Сталь для пружинных пластин

Обновлено: 17.05.2024

Рессорно-пружинная сталь представляет собой востребованный сплав с большим перечнем достоинств. Материал демонстрирует отличную работу даже в суровых условиях, обладает высокими показателями прочности, предела. Особенность стали в том, что она без труда сохраняет все свои физические свойства при сжатии, а затем возвращает прежнюю форму, когда уходит нагрузка.

Общее описание

Пружинная сталь – это сплав с повышенным пределом текучести, который характеризует изменение формы тела даже в том случае, если не будет увеличена нагрузка. Также параметр отвечает за способность тела принимать первоначальную форму при других видах нагрузок, например, скручивании или изгибе. Чем эффективнее материал работает, сохраняя первоначальные свойства и размеры, тем выше показатель предела текучести.

Самый высокий показатель у материалов, которые прошли специальные методики обработки, придавшие им дополнительные свойства.


Сталь-пружина отличается в этом плане от большинства других сплавов благодаря использованию производителями различных компонентов в виде легирующих добавок. В России за основу для изготовления стали берут низколегированные сплавы, состав которых содержит минимальное число каких-либо компонентов. А, например, в Америке, Китае или европейских странах пружинные стали содержат в своем составе хром или другие компоненты:

  • марганец и кремний;
  • никель;
  • вольфрам;
  • азот.

Наличие дополнительных веществ приводит к увеличению пластичных свойств материала, а также повышает инертность сплава к химическим реакциям. Если проще, то готовый материал не сможет вступить в реакцию с другими веществами.

Физические свойства и характеристики

Основные параметры, свойства и возможности сталей пружинного типа регламентированы государственными стандартами. Среди наиболее важных особенностей можно выделить следующие факторы.

  • Повышенное сопротивление деформациям упругого типа. Показатель демонстрирует, что пластичный элемент без труда снимается под воздействием внешних сил, однако по мере увеличения давления материал начинает проявлять сопротивление. В результате, когда нагрузку снимают, сталь принимает прежнюю форму и сохраняет все свои свойства.
  • Небольшой коэффициент остаточного растяжения. Если на материал оказывают давления извне, он начинает приобретать форму в соответствии с видом внешнего источника. Однако после исчезновения давления деталь восстанавливает первоначальный вид. Стоит отметить, что чем ниже показатель, тем меньше материал деформируется после приложения нагрузки.
  • Отличный показатель прочности. Сжатие стальной пружины не приводит к деформациям материала. Металл не покрывается трещинами, сохраняет кристаллическую решетку и не разрушается даже при сильном воздействии. При необходимости показатель можно увеличить посредством добавки легирующих компонентов.



  • Устойчивость конструкционной стали к коррозии. Обеспечивается только при наличии дополнительных веществ в составе. Например, если в сплаве присутствует хром, материал не покроется ржавчиной даже спустя много лет. Все довольно просто объясняется обычными законами физики и химии. Наличие хрома на поверхности материала приводит к образованию тонкой пленки меньше 1 мм, которая предотвращает контакт железа и кислорода или азота, что приводит к невозможности проведения окислительных процессов.
  • Отличная устойчивость к химическим воздействиям – инертность. Тоже достигается путем добавления легирующих компонентов. В основном используют кремний, селен, ванадий, которые предотвращают контакт железа с веществами, поступающими извне.



Итак, чтобы улучшить свойства пружинной стали, производители используют легирующие вещества. Также добиться упругости, например, помогает прокаливание всего сечения материала. Эта процедура является обязательной.

При игнорировании процесса прокалки высокий предел текучести сформируется на отдельных участках материала, и неоднородная структура, наоборот, ускорит его разрушение.

Выбор стального сплава с высоким модулем сдвига для последующего производства стали требует тщательного подхода и учета необходимости использования легирующих веществ. Оптимальное содержание углерода для сплавов такого типа не должно быть выше 0,7%. Увеличение возможно, но никакого практического смысла оно не даст. Наоборот, риск появления трещин при внушительных деформациях только возрастет.

Что касается содержания легирующих компонентов, то позволительны следующие пропорции:

  • кремний – допустимо не более 2,5%;
  • марганец – оптимальный показатель 1,1%;
  • вольфрам – разрешено 1,2%;
  • хром – 17-30%;
  • никель – не более 1,7%.

Хром повышает коррозионную стойкость металла, поэтому часто используется в качестве легирующего вещества в количестве 13%. При использовании хрома в концентрации 30% дополнительно повышается возможность работы сплава в агрессивных средах.

Вольфрам представляет тугоплавкое вещество, которое способствует повышению показателя пластичности материала. При этом прочность и твердость не теряются, что положительно отражается на устойчивости сплава к различным воздействиям и предотвращении истирания.

Марганец и кремний чаще используют одновременно. При этом соотношение компонентов обычно увеличивают в сторону марганца. Кремний способствует формированию прочной кристаллической решетки, а марганец стабилизирует структуру материала.



Таким образом, за основу для производства стали рессорного типа берут обычный металл, который затем подвергают закаливанию при температуре от 800 до 900 градусов, постепенно повышая предел текучести. Также используют легирующие вещества, которые улучшают свойства нового материала и продлевают его срок службы. Нередко производители дополнительно прибегают к отпуску стали с целью разрушения мартенсита в структуре.

Конечно, у пружинной стали есть недостатки. Среди основных выделяют невысокий показатель свариваемости и невозможность проведения качественной резки.

Прокат

Пружинная сталь считается довольной востребованным материалом, из которого получают следующие виды проката:

  • проволоку;
  • шестигранники;
  • листы;
  • квадраты.




Ключевое преимущество пружинных сталей – это высокие эксплуатационные свойства, которых удается достичь благодаря следующим составляющим:

  • особой структуре металла, сформированной за счет оптимального сочетания компонентов и обработки;
  • наличию неметаллических элементов в составе;
  • спиральной или дугообразной форме, габаритам.

В процессе растягивания пружины нагрузки испытывают как внутренние, так и наружные стороны элемента. При этом степень нагрузки в обоих случаях разная. Внешние стороны меньше подвержены растяжению, поэтому основную долю деформации принимает на себя внутренняя поверхность. Также большие нагрузки испытывают конца пружины, выступающие в роли места монтажа. Поэтому были разработаны специальные марки стали, которые эффективно работают как на сжатие, так и на растяжение.

По составу

Выпущенные пружинные стали по составу делят на:

  • кованые;
  • горячекатаные;
  • калиброванные.

Отдельной категорией выделяют стали со специальной обработкой наружных поверхностей, а также горячекатаные круглые стали с обточенной поверхностью.

По варианту обработки

Выделяют дополнительную классификацию сталей, подразумевая деление по способу обработки. В этой категории материал делят на:

Из последнего изготавливают листовые пластины или полосы. Свойства и характеристики любых сталей регламентированы государственными стандартами. У каждого материала есть своя марка, посредством расшифровки которой можно определить ее физико-механические параметры и возможность проведения дополнительной обработки.

Маркировка и марки

Марка стали формируется, исходя из требований ГОСТ. Металл после выпуска получает определенный код, который позволяет узнать об основных свойствах и параметрах сплава. В качестве примера стоит разобрать стандартный шифр марки ЧД1Л2Л3. Расшифровка.

  1. Ч – указывает содержание углерода, выражается в процентном эквиваленте. Поэтому при переводе нужно поделить на 100.
  2. Л1, Л2, Л3 – демонстрируют тип и содержание дополнительных компонентов в виде легирующих добавок. При отсутствии числа возле добавки можно сделать вывод, что ее в составе нет. В основном используют: Г-марганец, В-вольфрам, Н-никель, С-кремний, А-азот. Количество «Л» демонстрирует число легирующих добавок.

Исходя из этого, нетрудно догадаться, что коррозионностойкая сталь 50ХГ содержит 0,5% углерода в своем составе, а также добавку в виде хрома и марганца в концентрации ниже 1%.


Термообработка

Любая сталь на производстве проходит термомеханическую обработку, посредством которой удается улучшить прочность и износостойкость изделия. В среднем путем термической обработки свойства материала увеличиваются более чем в 2 раза. Этапы процесса:

  • отжиг изделия;
  • нагрев до температуры в 830-870 градусов;
  • охлаждение в среде из воды или масла;
  • отпуск при 480 градусах.



Важно правильно закалить изделие, чтобы добиться желаемого результата. Все требования и особенности проведения термической обработки прописаны в Государственном стандарте 14959-89. Результатом технологического процесса становится получение сталей, которые соответствуют узким параметрам. Подробнее стоит разобрать более сложный пример – 60С2ХФА. В этом случае расшифровка будет выглядеть следующим образом:

  • 60 – показывает, что в составе сплава содержится 0,6% углерода;
  • С2 – буквенное обозначение кремния, цифра демонстрирует повышение содержания компонента в 2 раза больше стандартного значения (1,5%);
  • Х – указывает на наличие хрома в количестве 0,9-1%;
  • Ф – демонстрирует использование вольфрама в качестве легирующего компонента в 1% содержании.

В конце расшифровки стоит буквенный индекс А. Он указывает на минимум вредных веществ в виде фосфора или серы. Обычно их количество в этом случае не превышает 0,015%.


Резка и сварка

Пружинная сталь не отличается хорошей свариваемостью. Закалка способствует частичной деформации материала, поэтому при проведении сварочных работ при помощи электродов возникает риск разрушения элемента или создания некачественного шва с трещинами.

Резка абразивными кругами проводится с трудом, не позволяя добиться желаемого результата. В процессе резки сплав сильно деформируется, что приводит к ухудшению его свойств.

Применение

Марки пружинной стали активно применяют в промышленной области и строительстве. В основном из сплавов выполняют пружины и рессоры, так как это основное назначение материала. Сплавы используют везде, где требуется сделать конструкцию более упругой, а также улучшить пластичность, не теряя в прочности. Детали, выполненные из подобных сплавов, отлично работают и на растяжение, и на сжатие.

Распространенные элементы, которые получают путем использования пружинной стали.

  1. Корпуса подшипников. Отличаются повышенной устойчивостью к внушительным нагрузкам, так как практически в каждой точке борются как с растягивающими, так и с сжимающими усилиями.
  2. Фрикционные диски. Подвергаются большим динамическим нагрузкам и вынуждены сжиматься.
  3. Упорные шайбы. Работают в основном на сжатие, но иногда в деталях возникают растягивающие нагрузки.
  4. Тормозные ленты. Одна из главных задач таких элементов кроется в необходимости сохранения формы и свойств при регулярных растяжениях. Обычная сталь быстро износится и выйдет из строя, поэтому предпочтение отдают более упругим материалам.

Также пружинные сплавы используют для производства шестерней, фланцев и большинства крепежных элементов.

Основные марки и закалка рессорно-пружинной стали

Особой разновидностью стального сплава является рессорно-пружинная сталь. Пружинная сталь обладает рядом особенностей — очень высокий предел текучести, твердость, приемлемый уровень коррозийной устойчивости. Такой материал может гнуться, изменять свою форму под действием внешних факторов. Во время сжатия он сохраняется все свои физические свойства (прочность, механическая устойчивость, химическая инертность). Если такую пружину разжать, то материал вернется в свою обычную форму с сохранением всех физических свойств.

рессорно пружинная сталь

Основные сведения

Рессорно-пружинная сталь — сплав, который обладает очень высоким пределом текучести. Предел текучести — это физическое свойство какого-либо материала, характеризующее напряжение, при котором деформация продолжают расти без увеличения нагрузки. По факту этот показатель отражает способность материала сохранять свою форму при изгибе и скручивании.

Чем лучше материал сохраняют форму при деформации, тем выше у него предел текучести. Высокий предел текучести возникает в материале за счет специальных методов обработки (закалка, отпуск). Это отличает сталь-пружину от многих других стальных сплавов, которые обычно «обретают необычные свойства» за счет включения в их состав различных легирующих добавок.

В России для производства пружинной стали применяются низколегированные сплавы с минимальным количеством добавочных компонентов. В американских, европейских, азиатских странах также часто применяются среднеуглеродистые и высокоуглеродистые соединения, содержащие хром.

Также применяются соединения, содержащие большое количество марганца, никеля, кремния, вольфрама, азота. Эти компоненты делают материал еще более пластичным, а также повышают его химическую инертность (то есть такой материал не будет вступать в реакцию с щелочами, кислотами, солями). Как ясно из названия, пружинная сталь обычно применяется для производства пружин, торсионов, рессор, фортепианных струн, хомутов и многих других изделий.

проволока из пружинной стали

Физические свойства

  • Высокое сопротивление упругой деформации. Этот показатель отражает тот факт, как легко пластичный элемент подвергается сжатию при наличии внешних источников давления. В случае высокого сопротивления стальная пружина плохо поддается сжатию, что помогает детали восстановить свою естественную форму после разжатия.
  • Низкий коэффициент остаточного растяжения. При наличии внешнего источника давления такой материал принимает соответствующую форму. Однако после исчезновения такого источника давления деталь вновь принимает старую форму. Чем ниже коэффициент остаточного растяжения, тем слабее материал подвергается остаточной деформации при исчезновении внешнего источника давления.
  • Хорошая прочность. При сжатии стальной пружины деталь не трескается, сохраняется свою кристаллическую структуру, не рассыпается на несколько частей. Естественная прочность детали может быть повышена за счет внесения в состав стального сплава различных легирующих добавок (никель, хром, титан, свинец).
  • Неплохая коррозийная устойчивость (при наличии легирующих компонентов). Если пружина изготовлена из стали с большим содержанием хрома, то она будет хорошо выдерживать коррозию. Физика процесса выглядит так: при наличии в металле хрома на поверхности материала создается тонкая оксидная пленка. Такая пленка препятствует контакту железа с кислородом, азотом, что минимизирует риск возникновения ржавчины.
  • Химическая инертность (при наличии легирующих компонентов). Легирующие добавки на основе ванадия, вольфрама, алюминия, селена, кремния уменьшают вероятность контакта железа с внешними веществами. Поэтому при контакте металла с каким-либо химическим веществом окислительно-восстановительные реакции не возникают. Это делает пружину инертной в химическом смысле.

изделия из пружинной стали

Легирующие добавки

Чтобы сталь-пружина стала упругой, она должна пройти прокаливание по всему своему сечению. Этот момент является очень важным. Если его проигнорировать, то высокий предел текучести возникнет только на отдельных фрагментах детали. Поэтому при длительном сжатии такая деталь может треснуть, надломиться или лопнуть.

При выборе стального сплава для изготовления пружинно-рессорного элемента нужно помнить о концентрации легирующих добавок. Оптимальная концентрация углерода в составе сплава — 0,5-0,7%. Применение материала с более высоким содержанием углерода допускается, однако в этом нет большого практического смысла. Ведь в таком случае значительно повышается риск растрескивания материала при длительной нагрузке, что делает сталь-пружину бесполезной.

  • Кремний — не более 2,5%.
  • Марганец — до 1,1%.
  • Вольфрам — до 1,2%.
  • Никель — не более 1,7%.

Для получения рессорной стали используются закалка обычного стального материала. Закалку рекомендуется проводить при температуре порядка +800-900 градусов. Во время закалки заметно повышается предел текучести, но одновременно с этим образуется большое количество мартенсита, который негативно влияет на упругость. Для разрушения мартенсита применяются различные технологии. Оптимальная методика — это применение отпуска при средних температурах (400-500 градусов).

Недостатки пружинной стали

  • Плохая свариваемость. Закалка приводит к частичной деформации, разрушению наружного слоя материала. В случае сварки расплавление внешнего закаленного слоя может привести к созданию плохого, некачественного шва с трещинами.
  • Проблематичная резка. Рессорный стальной сплав обладает высоким сопротивлением упругой деформации, поэтому резать такой материал будет сложно.

закалка пружинной стали

Марки стальных сплавов

В соответствии с нормами ГОСТ любой металл маркируется с помощью специального короткого кода, который отражает количественный состав сплава. Код имеет буквенно-числовое обозначение. Структура кода такая — ЧЛ1Л2Л3. Расшифровывается код следующим образом:

  • Ч — это число, которая отражает содержание углерода в сотых или десятых долях процента.
  • Л1, Л2, Л3 — это легирующие добавки (буква) и ее содержание в целых долях процентах (число). Если возле обозначения добавки число отсутствует, то это значит, что элемент содержится в концентрации менее 1%. Обозначения для некоторых элементов: Х — хром, Н — никель, С — кремний, Г — марганец, В — вольфрам, А — азот.
  • Если легирующая добавка одна, то она записывается в виде Л1. При наличии дополнительных элементов легирующие добавки записываются в виде Л2, Л3 и так далее.
  • Для примера рассмотрим два сплава: 50ХГ и 65С2ВА. Сплав 50ХГ содержит 0,50% углерода, а также хром и марганец в концентрации менее 1%. Сплав 65С2ВА содержит 0,65% углерода, 2% кремния + вольфрам и азот в концентрации менее 1%.

как делают пружины

Технология закалки, отпуска пружинной стали

  • Сперва выполняется закалка пружинной стали при высоких температурах. Благодаря закалке заметно повышается предел текучести материала, что делает сталь упругой, ковкой, устойчивой.
  • Однако во время высокотемпературной закалки внутри сплава образуются мартенситные соединения, которые резко ухудшают упругость материала, делают его необычайно ломким и твердым.
  • Чтобы избавиться от мартенситных соединений следует применять отпуск пружинной стали при невысоких температурах. Во время такой обработки мартенситы разрушаются, что позволяет получить материал с нужными свойствами.

Обратите внимание, что температура и время обработки на каждом из этапов зависят от того, какие применяются марки пружинной стали. Для примера: марка рессорно пружинной стали 65Г должна проходить закалку при температуре +800-850 градусов, отпуск — при +400-500 градусах.

В ряде случаев закалка, отпуск комбинируются с процедурой нормализации металла. Эта процедура позволяет избавиться от лишних напряжений внутри металла, однако в большинстве случаев нормализация происходит сама собой во время остывания материала. Поэтому дополнительная обработка методом нормализации обычно не требуется.

термическая закалка

Термическая закалка

  • Методика нагрева металла, характер остывания материала, температура окружающей среды.
  • Состав металла, наличие и тип легирующих добавок, общая концентрация углерода.
  • Способ сохранения нужного температурного диапазона для проведения закалки.
  • Методика охлаждения материала после проведения закалки, способ хранения материала.

Малолегированные стали рекомендуется нагревать быстро. Ведь при медленном нагреве происходит постепенное испарение углерода, что критично для малолегированных материалов. Однако со скоростью нагрева не нужно перестараться. Если нагрев будет идти очень быстро, то в таком случае может произойти неравномерный разогрев материала. Из-за этого возрастает риск образования различных металлических дефектов (трещины, кромки, разрушение углов).

Оптимальным способом нагрева будет применения двух печей. В первой печи материал постепенно нагревается до 500-700 градусов, а потом он поступает во вторую печь, где происходит финальная закалка.

Для нагрева рекомендуется применять газовые печи. Однако во время нагрева следует следить за распределением тепла, чтобы избежать появления «термических островков» на металле. Электрические печи нагреваются достаточно медленно, поэтому их применение в данном случае проблематично с практической точки зрения. Единственное исключение из этого правила — закалка тонких металлов, которые не нуждаются в дополнительном равномерном прогреве по понятным причинам.

Время выдержки зависит от многих параметров, однако в среднем общее время закалки составляет 80 минут для пламенных печей и 20 минут для электрических установок. Определенное значение также имеет форма изделия. При работе с плоским листами закалка может проводиться быстро. Тогда как в случае материала, обладающего сложной формой, рекомендуется выполнить дополнительный прогрев. Оптимальный способ охлаждения материала — на открытом воздухе.

Финальный термический отпуск

Чтобы избежать появления твердых мартенситных фракций, нужно выполнить термической отпуск непосредственно сразу же после закалки. Температурный режим также зависит от того, какая марка рессорно пружинной стали подвергалась закалке. Для отпуска можно применять как пламенные, так и электрические печи. Тип печи будет также влиять на длительность отпуска.

Пример: сталь 65Г рекомендуется подвергать высокому отпуску при температуре +400-500 градусов. Способ охлаждения — воздушный. Время выдержки — 30-150 минут в зависимости от типа печи. После проведения закалки рекомендуется выполнить контрольные мероприятия. Однако делать это нужно только после полного остывания материала, чтобы не повредить сплав.

рессорно-пружинные стали

Заключение

Пружинная сталь обладает повышенным пределом текучести. Благодаря этому материал легко поддается сжатию, однако после разжатия он быстро восстанавливает свою естественную форму. Как ясно из названия, из подобной стали делаются различные пружинистые соединения — рессоры, кольца, тормозные башмаки, фрикционы. Пружинную сталь получают путем закалки обычного стального сплава. Для обработки подходят 50ХГ, 60Г, 70С3А, 85 и другие марки стали.

Пружинная сталь обладает несколькими недостатками. Главные минусы — это неудобная резка и проблематичная сварка.

Производство пружинистой стали выполняется в два этапа. На первом этапе материал помещают в электрическую или пламенную печь, где материал проходит термическую закалку. Во время этой процедуры повышается предел текучести, но одновременно с этим в металле образуется мартенсит. Этот материал при затвердевании становится очень прочным, что негативно сказывается на свойствах металла. Поэтому после закалки необходимо обязательно выполнить термической отпуск. Подобная обработка позволит расплавить вредный мартенсит. Для отпуска можно применять те же самые печи, однако температуру в них нужно значительно снизить. После отпуска металл рекомендуется поместить под открытый воздух, чтобы он смог самостоятельно остыть до комнатной температуры.

Особенности производства пружинной стали

При производстве пружинной стали получается материал с большим пределом текучести. Благодаря этому свойству все изделия, изготавливаемые из этого материала, способны принимать исходную форму даже после скручивания или значительного изгиба. Именно для производства упругих изделий, не испытывающих остаточную деформацию, и предназначаются эти материалы.

Сферы использования

Из пружинной стали изготавливается широкий ассортимент изделий и деталей, используемых в транспортных средствах, агрегатах и заводском оборудовании. Торсионы и рессоры, которые можно встретить в подвесках автомобилей и бронетехники, изготавливаются из стали марок 55C2, 60C2A и 70C3A. С недавнего времени для этих же целей стала использоваться сталь марки 50ХФА. Из нее же обычно изготавливаются клапана для пружин.

Детали для транспортных средств – не единственная сфера, в которой применяется пружинная сталь. Материалы из этой категории используются для изготовления отмычек, пружин для фрикционных дисков, а также для разного рода механизмов, в том числе производственных. Для тех или иных изделий и пружин подходит сталь определенных марок. Между ними есть большие отличия в плане важных эксплуатационных характеристик:

Примеры применения конструкционных легированных сталей

  • 50ХГФА – применяются для создания часовых пружин;
  • 55C2 – рессоры и пружины, используемые в подвеске транспортных средств;
  • 60Г, 65 – для изготовления износостойких и вибростойких пружин, упорных шайб;
  • KT-2 – для проката холоднокатаной проволоки.

Существуют и другие многочисленные марки, причем многие из них способны взаимозаменять друг друга. Например, сталь марки 68 может применяться вместо 65ГА, а сталь марки 70(Г) отлично заменяет 60Г. В ГОСТ можно обнаружить таблицы, в которых приведены все существующие марки с их режимами обработки и свойствами.

Состав и производство

Для сборки пружин и механизмов на их основе используется сталь, в состав которой входит от 0,5% до 0,75% углерода. В случае если содержание этого элемента превышает отметку 0,7%, материал называется инструментальной сталью. Это твердый и высокопрочный материал для изготовления разных инструментов. А также он применяется с целью создания пружин, максимально устойчивых к механическим воздействиям.

Углерод – не единственный элемент, оказывающий влияние на важные характеристики стали для пружин. При производстве металла в его состав намеренно вводятся легирующие компоненты в следующих концентрациях:


  • никель – до 1,7%;
  • вольфрам – до 1,2%;
  • хром – до 1,2%;
  • ванадий – до 0,25%;
  • марганец – до 1,25%;
  • кремний – до 2,8%.

Важнейшим этапом производственного процесса является измельчение зерна. В результате сопротивляемость готового металла мелким пластическим деформациям значительно увеличивается. Это положительным образом сказывается на релаксационной стойкости пружин, которые изготавливаются из высоколегированных сталей.

Современные методы изготовления сплавов для создания пружин позволяют производить материалы с любым исполнением, любой поверхностью и диаметром, если речь идет о пружинной проволоке. Строго соблюдаются как отечественные, так и международные стандарты, определяющие эксплуатационные характеристики стали. Кроме того, осуществляется тщательный контроль качества за каждым этапом создания пружинных сплавов.

Маркировка

Маркировка стали для производства пружинных изделий довольно простая, но при этом информативная. По обозначению можно понять состав материала, которым определяются все его эксплуатационные свойства. Маркировка расшифровывается в направлении слева направо. Она включает в себя следующие позиции:

Маркировка стали

  • первая позиция из двух цифр выражает массу углерода в сотых долях процента;
  • вторая позиция из одной или нескольких букв указывает название легирующего элемента;
  • третья позиция показывает округленную до целого значения долю легирующего элемента.

В случае если доля легирующего элемента в металле составляет менее 1,5%, в маркировке она не указывается. По обозначению можно легко понять, к какому виду принадлежит металл. Например, пружинная сталь марок 65, 70, 75, 80 и 85 относится к категории углеродистых. Материалы, в маркировке которых присутствует минимум две позиции, причисляются к легированным, так как в их составе высокая концентрация легирующих элементов.

Характеристики

Основными свойствами материалов для изготовления стальных тормозных лент, пружин и прочих изделий, являются высокая текучесть и упругость. Значительное увеличение упругости достигается путем закалки сплава в масле при высоких температурах в диапазоне от +820 °C до +870 °C. После закаливания обязательно проводится отпуск в диапазоне температур от +400 °C до +480 °C. Если есть необходимость в повышении таких свойств металла как прочность, вязкость и пластичность, на производстве прибегают к изотермическому закаливанию.

На основании характеристик материала для создания пружин выделяются следующие группы металлов:

  • по химическому составу – обычный, нержавеющий, легированный металл;
  • по способу обработки – калиброванный, горячекатаный, кованый прокат, со специальной отделкой.

Металлы, идущие на изготовление пружин, обязательно проверяются и нормируются по химическому составу. В этом случае прокат классифицируется по категориям. Всего существует 14 категорий, которые обозначаются маркировкой от 1 до 4Б включительно. По некоторым характеристикам нормирование не выполняется. Например, металлы категорий 1, 1A, 1Б не нормируются на наличие обезуглероженного слоя и прокаливаемость.

Основные требования

К ключевым характеристикам пружинного проката предъявляются строгие требования ГОСТ. Основной список технических требований регламентируется ГОСТ 14959-79. В нем содержится перечень как углеродистых, так и легированных марок стали. Там же описаны требования по отношению к маркировке, упаковке, правилам транспортировки, хранения и применения проката из пружинных сталей.

Перечень некоторых требований:

ГОСТ 14959-79

  • максимальная массовая доля меди – 0,2%, остаточное содержание никеля – не более 0,25%;
  • сталь марки 51ХФА может использоваться исключительно для изготовления упругой проволоки;
  • максимальная массовая доля серы и фосфора в стали марки 60С2Г – не более 0,06%.

Некоторые требования к пружинной стали могут не соблюдаться. Например, вышеупомянутый ГОСТ допускает изменение концентрации марганца в составе сплава по желанию заказчика. Однако это действие допустимо только для тех пружинных сплавов, в составе которых нет таких легирующих элементов как никель и хром. А также не рекомендуется сильно отклоняться от таблиц, в которых указаны допустимые концентрации элементов.

Особенности сталей

Рессорно-пружинная сталь – ряд марок, в процессе создания которой применяется метод пластической холодной деформации. Для реализации этого метода могут использоваться дробеструйные и гидроабразивные технологии. Специфические методы, используемые при производстве пружинных металлов, наделяют сплав не только положительными, но и отрицательными качествами. К минусам таких материалов можно отнести:

  • сложность разрезания – этот процесс возможен, однако затрудняется обработка готовых изделий;
  • плохая свариваемость – металлы для производства пружин совсем не предназначены для сваривания.

Сталь 60Г - рессорно-пружинная

Отдельно надо выделить такую разновидность металлов как коррозионностойкая сталь. Это марка специального назначения, главной ее особенностью является высокая устойчивость к коррозионному разрушению. С целью наделения материала такими характеристиками в его состав добавляют легирующие элементы – никель и хром. Содержание никеля варьируется от 9 до 12%, а хрома – от 13 до 27%, в зависимости от необходимых свойств.

В целом пружинный металл пользуется высокой востребованностью, даже несмотря на некоторые недостатки. Применение таких материалов не ограничивается пружинами, фрикционными дисками и рессорами. Сталь используется и в фортепианных струнах, для проката проволоки и других целей.

Видео по теме: Как изготавливают сверхпрочные пружины

Марки пружинной стали - свойства и сфера применения

К конструкционным углеродистым или высокоуглеродистым относят сталь рессорно - пружинную. Для придания ей узконаправленных свойств легируется в небольших количествах 2-3 элементами, в общей сумме до 2,5 %. Но применение этих марок сталей не ограничивается только изготовлением пружин. Называют эту группу так, из-за того, что название это наиболее сильно отражает их главную особенность — упругость.

марки рессорно - пружинной стали

Характеристики пружинных сталей

Пружинные стали характеризуются повышенным пределом текучести (δВ) и упругости. Это важнейшая характеристика металла — выдерживать механические нагрузки без изменений своей первоначальной формы. Т.е. металл, подвергающийся растяжению или наоборот сжатию (упругой деформации), после снятия с него действующих сил, должен оставаться в первоначальной форме (без остаточной деформации).

Марки и область применения пружинной стали

По наличию дополнительных свойств пружинная сталь подразделяется на легированную (нержавеющую) и углеродистую. За основу легированной стали берется углеродистая с содержанием С 65-85 % и легируется 4 основными элементами, всеми или выборочно, каждый из которых вносит свои особенности:

  1. хром;
  2. марганец;
  3. кремний;
  4. вольфрам.

Хром — при концентрации более 13 % работает на обеспечение коррозионной стойкости металла. При концентрации хрома около 30 % изделие может работать в агрессивных средах: кислотной (кроме серной кислоты), щелочной, водной. Коррозионная пружинная сталь всегда легируется вторым сопутствующим элементом — вольфрамом и/ или марганцем. Рабочая t до 250 °C.

Вольфрам — тугоплавкое вещество. При попадании его порошка в расплав, образует многочисленные центры кристаллизации, измельчая зерно, что приводит к повышению пластичности без потери прочности. Это привносит свои плюсы: качество такой структуры остается очень высоким при нагреве и интенсивном истирании поверхности. При термической обработке этот элемент сохраняет мелкозернистую структуру, исключает разупрочнение стали при нагреве (в процессе эксплуатации) и дислокацию. Во время закалки увеличивает прокаливаемость, в результате чего структура получает однородность на большую глубину, что в свою очередь увеличивает эксплуатационный срок изделия.

Марганец и кремний — обычно участвуют в легировании обоюдно, причем соотношение всегда увеличивается в пользу марганца, примерно до 1,5 раз. Т. е. если содержание кремния 1 %, то марганец добавляется в количестве 1,1-1,5 %.

Тугоплавкий кремний является не карбидообразующим элементом. При попадании его в расплав одним из первых принимает участие в кристаллизации, выталкивая при этом карбиды углерода к границам зерен, что соответственно приводит к упрочнению металла.

Марганец можно назвать стабилизатором структуры. Одновременно искажая решетку металла и упрочняя его, марганец устраняет излишнюю прочность кремния.

В некоторые марки сталей (при работе изделия в высокотемпературных условиях, при t выше 300 ºC) в сталь присаживают никель. Он исключает образование карбидов хрома по границам зерен, которые приводят к разрушению матрицы.

Ванадий также может являться легирующим элементом, его функция похожа на действие вольфрама.

В пружинных марках оговаривается такой элемент как медь, содержание ее не должно превышать 0,15 %. Т. к. являясь легкоплавким веществом, медь концентрируется на границах зерен, снижая прочность.

К пружинным маркам относят: 50ХГ, 3К-7, 65Г, 65ГА, 50ХГФА, 50ХФА, 51ХФА, 50ХСА, 55С2, 55С2А, 55С2ГФ, 55ХГР, 60Г, 60С2, 60С2А, 605, 70, 70Г ,75, 80, 85, 60С2ХА, 60С2ХФА, 65С2ВА, 68А, 68ГА, 70Г2, 70С2ХА, 70С3А, 70ХГФА, SH, SL, SM, ДМ, ДН, КТ-2.

Марки такой стали используются для изготовления не только пружин и рессор, хотя это основное их назначение, которое характеризует основное свойство. Их применяют везде, где есть необходимость предать изделию упругость, одновременно пластичность и прочность. Все детали, которые изготавливают из этих марок, подвержены: растяжению и сжатию. Многие их них испытывают нагрузки, периодически сменяющие друг друга, причем с огромной циклической частотой. Это:

  • корпуса подшипников, которые испытывают в каждой точке сжатие и растяжение с высокой периодичностью;
  • фрикционные диски, испытывающие динамические нагрузки и сжатие;
  • упорные шайбы, основное время они испытывают нагрузки на сжатие, но к ним можно присовокупить и резкое изменение на растяжение;
  • тормозные ленты, для которых одним из главнейших задач является упругость при многократно повторяющемся растяжении. При такой динамике с усиленным старением и износом более прочная сталь (с меньшей упругостью) подвержена быстрому старению и внезапному разрушению.

Тоже касается и шестерней, фланцев, шайб, цанг и т. д.

Пружинно-рессорные стали можно сгруппировать по позициям:

  • нелегированные с содержанием углерода 65-85 % — недорогая сталь общего назначения;
  • марганцево-кремниевые — наиболее дешевая с высокими физико-химическими показателями;
  • хромо-марганцевые — нержавеющая сталь, работает в агрессивных средах при t -250 +250 C;
  • дополнительно легированные и/или вольфрамом, ванадием, бором — представляют собой стали с повышенным ресурсом работы благодаря однородной структуре, отличным соотношением прочности и пластичности благодаря измельченному зерну и выдерживает высокие механические нагрузки. Используются на таких объектах как ЖД транспорт.

Маркировка пружинных сталей проводиться следующим образом. Разберем на примере 60С2ХФА:

  • 60 — процентное содержание углерода в десятых долях (углерод не указывается в буквенном значении);
  • С2 — буквенное обозначение кремния с индексом 2, обозначает увеличенное стандартное содержание (1-1,5 %) в 2 раза;
  • Х — наличие хрома до 0,9-1 %;
  • Ф — содержание вольфрама до 1 %;
  • А — добавленный буквенный индекс А в конце маркировки обозначает минимальное содержание вредных примесей фосфора и серы, не более 0,015 %.

пружина

Производство

В зависимости от дальнейшей обработки и окончательно вида детали, сталь поставляется в листах, проволоке, шестигранниках, квадратах. Высокие эксплуатационные качества изделия обеспечиваются 2 составляющими:

  1. структурой металла, которая определяется химическим составом и последующей обработкой;
  2. наличием в структуре неметаллических включений, точнее минимальным количеством и размерами, что устраняется на этапе выплавки и разливки;
  3. формой детали (спираль, дуга) и ее размерами, что определяется расчетным методом.

При растягивании пружины, внутренние и наружные стороны витков испытывают различные степени нагрузки: внешние меньше подвержены растяжению, в то время как внутренние испытывают наибольшую степень деформации. Тоже касается и концов пружины: они служат местом крепления, что увеличивает нагрузку в этих и граничащих местах. Поэтому разработаны марки стали, которые предпочтительно используются на сжатие либо растяжение.

Термомеханическая обработка

Все без исключения пружинные стали повергаются термомеханической обработке. После нее прочность и износостойкость способна увеличиться в 2 раза. Форму изделию придают в отожженном состоянии, когда сталь имеет максимально возможную мягкость, после чего нагревают до 830-870 С и охлаждают в масляной или водной среде (только для марки 60 СА). Полученный мартенсит отпускают при температуре 480 ºC.

Все требования и рекомендации к этому виду стали описаны в ГОСТ 14959-79. На их основании предприятием разрабатываются более детальные технологические листы, которые отвечают узким параметрам.

Читайте также: