Сталь и серная кислота

Обновлено: 06.05.2024

Поверхностное разрушение металла под действием внешней среды называется коррозией.

Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно подобрать сталь, практически не подвергающуюся разрушению в данной среде.

При введении таких легирующих элементов происходит скачкообразное повышение коррозионной стойкости. К примеру, введение в сталь более 12% хрома (Cr) делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Стали содержащие менее 12% Cr, практически в столь же большой степени подвержены коррозии, как и железо. Стали содержащие 12-14% Cr, ведут себя как благородные металлы: обладая положительным электрохимическим потенциалом, они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.

Хромистые нержавеющие стали

Хромистые нержавеющие стали применяют трех типов: 13, 17 и 27% Cr в зависимости от требований имеют различное содержание углерода.

Стали с более 17% Cr имеют иногда небольшие добавки титана и никеля, которые вводят для улучшения механических свойств. Помимо этого стали с таким содержанием хрома обладают высокой коррозионной стойкостью вплоть до температуры 900 ºС.

Стали с содержанием хрома 13% более распространенные и наименее дорогостоящие, их применяют для бытовых назначений и в технике. Эти стали хорошо поддаются сварке. Сплавы с низким содержанием углерода пластичны, с высоким - обладают высокой твердостью и повышенной прочностью, из них изготавливают детали повышенной прочности и износоустойчивости (хирургический инструмент, подшипники, пружины и другие детали, работающие в активной коррозионной среде).

Аустенитные стали

Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более коррозионностойкой и не хладноломкой. Нержавеющие стали с 18% Cr и 10% Ni получили наиболее широкое распространение в машиностроении.

Для того, чтобы повысить сопротивление коррозии в кислотах в сталь вводят молибден и медь, особенно молибден с медью при одновременном увеличении содержания никеля. При необходимости, чтобы иметь еще и высокие механические свойства вводят титан и алюминий.

Более высокую коррозионную стойкость имеют никеливые сплавы типа хастеллой 80% Ni и 20% Mo (сплавы НИМО) с дополнительным легированием.

Титан

Титан (Ti) имеет высокую удельную прочность, благодаря чему сплавы на его основе получили широкое применение в технике, особенно в тех областях, где важное значение имеет масса (авиация, ракетостроение и др.). Титан обладает высокой коррозионной стойкостью в большом количестве агрессивных сред, превосходя зачастую в этом отношении нержавеющую сталь. Поэтому проще перечислить среды, в которых титан растворяется: например, плавиковая, соляная, серная, ортофосфорная, щавелевая и уксусная кислоты.

Высокая коррозионная стойкость титана обусловлена образованием на поверхности плотной защитной оксидной пленки. Если эта пленка не растворяется в окружающей среде, то можно считать, что титан в ней абсолютно стоек. Например, морская вода за 4000 лет растворит слой титана толщиной 30 - 40 микрон (1 микрон равен 10-4 см). Если же оксидная пленка растворима в данной среде, то применение в ней титана недопустимо.

Тугоплавкие металлы

К тугоплавким относят металлы: ванадий, вольфрам, гафний, молибден, ниобий, тантал, технеций, титан, хром, цирконий, - температура плавления которых выше температуры плавления железа (1539 ºС), кроме металлов платиновой и урановой групп и некоторых редкоземельных.

Следует отметить, что при высоких температурах все тугоплавкие металлы являются кислотостойкими. При этом наиболее сильно выделяется тантал. Ниобий и молибден по коррозионной стойкости превосходят сплавы на основе железа или никеля, однако уступают танталу.

Применение таких материалов целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а так же некоторые промышленные среды.

Несмотря на высокую стоимость металлов по сравнению с такими коррозионностойкимиматериалами, как высоколегированная нержавеющая сталь или хастеллой, применение сплавов тугоплавких металлов оправдано, так как вследствие высокой стойкости возможно эксплуатировать химические установки практически весь срок без замены приборов.Коррозионная стойкость нержавеющих сталей в некоторых кислотах.Прии комнатной температуре высокой стойкостью в этой кислоте обладают все

Коррозионная стойкость нержавеющих сталей в некоторых кислотах

Серная кислота

При 70ºС хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5% H2SO4 могут работать стали с добавлением молибдена и меди.

Однако последние разрушаются в кипящей серной кислоте до концентрации 30%. В этих случаях следует применять сплавы типа хастеллой, а при концентрации выше 30% в кипящей серной кислоте могут работать лишь тугоплавкие металлы.

Фосфорная кислота

При комнатной температуре любой концентрации устойчивы аустенитные стали, хромистые нет. В горячей кислоте устойчивы стали с добавками молибдена и меди до концентрации 25%, в кипящей - хастеллой до 50%, а при более высокой устойчивы лишь тугоплавкие металлы.

В соляной кислоте устойчивы стали с добавлением молибдена или меди при комнатной температуре и до концентрации 5%.

Коррозионная стойкость металлов и сплавов при нормальных условиях

Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами.
Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава.
На выбор металла или сплава также могут оказывать влияние экономические соображения.

Условные обозначения:

А - обычно не корродирует,
В - коррозия от минимальной до незначительной,
С - не подходит

Как травить сталь кислотами

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры.

Поскольку медь и цинк в последнее время довольно сильно выросли в цене, многие художники, специализирующиеся на вытравливании узоров на металле, перешли на сталь. Хотя сталь и не настолько изысканный металл, как медь, она лучше цинка и является к тому же более устойчивой, особенно при использовании в качестве печатной платы. Кислотой можно травить несколько видов стали, включая малоуглеродистую и нержавеющую. При травлении стали придерживайтесь данной инструкции.

Выберите тип стали, на которой вы хотите вытравить узор. Вы можете вытравливать на нержавеющей, мало- или высокоуглеродистой стали. Тип стали будет определять наиболее подходящую кислоту для травления.

Снимите все заусенцы на краях стальной детали. Счистите любые заусенцы по краям стальной детали, на которой вы планируете вытравливать узор. Если вы вытравливаете узор на стальной пластине, то заусенцы на обратной стороне можно оставить.

Очистите сталь. Используйте хлорсодержащее чистящее средство на абразивной губке, щетку с металлической щетиной, тонкую металлическую мочалку, мокрую наждачную бумагу марки 600 или корундовую бумагу; трите поверхность круговые движения. Вам нужно, чтобы поверхность была достаточно шероховатой для того, чтобы материал резиста держался не ней, но не поцарапанной, иначе у вас будут вытравлены лишние линии, которые не являются частью узора.

  • Если вы планируете воспроизвести существующий узор, то выберите что-то с высоким контрастом черного и белого.
  • Если вы планируете делать и продавать отпечатки ваших вытравленных узоров, выберите изображение с публичным доступом или получите разрешение от владельца авторских прав, если они существуют.
  • Старейший метод перевода изображений – это нанести на сталь покрытия из жидкого лака или воскоподобной субстанции (например, пчелиного воска), или даже эмалевой краски или лака для ногтей. Такое покрытие называется грунтом. Вы можете процарапать ваше изображение прямо на грунте с помощью иголок или режущих инструментов. (Данный процесс напоминает резьбу по дереву.) Грунт будет служить резистом, изолирующим от действия травильной кислоты те покрываемые им участки стали.
  • Другой метод – покрыть поверхность стали следами перманентных маркеров в тех местах, которые вы не хотите протравливать. Чтобы определить самый лучший резист, вам придется поэкспериментировать с несколькими перманентными маркерами различных брендов и цветов.
  • Третий метод заключается в создании трафарета, переносимого на сталь с помощью утюга, либо фотокопированием картинки на переводную бумагу, либо печатью его на глянцевой фотобумаге лазерным принтером. Положите бумагу на поверхность стали изображением вниз и выставленным на высокую температуру утюгом разглаживайте ее плавными круговыми движениями в течение 2–5 минут. (Если вы используете переводную бумагу, то давите на нее аккуратно, а если используете фотобумагу, то вдавливайте утюг с силой.) После этого вы можете снять бумагу. (Переводная бумага отслоится сама по себе, а для удаления фотобумаги требуется поместить ее в лоток с горячей водой для размягчения.) Переведенные чернила станут резистом для травильной кислоты.

Закройте края стального изделия. Вы можете наклеить на края стали клейкую ленту или закрасить их. Оба метода предотвращают травление кромок стального изделия

Сталь и серная кислота


Проконсультируйте по трубам из нержавейки.
Для обвязки оборудования применили трубы по ГОСТ 9941 из стали 12Х18Н10Т при перекачивании отработанного травильного раствора серной кислоты концентрацией 0,5% и температурой до 60С.
Трубы потекли через 2недели.
В основном по сварным швам или рядом (в некоторых местах и по всей длине).

В справочниках информация разная.
Мы применили эту сталь основываясь на проектных данных существующей трубной обвязки травильного оборудования,
которая работает на трубах из этой стали уже более 20лет
Сейчас уточняем, может в существующей обвязке другую сталь применили, а проект не меняли.

Кто сталкивался с серной кислотой маленькой концентрации и высоких температур? Держит сталь 12Х18Н10Т кислоту при таких условиях? Либо надо другую сталь применять?
От чего еще могли возникнуть проблемы с трубами? В каком справочнике можно посмотреть материалы, стойкие к серной кислоте при разных концентрациях и температурах?

Серная кислота реагирует с нержавеющей сталью и образует тонкий слой сульфатов. Слой сульфатов пассивен к серной кислоты и выступает защитным слоем, при этом сам металл к серной кислоте не стоек. Соответственно, чтобы нержавеющая сталь "держала", нужно одновременно выполнить несколько условий:
- металл должен пройти пассивацию (должен образоваться защитный слой)
- защитный слой не должен быть удалён
- защитный слой должен быть однородным

Нержавеющая сталь перестаёт быть коррозионно стокой при:
- эрозии защитного слоя (например большие скорости потока)
- растворении защитного слоя (например разбавленной соляной кислотой или её солями)
- трещинах (например при коррозионном растрескивании сварных швов под действием ионов хлора)
- недостаточной пассивации (например под грязью, ржавчиной или колонией бактерий)
- локальном повышении концентрации (например испарении недренируемых карманов)
- перегрев (например теплоспутник или пропарка)

Сталь 08Х18Н10Т не применяют из-за высокой скорости коррозии. Буржуины применяют марки 304, 316, 317 по ситуации (аналог Х18Н10, Х17Н13М2, Х19Н13М3 соответственно). Положительный опыт эксплуатации 20 лет это хорошо, любой поступил бы на Вашем месте также. Но важно обеспечить аналогичные условия эксплуатации, включая порядок пуска и остановки, примеси, температуры, концентрации и скорости.

В каком справочнике можно посмотреть материалы, стойкие к серной кислоте при разных концентрациях и температурах?

Определитесь с механизмом коррозии. Информации только о содержании серной кислоты не достаточно. Нужны примеси (например сколько ppm галогенов) и реальные условия эксплуатации. Также будет полезным реальный химический состав металла.

Всем Добрый день. Поделитесь чертежом бака горизонтального на 10 м3 для хранения серной кислоты, 92-94%. С обвязкой, крышкой, что внутри должно быть - какие трубопроводы? Спасибо.

Конструкция ситуативная, зависит от оборачиваемости, способа слива/налива, условий хранения. Стандарт

Не совсем понятный ответ. Обычный расходный бак серной кислоты. Патрубки в крышке. Только какие обязательно?

Вам же написали "ситуативная", т.е. не "какие обязательно", а скорее "какие Вам нужны".
Видел серии на вертикальные резервуары. В некоторых просто "верхний люк" и "нижний люк". Про Ваше оснащение никто кроме Вас тут не в курсе: штуцера на заполнение , штуцера на опорожнений, дыхательные, переливные, аварийной перекачки, люки для осмотра, люки для насосов, штуцера для уровнемеров.

Коррозия металлов в кислотах

Коррозия металла в кислотах – это его разрушение при взаимодействии с концентрированными или разведенными кислотами. Часто такие разрушения встречаются на химических производствах и других сферах деятельности человека. Слабые кислотные растворы могут создавать даже некоторые продукты питания, и непокрытый металл, соприкасающийся с ними, будет коррозировать. То, как себя поведет металлический предмет при контакте с кислотой, зависит от его способности пассивироваться. Процесс коррозии металлов в кислотах проходит с выделением водорода.

Рассмотрим более подробно случаи коррозии металла в кислотах разного происхождения.

Коррозия металлов в соляной кислоте

Соляная кислота является очень агрессивной по отношению к металлам. В большей степени это обуславливается содержанием в ней ионов Cl - . Даже коррозионно-стойкие стали подвергаются разрушению, когда концентрация кислоты выше среднего. Если же раствор достаточно сильно разбавлен, такие стали коррозии не подвергаются.

Коррозия никеля в серной кислоте не протекает даже в случаях, когда достигается температура кипения. В присутствии трехвалентного железа, хлоридов, других окислителей никель и его сплавы начинают разрушаться.

Низколегированная аустенитная сталь при комнатной температуре и концентрации соляной кислоты в 0,2 – 1% подвергается коррозии со скоростью 24 г/(м 2 •сут).

Коррозия металлов в органических кислотах

Самой сильной среди органических кислот является уксусная. В яблочной, бензойной, пикриновой, олеиновой, винной, стеариновой кислотах даже при больших температурах (выше 100°С) коррозионно-стойкие стали отличаются высокой устойчивостью. При контакте металлов с муравьиной кислотой образуются питтинги (особенно при увеличении температуры). Глубина их даже больше, чем в уксусной кислоте.

В органических кислотах высокой устойчивостью обладает алюминий, т.к. на его поверхности присутствует защитная пленка труднорастворимых окислов.

Щавелевая, себациновая, лимонная и молочная кислоты вызывают коррозию сталей только при больших концентрациях. В них устойчивы хромистые стали с добавками молибдена.

Коррозия металлов в азотной кислоте

Азотная кислота обладает агрессивным воздействием по отношению ко многим металлам. Малоуглеродистые стали не обладают достаточной устойчивостью в растворах азотной кислоты. Кроме того, при повышении концентрации HNO3 до 35 – 40% (при данных концентрациях сталь переходит в пассивное состояние) коррозия малоуглеродистых сталей в азотной кислоте увеличивается. При концентрации азотной кислоты близкой к 100% пассивное состояние нарушается. Азотная кислота является окислителем. При коррозии железа катодными деполяризаторами являются молекулы азотной кислоты и нитрат-ионы. Устойчивость в азотной кислоте хромистых сталей повышается, если в их состав вводить никель и молибден. Коррозионное разрушение сталей в азотной кислоте происходит по границам зерен. На алюминий слабое влияние оказывают пары азотной кислоты или растворы с концентрацией более 80%. При нормальной температуре алюминий обладает высокой коррозионной стойкостью в азотной кислоте. Скорость коррозии алюминия в азотной кислоте возрастает при постоянном перемешивании и присутствии в растворе хлорид-ионов.

Коррозия металлов в серной кислоте

При концентрации серной кислоты около 50 – 55% поверхность железа переходит в пассивное состояние. Далее с повышением температуры и концентрации серной кислоты поверхность железа становится активной (наблюдается коррозия железа в серной кислоте).

В растворах серной кислоты, как и в других кислотах, на скорость коррозии железа большое влияние оказывает природа анионов. Это связано с торможением катодного и анодного процессов и их адсорбцией на поверхности металла.

Я.М. Колотыркин развил представления, что на анодное растворение железа оказывают влияние анионы. Это связано с образование комплекса:

Из вышеперечисленных уравнений понятно, что скорость анодного процесса возрастает с увеличением концентрации ионов HSO4 - и SO4 2- . С поверхности железа сульфат ионы вытесняются хлорид ионами, но до определенной концентрации ионов хлора, скорость протекания анодного процесса замедляется.

В 95 – 98% серной кислоте при нормальной температуре хорошей устойчивостью обладают хромистые стали (с содержанием хрома около 17%) с небольшой добавкой молибдена или без него. В таких условиях (при большой концентрации серной кислоты) стоек также алюминий и углеродистые стали. Чистый алюминий (99,5%) более устойчив в серной кислоте, чем его сплавы, в состав которых не входит медь. Скорость коррозии алюминия в серной кислоте (и его сплавов) при повышении температуры с 20°С до 98°С увеличивается с 8 до 24 г/(м 2 •сут). Коррозионно-стойкие стали в 5-ти или 20-% растворе при температуре кипения серной кислоты устойчивы только в присутствии ингибиторов коррозии.

При обычной температуре в серной кислоте коррозия меди практически не наблюдается. А при повышении температуры до 100°С процесс разрушения интенсифицируется. В 25% растворе серной кислоты, повышенном давлении и температуре близкой к 200°С медь быстро разрушается.

Латунь не обладает коррозионной стойкостью в растворах серной кислоты любых концентраций даже при комнатной температуре. Устойчивость латуней к разрушению в серной кислоте можно только повысить введением в раствор 30% соли CuSO4•5H2O.

Коррозия металлов в фосфорной кислоте

Наибольшей стойкостью к коррозии в фосфорной кислоте отличаются молибденовые стали. Алюминий и его сплавы (в состав которых не входит медь, магний) устойчивы в фосфорной кислоте. При обычной температуре не поддаются также разрушениям хромоникелевые аустенитные стали (в растворах фосфорной кислоты любой концентрации). В концентрированной технической фосфорной кислоте при температуре не выше 50°С стойки малоуглеродистые стали. Если сталь с 17% хрома поместить в раствор фосфорной кислоты, концентрацией от 1 до 10%, то она будет обладать высокой устойчивостью даже при температуре кипения.

Медь практически не подвергается коррозии в фосфорной кислоте при температуре от 20 до 95°С. Но если в систему вводить окислитель и повышать температуру – скорость коррозии меди в фосфорной кислоте значительно увеличивается. Бронзы и латуни в фосфорной кислоте ведут себя аналогично.

Коррозия металлов во фтористоводородной кислоте

Чугун, малоуглеродистая сталь и железо во фтористоводородной кислоте быстро разрушаются. В 10-% фтористоводородной кислоте при нормальной температуре обладают хорошей устойчивостью хромистые стали (с содержанием хрома 17%). В 20-% кислоте при температуре до 50°С устойчивы аустенитные высоколегированные стали. Латуни не разрушаются в 40-60-% фтористоводородной кислоте при 20°С. Магниевые сплавы устойчивы при температурах до 65°С в 45-% растворе.

Читайте также: