применяют для изготовления деталей паровых и газовых турбин.

Сплавы на никелевой основе

Сплавы на никелевой основе подразделяют на две группы (см. ГОСТ 5632-72): 1) сплавы, применяемые преимущественно как жаропрочные, и 2) жаростойкие сплавы, обладающие необходимым минимумом жаропрочности (табл. 7).

Пределы длительной прочности и ползучести сплавов на железо-никелевой основе *1

Предел длительной прочности, МПа за время ,ч

Предел ползучести *3 , , МПа

210 (1/10 4 );14 (1/10 5 )

170 (1/10 4 );130(1/10 5 )

110 (1/10 4 );80 (1/10 5 )

180 (1/10 4 );130 (1/10 5 )

120 (1/10 4 );90 (1/10 5 )

80 (1/10 4 );60 (1/10 5 )

*1 После оптимальной термической обработки.

*2 Экстраполированные значения.

*3 В скобках в числителе - деформация в %, в знаменателе - время в ч.

*4 Определено на конических образцах.

Пределы длительной прочности и ползучести сплавов на никелевой основе* 1

Предел длительной прочности, , МПа за время, ч

Пределы ползучести *3 , , МПа

270
(не менее 50 ч);
250
(не менее 65 ч)

Наиболее часто применяемые сплавы первой группы относятся к системе Ni-Cr-Ti-Al. Присутствие в этих сплавах Ti и Аl в количествах, превышающих их предельную растворимость в твердом растворе при температурах 650-950 °С, позволяет достигнуть после закалки и отпуска существенного эффекта дисперсионного твердения, благодаря выделению дисперсных частиц интерметаллической фазы типа Ni3(Тi, NiAl). Такая микроструктура делает сплав устойчивым против температурного воздействия при 700-800 °С и выше.

Введение в дисперсионно-твердеющие сплавы этой группы W и Мо (в сумме до  10 %), а также Nb дополнительно упрочняет твердый раствор, замедляет развитие диффузионных процессов и увеличивает количество дисперсной упрочняющей фазы. Количество дисперсной фазы увеличивают также путем увеличения суммарного содержания Ti и Al. Все это приводит к существенному возрастанию жаропрочности сплавов, что делает возможным их применение при температурах до 800-850 °С и высоких напряжениях.

К особенностям состава никелевых жаропрочных сплавов относится присутствие в них небольших добавок поверхностно-активных элементов (В, Се, иногда Ва и Мg), способствующих рафинированию металла и упрочнению границ зерен, а также небольшое содержание в них примесей (S, P, Pb, др.).

Термическая обработка этих сплавов заключается в одинарном или двойном нагреве до высоких температур (1080-1200 °С) с охлаждением чаще всего на воздухе и последующем отпуске при температурах 700-850 °С. Для наибольшей стабилизации исходной структуры применительно к деталям с длительным сроком службы рекомендуется проводить многоступенчатый отпуск при постепенно понижающейся температуре.

Жаропрочные никелевые сплавы изготовляют в виде сортового проката (прутки круглого сечения) и частично в виде поковок различной конфигурации.

Основное назначение этой группы высоколегированных сплавов - изготовление рабочих лопаток и дисков газовых турбин. Диски работают при более высоких напряжениях, чем лопатки (но при несколько пониженной температуре), поэтому материал диска должен иметь высокое сопротивление ползучести (особенно на ободе) и повышенную прочность (в ступичной части).

Прочность сплавов на никелевой основе сохраняется высокой вплоть до температур 800-900 °С. Так, при 800 °С временное сопротивление σв наиболее легированных сплавов составляет 700-800 МПа, 100-часовая длительная прочность - 250-300 МПа. В то же время характеристики пластичности δ и ψ удовлетворительны при всех температурах испытания и несколько снижаются в температурном интервале дисперсионного твердения (700-800 °С). Остаточная деформация этих сплавов при испытаниях на длительную прочность при 700-800 °С порядка 3-10 %.

В табл. 7 приведены характеристики жаропрочности никелевых сплавов.

Для длительных сроков службы наилучшее сочетание длительной прочности и пластичности у сплава ХН65ВМТЮ(ЭИ893), получившего широкое применение как материал для лопаточного аппарата стационарных газовых турбин ГТ-6, ГТН-9, ГТК-10, ГТК-16, ГТТ-12, ГТА-18, ГТУ-25, ГТУ-100. Этот сплав - основной лопаточный материал в стационарном газотурбостроении. Кроме того, благодаря исключительно высокой релаксационной стойкости этот сплав применяют для изготовления крепежных деталей турбин.

Из жаропрочных никелевых сплавов можно получать детали методом отливки (например, точным литьем по выплавляемым моделям).

Ко второй группе относятся сплавы марок ХН67МВТЮ(ЭП202), ХН60Ю(ЭИ559А), ХН70Ю(ЭИ652), ХН78Т(ЭИ435), ХН60ВТ(ЭИ868), ХН75МБТЮ(ЭИ602), применяемые преимущественно как жаростойкие. Эти сплавы, за исключением двух последних, отличаются высоким содержанием Cr (20-30 %) и практически гомогенной структурой твердого раствора после принятых режимов термической обработки (нагрев до 1000-1200 °С с охлаждением в воде или на воздухе). Эти сплавы выпускают в виде холоднокатаного или горячекатаного листа преимущественно для деталей газопроводных систем, работающих при умеренных напряжениях в условиях весьма высоких температур (до 1100-1200 °С). У этих деталей кроме достаточной технологичности (прокатываемость, штампуемость, свариваемость) и высокого сопротивления газовой коррозии (окалиностойкость) должно быть хорошее сопротивление термической усталости (термостойкость). Всем этим требованиям отвечают сплавы на никелевой основе.

У жаростойких листовых никелевых сплавов повышена пластичность в холодном и горячем состоянии, но жаропрочность ниже, чем у сплавов первой группы. Так, длительная прочность за 1000 ч составляет 40-60 МПа при 800 °С и 20-25 МПа при 900 °С (табл. 7).

Читайте также: