Сталь 40 коэффициент теплопроводности

Обновлено: 15.05.2024

Теплопроводность стали имеет решающее значение для систем теплообмена, так как от этого показателя зависит, насколько качественно заработает теплообменник. Тепло, накапливающееся в одном месте, способно вывести теплоноситель или саму основу теплообменника из строя.

Что это такое?

Теплопроводность – физическая величина, основанная на законе теплового и энергетического равновесия в природе. Если в каком-то участке материал холоднее хоть на градус, перенос тепловой энергии между молекулами и атомами быстро устранит эту разницу. Способность передавать тепло между металлическими и деталями, изготовленными из сплавов, широко применяется в работе функциональных узлов и целых устройств на их основе, используемых в народнохозяйственной деятельности. В качестве примера – кипятильник, спираль в котором нагревается при прохождении через неё электрического тока, передавая тепло на его внешние слои, а затем – к нагреваемой воде.

Теплопроводность и термосопротивление противоположны друг другу. Первая отвечает за быстрый (насколько это возможно) перенос тепла, второе – наоборот, за противодействие такому переносу.


К примеру, газы обладают низкой теплопроводностью и высоким термосопротивлением, ряд жидкостей и твёрдых частиц – приблизительно похожими значениями этих двух параметров, а металлы – высокой теплопроводностью и низким термосопротивлением.

Измеряется теплопроводность в ваттах, делённых на метр, помноженный на градус. Величина теплопроводности в справочниках указывается именно в таких единицах.

От чего зависит?

Зависимость теплопроводности стали и любых иных сплавов определяется значениями ряда параметров: плотность материала, химический состав, структура (наличие пор), размеров теплопроводящего пространства, которыми оно ограничено. Для металлов эта зависимость определяется строением кристаллической решётки, например, у стали и алюминия оно разное.

Кстати, спокойная сталь обладает лучшей теплопроводностью, чем полуспокойная или кипящая: первая имеет устоявшуюся, очень плотную структуру.

Не менее важной является зависимость значения теплопроводности от температуры. Дело в том, что недостаточно проводящий материал, нагреваясь, может столкнуться с возрастающим из-за снижения теплопроводности темпом накопления тепла. Возникает так называемый лавинообразный эффект: чем больше накаляется сталь, тем больше ускоряется скорость её нагрева. Элемент, в котором не рассчитана теплоотводящая способность, при перегреве попросту обгорает, в ряде случаев – расплавляется.


Однако теплопроводность стали или любого другого сплава – либо одиночного металла – не зависит в полной мере от конкретных свойств материала. Важно и то, какие элементы, детали рядом с ним соседствуют. Если, к примеру, на поверхность процессора нанести вместо теплопроводящей пасты простой клей и «посадить» на него радиатор, то сама радиаторная пластина будет нагреваться от горячего процессора незначительно, не обеспечивая в полной мере необходимый теплоотвод.

Стоит вам программно загрузить процессор до околопредельных значений, через несколько минут он перегреется и выгорит.


Можно, конечно, радиатор посадить без теплопроводящих паст, но при слишком плотной посадке либо треснет корпус процессора, либо, наоборот, при недостаточном контакте процессорной и радиаторной поверхностей наблюдается тот же самый эффект «недоотвода» тепла, несмотря на высокую теплопроводность стали или алюминия, из которого изготовлен радиаторный модуль. Эту особенность при ремонте и замене комплектующих микроэлектроники необходимо иметь в виду.

Показатели

Для стали 09Г2С значение теплопроводности колеблется от 33 при 20 градусах до 20 при нагреве до 400 градусов.

Для стали 12Х18Н10Т теплопроводность изменяется от 15 при 20 градусах до 29 при нагреве до 800 градусов: здесь прослеживается обратная тенденция – не уменьшения, а, наоборот, увеличения (в ваттах на метр, помноженный на каждый градус изменения температуры).


Если же привести конкретные значения для разных сортов разноуглеродистых сталей, то они расположились следующим образом.

Сталь 20 при температуре 27-1200 градусов – 86-30 Вт/м*градус (тенденция к снижению).

Сталь 45 при 27-527 градусах – 79-30.

Сталь 3: при температуре 100-700 – значение в 55-30.

Ст3 (спокойная, группы В) – аналогичные предыдущему варианту значения.

Сталь 10: при 27-527 градусах – 83-44.

Сталь 40 обладает двойной зависимостью с экстремумом: при температуре 100, 800, 900, 1000, 1100 её теплопроводность снижается от 51 до 25, а при дальнейшем нагреве от 1200 до 1400 градусов она, напротив, растёт от 26 до 30 единиц.

Сталь 30 имеет лишь нисходящую, как и большинство других сортов, тенденцию: при нагреве от 20 до 700 градусов её показатель плавно снижается от 52 до 32.

У стали 15 изменение температуры от 27 до 627 вызовет снижение теплопроводности с отметки в 86 до уровня в 32 Вт/м*градус.


Остальные значения соответствуют не одной сотне всевозможных сортов сталей и чугунов, но важно главное: значительное большинство сортов сплава на основе железа демонстрирует уверенную тенденцию к снижению теплопроводности с ростом температуры. Показатель не зависит от проката стали – круглый, квадратный, угловой, тавровый, рельсовый или листовой – у всех образцов распространение нагрева происходит с одной закономерностью (скоростью).


Значение в быту и производстве

Бытовое и производственное значения теплопроводности важно учесть при изготовлении теплообменников. Как правило, все теплообменники изготавливаются из металлов и их сплавов, возможно, с добавлением легирующих неметаллических присадок. У сплавов теплопроводность несколько ниже, чем у чистых металлов. Расчёт и проектирование теплообменников базируется на способности передать тепло от теплоносителя (источника) к потребителю.

Не менее важной задачей является высокоэффективный теплоотвод. Будь это охлаждение редуктора в болгарке или микропроцессора в компьютере, теплоотводчик, не обладающий необходимым минимально допустимым значением теплопроводности, не отведёт тепло в полной мере от греющихся компонентов, отчего те быстро выйдут из строя.

Теплоизоляция, наоборот, базируется на расчёте изолирующего слоя с меньшим значением теплопроводности, а не со средним или с околомаксимальным коэффициентом.

Вспененный полиэтилен, поролон, минвата задерживают тепло зимой в помещении лишь потому, что воздух в их пористой структуре обладает, как и каждый из газов в отдельности, из которых он состоит, ничтожной – по сравнению с металлами – теплопроводностью.

Не менее важная составляющая расчёта – испытания. Разрабатывая новый теплоотводящий материал либо изолятор (например, пористый полипропилен), отталкиваются от существующих значений компонентов, из которых строится основа теплообменного слоя. Задача состоит в том, чтобы пропустить или отразить обратно большую часть тепла.

Сравнение с теплопроводностью других материалов

Для сравнения, большинство сталей обладает коэффициентом теплопроводности при нуле по Цельсию, приближённо равным 63 Вт/м*градус, при увеличении температуры нагрева до нескольких сот градусов он снижается примерно в 2,5-3 раза. Алюминий, напротив, обладает восходящей тенденцией – 202-422 единиц, большинство сплавов на его основе отличаются существенной разницей в теплопроводности.

У примесного сплава с алюминием это значение колеблется в пределах 100-180. Медь демонстрирует снижение от 394 до 353 единиц при таких же температурных изменениях.

Латунные сплавы обладают при таком же температурном диапазоне значениями в 100-200 – с нисходящей тенденцией. Никель при таком же нагреве демонстрирует снижение коэффициента с 67 до 57 единиц. Никелевые сплавы с железом и цинком обладают восходящей тенденцией: 20-50 Вт/м*градус. Хромсодержащие сплавы на основе никеля позволят достичь относительно минимального значения – 12 единиц.

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность цветных металлов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Теплопроводность цветных металлов и технических сплавов - таблица

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).
Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности металлов и сплавов - таблица

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.
Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Коэффициент теплопроводности сплавов - таблица

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки - таблица

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость сплавов - таблица

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.
Размерность теплоемкости кал/(г·град).
Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Удельная теплоемкость многокомпонентных специальных сплавов - таблица

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре.
Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

Плотность сплавов - таблица

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10 -3 . Не забудьте умножить на 1000!
Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м 3 .

Сталь 40 конструкционная углеродистая качественная

Сталь 40 относится к конструкционным углеродистым нелегированным специальным качественным сталям. Сталь марки 40 рекомендуется для изготовления крепежных деталей.

Химический состав, % (ГОСТ 1050-88)

С Si Mn Cr S P Cu Ni As
не более
0,37-0,45 0,17-0,37 0,50-0,80 0,25 0,04 0,035 0,25 0,25 0,08

Химический состав, % (ГОСТ 1050-2013)

Марка
стали
Массовая доля элементов, %
C Si Mn P S Cr Ni Cu
не более
40 0,37-0,45 0,17-0,37 0,50-0,80 0,030 0,035 0,25 0,30 0,30

Применение

После поверхностного упрочнения с нагревом ТВЧ сталь марки 40 применяется для изготовления деталей средних размеров, к которым предъявляются требования высокой поверхностной твердости и повышенной износостойкости при малой деформации, например:

  • длинные валы,
  • ходовые валики,
  • зубчатые колеса.

После улучшения сталь 40 применяется для изготовления следующих деталей:

  • коленчатые валы,
  • шатуны,
  • зубчатые венцы,
  • маховики,
  • зубчатые колеса,
  • болты,
  • оси.

В нефтяной, нефтехимической и газовой промышленности сталь марки 40 применяется для изготовления:

  • муфт насосных штанг,
  • валов центробежных насосов,
  • компрессоров,
  • роторов,
  • штоков грязевых насосов,
  • стволов и переводников вертлюгов,
  • переводников для рабочих и бурильных труб,
  • корпусов колонковых долот,
  • пальцев крейцкопфов грязевых насосов,
  • роликов превентора,
  • конических шестерен,
  • фиксаторов и шпонок буровых станков,
  • цепных колес буровых лебедок,
  • штифтов,
  • упорных винтов,
  • скалок насосов,
  • цапф и т. д

Применение стали 40 для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка стали НД на
поставку
Температура
рабочей
среды, °С
Дополнительные
указания по
применению
40
ГОСТ 1050
Сортовой
прокат ГОСТ
1050
От -40 до 425 Применяется после
термообработки (закалка
и высокий отпуск) при
температуре ниже минус
31°С до минус 40°С

Применение стали 40 для изготовления крепежных деталей (ГОСТ 32569-2013)

Марка стали Технические требования Допустимые параметры эксплуатации Назначение
Температура стенки, °С Давление среды,
МПа (кгс/см 2 ),
не более
Сталь 40
ГОСТ 1050,
ГОСТ 10702
СТП 26.260.2043 От -40 до 425 10 (100) Шпильки, болты
16 (160) Гайки
От -40 до 450 16 (160) Шайбы

Пределы применения, виды обязательных испытаний и контроля стали 40 для фланцев для давления свыше 10 МПа (100 кгс/см 2 ) (ГОСТ 32569-2013)

Марка стали,
стандарт или ТУ
40
ГОСТ 1050
Технические
требования
ГОСТ 9399
Наименование
детали
Фланцы
Предельные
параметры
Температура
стенки, °С,
не более
От
-40 до
+200
Давление
номинальное,
МПа (кгс/см 2 )
не более
32 (320)
Обязательные испытания σ0,2 +
σв +
σ +
f +
KCU +
HB +
Контроль Дефектоскопия +
Неметаллические
включения

Стойкость стали 40 против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Нестойкая 6 0,005-0,05

ПРИМЕЧАНИЕ
Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).

Температура критических точек, °С

Термообработка

Детали из стали марки 40 подвергаются нормализации при температуре 860-880° С или закалке в воде с температуры 840-860° С с последующим отпуском; температура отпуска устанавливается в зависимости от требуемых механических свойств. Так, например, детали буровых установок (шестерни, фиксатор, шпонки) превентора (плита основной опоры, ролики) подвергаются отпуску при температуре 550° С, цепные колеса буровой лебедки — при температуре 500 С.

Зависимость механических свойств стали 40 от температуры отпуска

Твердость HB для металлопродукции из стали 40 (ГОСТ 1050-2013)

Марка стали Твердость HB, не более, для металлопродукции
горячекатаной и кованой калиброванной и со специальной отделкой поверхности
без термической
обработки
после отжига
или высокого отпуска
нагартованной после отжига
или высокого отпуска
40 217 187 241 197

Механические свойства металлопродукции (ГОСТ 1050-2013)

Марка стали не менее
Предел
текучести
σт, Н/мм 2
Временное
сопротивление
σв, Н/мм 2
Относительное
удлинение
δ5, %
Относительное
сужение
Ψ, %
40 335 570 19 45

Механические свойства проката

ГОСТ Состояние поставки Сечение, мм σ0,2, МПа δ54), % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
ГОСТ 1050-88 Сталь горячекатаная,
кованая калиброванная
и серебрянка 2-й категории
после нормализации
25 570 19 45 59
Сталь калиброванная 5-й категории:
после нагартовки 610 6 35
после отжига или
высокого отпуска
510 14 40
ГОСТ 10702-78 Сталь калиброванная
и калиброванная со
специальной отделкой
после отпуска и отжига
До 590 40 197
ГОСТ 4041-71
(образцы поперечные)
Лист термообработанный
1 и 2-й категорий
4-14 510-650 21 167
ГОСТ 1577-93 Лист нормализованный
или горячекатаный
80 560 20
Лист отожженный
или высокоотпущенный
80 520 21
Полоса нормализованная
или горячекатаная
6-25 570 19 45
ГОСТ 16523-89
(образцы поперечные)
Лист горячекатаный До 2 510-660 (16)
2-3,9 (17)
Лист холоднокатаный До 2 510-600 (17)
2-3,9 (18)
ГОСТ 2284-79 Лента холоднокатаная
отожженная
0,1-4 450-700 (14)
Лента нагартованная,
класс прочности Н2
0,1-4 850-1050
ГОСТ 10234-77 Лента отожженная
плющеная
0,1-4 До 700 10

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ, не более
не менее
Нормализация 300-500 215 215 430 18 40 44 123-167
500-800 16 35 39
100-300 245 245 470 19 42 39 143-179
300-500 17 35 34
До 100 275 275 530 20 40 44 156-197
100-300 17 38 34
Закалка+отпуск 300-500 275 275 530 15 32 29 156-197
500-800 13 30 29
100-300 315 315 570 14 35 34 167-207
До 100 345 345 590 18 45 59 174-217

Механические свойства после закалки с 850 °С в масле

tотп, °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ,
не более
200 750 930 7 45 29 267
300 710 860 8 51 69 247
400 640 790 10 57 88 225
500 550 730 12 62 127 208
600 450 660 16 66 167 188
700 380 620 17 71 206 170

Механические свойства при повышенных температурах [81]

tисп, °С σ0,2, МПа σв, МПа δ5, % Ψ, %
700 99 140 48 85
800 70 110 53 97
900 54 71 55 100
1000 28 58 69 100
1100 24 37 60 100
1200 16 26 87 100
1300 12 18 56 100

ПРИМЕЧАНИЕ. Образец диаметром 6 мм и длиной 80 мм, прокатанный. Скорость деформирования 16 мм/мин; скорость деформации 0,009 1/с.

Ударная вязкость KCU [28]

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -40 -80
Закалка с 850 °С в воде; отпуск при 400 °С 78 55 51

Предел выносливости [140]

Термообработка σ-1, МПа
Отжиг при 850 °С,
σ0,2 = 275 МПа, σв = 520 МПа
231
Закалка с 845 °С, в воду; отпуск при 550 °С,
σ0,2 = 600 МПа, σв = 710 МПа, НВ 209
393
Закалка с 845 °С в масло; отпуск при 430 °С,
σ0,2 = 415 МПа, σв = 630 МПа
230

ПРИМЕЧАНИЕ. σ 400 1/100000 = 100 МПа; σ 450 1/100000 = 50 МПа; σ 500 1/100000 = 30 МПа; σ 400 1/10000 = 260 МПа; σ 500 1/10000 = 70 МПа; σ 400 1/100000 = 190 МПа; σ 500 1/100000 = 44 МПа.

Технологические свойства [81]

Температура ковки, °С: начала 1250, конца 800. Охлаждение заготовок сечением до 400 мм на воздухе.

Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС без ограничений.

Обрабатываемость резанием — Kv тв.спл = 1,2 и Kv б.ст = 1,05 в горячекатаном состоянии при НВ 170 и ав= 520 МПа.

Флокеночувствительность — не чувствительна.

Склонность к отпускной хрупкости — не склонна.

Прокаливаемость, мм (ГОСТ 1050-88) [51]

Полоса прокаливаемости стали 40 после нормализации при 850 °С и закалки с 850 °С приведена на рисунке ниже.

Конструкционная легированная сталь 40Х

Сталь 40Х относится к конструкционным легированным сталям и применяется для изготовления следующих деталей:

  • оси,
  • валы,
  • вал-шестерни,
  • плунжеры,
  • штоки,
  • коленчатые и кулачковые валы,
  • кольца,
  • шпиндели,
  • оправки,
  • рейки,
  • зубчатые венцы, болты,
  • полуоси,
  • втулки и другие улучшаемые детали повышенной прочности.

Расшифровка стали 40Х

Число 40 указывает среднее содержание углерода в сотых долях процента, т.е. среднее содержание углерода в стали 40Х равно 0,4%.
Буква Х указывает среднее содержания хрома до 1,5%.

Химический состав, % (ГОСТ 4543-71)

C, углерод Mn, марганец Si, кремний P, фосфор S, сера Cr, хром Ni, никель Cu, медь As, мышьяк
0,36-0,44 0,5-0,8 0,17-0,37 не более 0,25 не более 0,04 не более 0,035 не более 0,25 не более 0,25 не более 0,08

Химический состав, % (ГОСТ 4543-2016)

Марка стали Массовая доля элементов, %
C Si Mn Cr Ni Mo Al Ti V B
40Х 0,36-0,44 0,17-0,37 0,50-0,80 0,80-1,10
  1. В стали 40Х допускается массовая доля остаточных элементов, не более: вольфрама — 0,20 %, молибдена — 0,11 %, ванадия — 0,05 % и остаточного или преднамеренно введенного титана (за исключением стали марок,
    перечисленных в примечании 1 настоящей таблицы) — не более 0,03 %.
  2. Знак «-» означает, что массовую долю данного элемента не нормируют и не контролируют, если иное не указано в 7.1.2.3 ГОСТ 4543-2016.

Твердость по Бринелю ГОСТ 4543-2016

Твердость по Бринеллю металлопродукции в отожженном (ОТ) или высокоотпущенном
(ВО) состоянии, а также горячекатаной и кованой металлопродукции, нормализованной с последующим
высоким отпуском (Н+ВО), диаметром или толщиной свыше 5 мм должна соответствовать нормам,
указанным в таблице

Марка стали Твердость НВ, не более
40Х 217

Примечание: Согласно ГОСТ 4543-71 твердость калиброванного проката в отожженном или высокоотпущенном состоянии, а также горячекатаного проката в нормализованном с последующим высоким отпуском состоянии может быть на 15 единиц НВ больше.

Свариваемость

Трудносвариваемая.
Способы сварки:

  • РДС (ручная дуговая сварка), ЭШС (электрошлаковая сварка). Необходимы подогрев и последующая термообработка.
  • КТС (контактная сварка) — необходима последующая термообработка.

Применение стали 40Х для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

Марка стали НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
40Х
ГОСТ 4543
Поковки ГОСТ
8479.
Сортовой прокат
ГОСТ 4543
От -40 до 450 Для несварных узлов арматуры с
обязательным проведением
термообработки (закалка и высокий
отпуск) при температуре рабочей
среды (стенки) ниже минус 30°С до
минус 40°С

Применение стали 40Х для крепежных деталей арматуры (ГОСТ 33260-2015)

Допускается применять крепежные изделия из сталей марки 40Х при температурах ниже минус 40°С до минус 60°С, если при испытании на ударный изгиб образцов типа 11 по ГОСТ 9454 при рабочих отрицательных температурах ударная вязкость не будет ниже 300 кДж/м (3 кгс·м/см ) ни на одном из испытуемых образцов.

Применение стали для изготовления шпинделей и штоков (ГОСТ 33260-2015)

Марка стали НД на
поставку
Температура
рабочей
среды, °С
Дополнительные
указания по
применению
40Х
ГОСТ 4543
Сортовой
прокат ГОСТ
4543, ГОСТ 1051
От -40 до 450 Применяются после
улучшающей
термообработки (закалка
и высокий отпуск)

Применению стали 40Х для деталей арматуры и пневмоприводов, не работающих под давлением и не подлежащих сварке, предназначенных для эксплуатации в условиях низких температур

Марка стали Закалка + отпуск при
температуре, °С
Примерный уровень
прочности, Н/мм
(кгс/мм 2 )
Температура
применения не ниже,
°С
Использование в
толщине не более, мм
40Х 500 1000(100) -60 30

Стойкость стали 40Х против щелевой эрозии

Группа
стойкости
Балл Эрозионная
стойкость по
отношению к
стали 12X18H10T
Пониженной
стойкости
4 0,15-0,25

Применение стали 40Х для изготовления основных деталей арматуры атомных станций

Марка стали Вид полуфабриката
или изделия
Максимально
допустимая
температура
применения, °С
40Х
ГОСТ 4543
Поковки. Крепеж 500

Технологические свойства

  • Температура ковки, °С: начала 1250, конца 800. Сечения до 350 мм охлаждаются на воздухе.
  • Обрабатываемость резанием — Kv тв.спл = 1,2 и Kv б.ст = 0,95 в горячекатаном состоянии при HB 163-168 и σв = 610 МПа.
  • Флокеночувствительность — чувствительна.
  • Склонность к отпускной хрупкости — склонна.

Механические свойства стали 40Х по ГОСТ 4543-2516

Механические свойства металлопродукции, определяемые при температуре 20°С (-10/+15°С) на продольных термически обработанных образцах или образцах, изготовленных из термически обработанных заготовок, должны соответствовать нормам, указанным в таблице

Режим термической обработки Закалка Температура, °С 860
Среда охлаждения Масло
Отпуск Температура, °С 500
Среда охлаждения Вода или масло
Механические свойства, не менее Предел текучести σт, Н/мм 2 785
Временное сопротивление σв, Н/мм 2 980
Относительное удлинение δ5, % 10
Относительное сужение Ψ, % 45
Ударная вязкость KCU, Дж/см 2 59
Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм 25

Механические свойства по ГОСТ 4543-71 при нормальной температуре

Предел текучести σт, Н/мм 2 (кгс/мм 2 ), не менее — 785(80);
Временное сопротивление σв, Н/мм 2 (кгс/мм 2 ), не менее — 980(100);
Относительное удлинение δ5, %, не менее — 10;
Относительное сужение Ψ, %, не менее- 45;
Ударная вязкость KCU, Дж/см 2 (кгс*м/см 2 ), не менее — 59(6);

Ударная вязкость KCU

Термообработка KCU, Дж/см 2 , при температуре, °С
+20 -20 -40 -70
Закалка с 850 °С в масле; отпуск при 650 °С 160 148 107 85
Закалка с 850 °С в масле; отпуск при 580 °С 91 82 54

Механические свойства

ГОСТ Состояние поставки Сечение, мм КП σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB, не более
не менее
ГОСТ 4543-71 Пруток. Закалка с 860 °С в масле, отпуск при 500 °С, охл. в воде или в масле 25 780 980 10 45 59
ГОСТ 8479-70 Поковка:
нормализация 500-800 245 245 470 15 30 34 143-179
300-500 275 275 530 15 32 29 156-197
закалка+отпуск 500-800 275 275 530 13 30 29 156-197
нормализация До 100 315 315 570 17 38 39 167-207
100-300 14 35 34
закалка+отпуск 300-500 315 315 570 12 30 29 167-207
500-800 11 30 29
нормализация До 100 345 345 590 18 45 59 174-217
100-300 345 17 40 54
закалка+отпуск 300-500 14 38 49
До 100 395 395 615 17 45 59 187-229
100-300 15 40 54
300-500 13 35 49
До 100 440 440 635 16 45 59 197-235
100-300 14 40 54
До 100 490 490 655 16 45 59 212-248
100-300 13 40 54

Механические свойства в зависимости от сечения

Сечение, мм σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость НВ
101-200 490 655 15 45 59 212-248
201-300 440 635 14 40 54 197-235
301-500 345 590 14 38 49 174-217

Примечание: Закалка с 840-860 °С в масле; отпуск при 580-650 °С, охл. на воздухе.

Механические свойства в зависимости от температуры отпуска

tотп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2 Твердость HB
200 1560 1760 8 35 29 552
300 1390 1610 8 35 20 498
400 1180 1320 9 40 49 417
500 910 1150 11 49 69 326
600 720 860 14 60 147 265

Примечание: Закалка с 850 °С в воде.

Механические свойств при повышенных температурах

tисп. °С σ0,2, МПа σв, МПа δ5, % Ψ, % KCU, Дж/см 2
Закалка с 830 °С в масле; отпуск при 550 °С
200 700 880 15 42 118
300 680 870 17 58
400 610 690 18 68 98
500 430 490 21 80 78
Образец диаметром 10 мм, длиной 50 мм, кованый и отожженный; скорость деформирования 5 мм/мин; скорость деформации 0,002 1/с
700 140 175 33 78
800 54 98 59 98
900 41 69 65 100
1000 24 43 68 100
1100 11 26 68 100
1200 11 24 70 100

Термообработка ГОСТ 4543-71

Термообработка ГОСТ 4543-71 легированной стали 40Х


Примечание: Размер сечения заготовки для термической обработки
(диаметр круга или сторона квадрата), мм, не менее — 25.

Коэффициенты теплопроводности различных материалов, таблица

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом
состоянии
При нормальной
влажности
При повышенной
влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Читайте также: