Стальные незащищенные конструкции при пожаре

Обновлено: 16.05.2024

В соответствии с требованиями нормативных документов по пожарной безопасности (см., например , п. 5.4.3 СП 2.13130.2012 ”Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты"), если требуемый предел огнестойкости конструкций (за исключением конструкций в составе противопожарных преград) составляет R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости. Исключением являются случаи, когда предел огнестойкости хотя бы одного из элементов несущих конструкций (структурные элементы ферм, балок, колонн и т. п.) по результатам испытаний составляет менее R 8. Однако на практике последним условием зачастую пренебрегают и принимают предел огнестойкости для незащищенных стальных конструкций равным R 15. Кроме того, недостаточно ясно, как фактический предел огнестойкости незащищенных стальных конструкций зависит от их приведенной толщины 6 кр (мм). При этом величина R 5 может быть как избыточной (при больших значениях бкр) , так и недостаточной (при малых значениях Дк р). Данные по фактическому пределу огнестойкости стальных незащищенных конструкций при различных значениях б , представленные в [1], относятся к стандартному температурному режиму так называемого ”целлюлозного” пожара (см. ISO 834-1 : 1999 ”Испытания на огнестойкость . Элементы строительных конструкций. Часть 1. Общие требования”; ГОСТ 30247.()—94 ”Конструкции строительные. Методы испытаний на огнестойкость. Общие требования”). В то же время незащищенные стальные конструкции зачастую используются на предприятиях нефтегазового комплекса, для которых характерен углеводородный температурный режим пожара (см. ГОСТ Р ЕН 1363-2—2014 ”Конструкции строительные. Испытания на огне- стойкость. Часть 2. Альтернативные и дополнительные методы"). Однако в литературе для такого случая отсутствует зависимость предела огнестойкости от приведенной толщины конструкции 6 кр• В работе [2] представлен инженерный метод расчета пределов огнестойкости стальных конструкций и для стандартного ”целлюлозного” пожара вычислены температуры конструкций, имеющих различные приведенные толщины. Вопросы оценки огнестойкости стальных конструкций, а также поведения строительных конструкций (в том числе стальных незащищенных) при пожаре освещались и в работах [3—1], но тоже в основном для случая стандартного ”целлюлозного” пожара. И лишь в работах [17—19] рассматриваются иные температурные режимы пожара. В связи с вышеизложенным настоящая работа посвящена расчетной оценке фактического предела огнестойкости незащищенных стальных конструкций для температурных режимов, соответствующих стандартным ”целлюлозному” и углеводородному пожарам.

Методика расчета и полученные результаты

Проведено численное моделирование прогрева незащищенных стальных конструкций, имеющих различные приведенные толщины бкр, при воздействии стандартных ”целлюлозного” и углеводород-ного пожаров. Использован программный комплекс FDS б [20]. Температурные режимы ”целлюлозного” и углеводородного пожаров описывались соотношениями:

”целлюлозный” режим (ГОСТ 30247.0-94):

т = то + 345* 1оg(8t + 1); (1)

углеводородный режим (ГОСТ Р ЕН 1363-2-2014):

Т=1080 (1-0,325е '-0,167t ' -0,675е ' 25' )+20, (2)

где Т, То — текущая и начальная температуры, С;

t — время от начала пожара, мин.

Рассмотрены стальные незащищенные конструкции с приведенной толщиной от З до 60 мм. Предел огнестойкости определялся по достижении конструкцией температуры 500 С (ГОСТ Р 53295—2009 ”Средства огнезащиты для стальных конструкций. Общие требования. Методы определения огнезащитной эффективности”). На рис. 1 представлена зависимость фактического предела огнестойкости незащищенных стальных конструкций от их приведенной толщины при


воздействии стандартных ”целлюлозного” (кривая 1) и углеводородного (кривая 2) пожаров. На рис. 1 для сравнения представлены также данные работы [1 , с. 356] для стандартного ”целлюлозного” пожара (кривая З). Видно, что с увеличением приведенной толщины конструкции б фактический предел огнестойкости заметно возрастает. Обращает на себя внимание и тот факт, что для стандартного ”целлюлозного” пожара рассчитанный предел огнестойкости превышает 15 мин. В соответствии с СП 2.13130.2012 (п. 5.4.3), если требуемый предел огнестойкости конструкции (за исключением конструкции в со- ставе противопожарных преград) составляет R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости. Исключение составляют случаи, когда предел огнестойкости хотя бы одного из элементов несущих конструкций по результатам испытаний менее R 8. Результаты расчетов, выполненных в настоящей работе, подтверждают правильность этого требования для случая стандартного ”целлюлозного” пожара. В то же время применение данного требования для стандартного углеводородного пожара может привести к ошибочным результатам, так как фактический предел огнестойкости (см. рис. 1) может быть менее 1 5 мин. Следует отметить удовлетворительное согласие результатов, полученных в настоящей работе для стандартного ”целлюлозного” пожара, с данными, приведенными в [1] (см. рис. 1, кривые 1 и З). В работе [19] найдено приближенное соотношение между температурами строительных конструкций при воздействии на них стандартных ”целлюлозного” и углеводородного пожаров: (3) времена достижения одной и той же тем- где % , ts ¯ температуры соответственно для углеводородного и ”целлюлозного” режимов пожара; К — коэффициент, равный 0,6 для бетонной конструкции и 0,28 для стальной незащищенной конструкции. Соотношение (З) может быть распространено и на рассматриваемый случай. При этом для стальной незащищенной конструкции коэффициент К может зависеть от ее приведенной толщины. Для определения зависимости коэффициента К от приведенной толщины конструкции (рис. 2) использованы данные, представленные на рис. (кривые 1 и 2). Из рис. 2 видно, что коэффициент К зависит от приведенной толщины строительной конструкции б . При этом при б более 30 мм эта зависимость довольно слабая, и в этом случае величина К может быть принята приближенно равной 0,39.

В настоящей работе с помощью программного комплекса FDS б проведено численное моделирование воздействия стандартных ”целлюлозного” и углеводородного пожаров на стальные незащищенные строительные конструкции при их различных приведенных толщинах б . Найдено, что для ”целлюлозного” пожара фактический предел огнестойкости превышает 15 мин при б = 5 мм, что подтверждает обоснованность допущения СП 2.13130.2012 о применение защищенных стальных конструкций для данного температурного режима пожара. В то же время для углеводородного пожара это допущение неприемлемо. Найдена зависимость между пределами огнестойкости для ”целлюлозного” и углеводородного пожаров при различной приведенной толщине конструкций. Результаты работы свидетельствуют о необходимости корректировки п. 5.4.3 СП 2.13130.2012 в части применения стальных незащищенных конструкций для зданий и сооружений , для которых характерен углеводородный пожар.

СПИСОК ЛИТЕРАТУРЫ

1. МолчадскиЙ И. С. Пожар в помещении. — М. : ВНИИПО, 2005 — 456с.

2. Голованов В. И., Павлов В. В., Пехотиков А. В. Инженерный метод расчета огнестойкости стальных конструкций с огнезащитными плитами КНАУФ-Файерборд Пожарная безопасность. — 2016. — Х! З. —С. 171-178.

3. Голованов В. И., Павлов В. В., Пехотиков А. В. Оценка качества нанесения средств огнезащиты на стальные конструкции зданий и сооружений различного функционального назначения Пожарная безопасность. — 2015. — Ме 3. — С. 74—82.

4. Голованов В. И., ПехотиковА. В., Павлов В. В. Расчет огнестойкости конструкций из стали с повышенными показателями огнестойкости для объектов нефтегазовой промышленности Территория НЕФТЕГАЗ. — 2007. — 4. —С. 72-77.

5. Хасанов И. Р., Голованов В. И. Обеспечение огнестойкости несущих строительных конструкций // Юбилейный сборник трудов ФГБУ ВНИИПО МЧС России. — М. : ВНИИПО, 2012. — с. 81-101.

б . PD 7974-7:2003. Application 0ff1re safety engineering principles to the design ofbuildings — Part 7: Probabilistic risk assessment. — London : British Standards Institution, 2003. — 88 р .

7. LawM. А review offormulae forT-equivalence Fire Safety Science. — 1997. — Vol. 5. — Р . 985—996. DOI: 10.3801/iafss.fss.5-985.

8. Thomas G. С ., BuchananA. Н ., Fleischmann С . М . Structural Пте design: the role oftime equivalence // Fire safety Science. — 1997. — vol. 5. — Р . 607-618. DOI: 10.3801/iafss.fss.5-607.

9. Shebeko Уи . N., Shebeko А . Уи . Conditions 0ff1re and explosion safety at а determination ofoperation parameters 0f industrial facilities // Science and Technology 0f Energetic Material. — 2011. Vol. 72, No. 2. — Р . 57-61.

10. CadorinJ. F., Perez Jimenez С ., FranssenJ. М . Inf1uence ofthe section and ofthe insulation type оп the equivalent time // Proceedings ofthe 4th lntemational Seminar оп Fire and Explosion Hazards. — Ulster : University 0fUlster, 2004. — Р . 547—557.

11. Уапд You-Fu, FuFeng. Fire resistance ofsteel beam to square CFST column compositejoints using RC slabs: Experiments and numerical studies Fire Safety Journal. — 2019. — Vol. 104. — Р . 90—108. DOI: 10.1016/j.frresaf.2019.Ol.009.

12. Шебеко А . Ю ., Шебеко Ю . Н ., ГорДиенкоД . М. Расчетная оценка эквивалентной продолжительности пожара для стальных конструкций технологической эстакады нефтеперерабатывающего предприятия // Пожарная безопасность. — 2017. — Ме 1. — С. 25—29.

14. Guo-Qiang Li, JianJiang, Уопд С . Wang. Experimental study ofthe inf1uence oftopcoaton insulation performance 0f intumescent coating for steel structures Fire Safety Journal. — 2018. — vol. 101. — Р . 25-38. DOI: 10.1016/j.frresaf.2018.08.006.

15. Meijing Liu, Shenggang Fan, Wenjun Sun, Runmin Ding, Ting Zhu. Fire-resistant design ofeccentrically compressed stainless steel columns with constraints / / Fire Safety Journal. — 2018. — Vol. — Р . 1-19. DOI: lO.1016/j 6resaf.2018.06.006.

16. Maciulaitis R., Grigoni,s М ., Malaiskiene Ј . The impact ofthe aging ofintumescent f1re protective coatings оп f1re resistance // Fire Safety Journal. — 2018. — Vol. 98. — Р . 15—23. DOI: 1 О . 1016/j f1resaf.2018.03.007.

17. Lucherini А ., Giuliani L., Jomaas (7. Experimental study ofthe performance 0f intumescent coatings exposed to standard and non-standard f1re conditions // Fire Safety Journal — . 2018. — Vol. 95.— Р . 42-50. DOI: 10.1016/j.6resaf.2017.lO.004.

18. QuielS. Е ., УоКоуата Т ., BregmanL. S , Muellerk. А ., Marjani,shviliS. М . А streamlined frame work for calculating the response 0f steel-supported bridges to open-car tanker truck f1res // Fire Safety Journal. . Р. 63-75. DOI: 10.1016/j.fwesaf.2015.03.004.

—2015. —Vol. 73. -- P . 63-75. DOI :10.1016/ j . firesaf .2015.03.004

19. Шебенко А.Ю., Шебенко Ю.Н. Взаимосвязь величин температуры строительных конструкций при стандартном и углеводородном температурных режимах пожара // Пожарная безопасность. -- 2017. --№2 — C . 46—49.

20. McGrattan K. B., McDermott R. J, Weinschenk C. G, Forney G. P. Fire Dynamics Simulator. Technical Reference Guide (version 6. l) / MST Special Publication- 1018. — Gaithersburg, Maryland : National Institute of Standards and Technology, 2013.

Информация об авторах

Шебенко Юрий Николаевич , д-р техн. наук, профессор, главный научный сотрудник, Всероссийский научно-исследовательский институт противопожарной обороны МЧС России, г. Балашиха Московской обл., Российская Федерация;

Зубань Андрей Владимирович , канд. техн. наук, заместитель начальника отдела ФГБУ Всероссийский научно-исследовательский институт противопожарной обороны МЧС России, г. Балашиха Московская обл., Российская Федерация;

Шебеко Алексей Юрьевич , канд. техн. наук, начальник отдела ФГБУ Всероссийский научно-исследовательский институт противопожарной обороны МЧС России, г. Балашиха Московская обл., Российская Федерация;

Определение предела огнестойкости строительных конструкций. Таблица

Согласно Федерального закона от 22.07.2008 N 123-ФЗ (ред. от 30.04.2021) “Технический регламент о требованиях пожарной безопасности” Статья 35. Классификация строительных конструкций по огнестойкости.

Строительные конструкции зданий и сооружений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

  • ненормируемый;
  • не менее 15 минут;
  • не менее 30 минут;
  • не менее 45 минут;
  • не менее 60 минут;
  • не менее 90 минут;
  • не менее 120 минут;
  • не менее 150 минут;
  • не менее 180 минут;
  • не менее 240 минут;
  • не менее 360 минут.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний.

Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

Пределы огнестойкости строительных конструкций имеют следующие обозначения:

  • потеря несущей способности (R);
  • потеря целостности (Е);
  • потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I);
  • достижение предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

Предел огнестойкости для заполнения проемов в противопожарных преградах наступает:

  • при потере целостности (Е),
  • теплоизолирующей способности (I),
  • достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).

Внимание: методические материалы для проведения занятий по данной теме по кнопке скачать после статьи!

Степени и пределы

(зданий, сооружений, строений и пожарных отсеков)

Смотрим таблицу 21 согласно Федерального закона от 22.07.2008 N 123-ФЗ “Технический регламент о требованиях пожарной безопасности”.

Соответствие степени огнестойкости и предела огнестойкости строительных конструкций зданий, сооружений и пожарных отсеков.

Строительные конструкции бесчердачных покрытий

Строительные конструкции лестничных клеток

Примечание. Порядок отнесения строительных конструкций к несущим элементам здания и сооружения устанавливается нормативными документами по пожарной безопасности.

Металлических

Испытания предела огнестойкости дверей

Испытание предела огнестойкости дверей

Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 – R15) для стальных конструкций; (R6 – R8) для алюминиевых конструкций. Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.

Пособие по определению пределов огнестойкости строительных конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (утверждено приказом ЦНИИСК 351/л от 19.12.1984 с изменениями 2016 года).

В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R15 (RE15, REI15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R8 (СП 2.13130.2012).

Причина столь быстрого исчерпания незащищенными металлическими конструкциями способности сопротивляться воздействию пожара заключается в больших значениях теплопроводности и малых значениях теплоемкости. Высокая теплопроводность металла практически не вызывает температурного градиента внутри сечения металлической конструкции. Это приводит к тому, что при пожаре температура незащищенных металлических конструкций быстро достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала до такой величины, что конструкция становится неспособной выдерживать приложенную к ней внешнюю нагрузку, в результате чего наступает предельное состояние конструкции по признаку потере несущей способности (R).

Значения критической температуры Tcr прогрева различных металлических конструкций при нормативной эксплуатационной нагрузке приведены в таблице:

Низколегированная сталь марки:

Алюминевые сплавы марки:

Как видно из таблицы критические температуры для алюминиевых конструкций в 2-3 раза ниже, чем у стальных элементов. Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций: облицовка несгораемыми материалами, нанесение на поверхность специальных огнезащитных покрытий (красок и обмазок), наполнение полых конструкций водой постоянным или аварийным, с естественной или принудительной циркуляцией.

Деревянных

Испытания предела огнестойкости

Испытания на предел огнестойкости

В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов: времени от начала воздействия пожара до воспламенения древесины времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции.

Традиционным способом повышения огнестойкости деревянных конструкций является нанесение штукатурки. Слой штукатурки толщиной 2 см на деревянной колонне повышает ее предел огнестойкости до R60. Эффективным способом огнезащиты деревянных конструкций являются разнообразные краски вспучивающиеся и невспучивающиеся, а также пропитка антипиренами.

Время от начала теплового воздействия до воспламенения древесины в зависимости от способа огнезащиты приведено в таблице:

Способ огнезащиты Время до воспламенения древесины, мин
Без огнезащиты и пропитке антипиренами 4
При защите: штукатуркой гипсовой толщиной 10…12мм

штукатуркой цементной по металлической сетке толщиной 10…12мм

полужесткой минераловатной плитой толщиной 70мм

Железобетонных

Испытания предела огнестойкости окон

Испытание предела огнестойкости окон

Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др.

В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило:

а) за счет снижения прочности бетона при его нагреве;

б) теплового расширения и температурной ползучести арматуры;

в) возникновения сквозных отверстий или трещин в сечениях конструкций;

г) в результате утраты теплоизолирующей способности.

Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости в условиях стандартных испытаний обычно находится в пределах R45-R90. Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры.

Данные о фактических пределах огнестойкости бетонных и железобетонных конструкций приведены в таблицах:

Таблица 1. Пределы огнестойкости свободно опертых плит.

Вид бетона и характеристика плит Минимальные толщина плиты (t) и расстояние до оси арматуры (a), мм Пределы огнестойкости, мин.
15 30 60 90 120 150 180
Тяжелый толщина плиты t 30 50 80 100 120 140 155
опирание по двум сторонам или по контуру
Вид бетона и характеристика плит Минимальные толщина плиты (t) и расстояние до оси арматуры (a), мм Пределы огнестойкости, мин.
15 30 60 90 120 150 180
Легкий(γв = 1,2т/м 3 ) толщина плиты t 30 40 60 75 90 105 120
опирание по двум сторонам или по контуру при

Примечания:

1) Минимальная толщина плиты t обеспечивает значение предела огнестойкости по признаку “I” , а расстояние до оси арматуры – значение предела огнестойкости по признаку “R”.

2) Пределы огнестойкости многопустотных и ребристых с ребрами вверх панелей и

настилов следует принимать по таблице 1, умножая их на коэффициент 0,9.

3) Пределы огнестойкости статически неопределимых конструкций больше, чем пределы огнестойкости статически определимых на 25%, если отношение площади арматуры над опорной к площади арматуры в пролете равно 0,5, и на 50%, если это отношение равно 1,0.

4) Эффективная толщина многопустотной плиты для оценки предела огнестойкости определяется делением площади поперечного сечения плиты, за вычетом площади пустот, на ее ширину.

Таблица 2. Пределы огнестойкости статически определимых свободно опертых балок из тяжелого бетона, нагреваемых с 3-х сторон.

Огнезащита металлических конструкций: способы и составы

Несущая способность металлоконструкций при отметке температуры +500 градусов Цельсия утрачиваются. Указанная температура воздействует на металлические изделия во время пожара. Для обеспечения огнезащиты стальных изделий следует обратиться к СНиП. Обеспечение пожаробезопасности зданий и строений регулируется СНиП 21-01-97* (СП 112.13330.2011). В своде правил приведен список материалов, которые могут быть выбраны для огнезащиты металлических изделий.

Степень огнестойкости регулируется ГОСТ 30247.0-94. Классификация пожароопасности регламентируется ГОСТ 30403-2012.

Согласно этим требованиям, существует 4 класса пожарной опасности:

  • Не пожароопасный класс опасности (К0);
  • Низкий класс пожароопасности (К1);
  • Средний класс пожароопасности (К2);
  • Высокий класс опасности возникновения пожара (К3).

При возникновении/развитии пожара в зданиях различного назначения, а также любой степени огнестойкости: от жилого дома, надворных построек из древесины до производственного цеха из железобетонных конструкций огнем повреждаются/уничтожаются не только горючие элементы строений/сооружений, оборудование, сырье/товарная продукция, находящиеся в них, отделка и мебель, предметы обихода.

Под воздействием высокой температуры полностью теряют несущую способность прочные, абсолютно незыблемые на вид металлические конструкции зданий:

  • балки,
  • фермы,
  • колонны,
  • опорные столбы,
  • внутренние лестницы.

Эти строительные конструкции, выполненные чаще всего из чугунного, стального металлопроката, начинают активно деформироваться в огне через 15 минут, что отражено в государственных строительных нормах, регламентах пожарной безопасности. Через еще небольшой промежуток времени в зависимости от толщины, общей массы металла, силы пламени; здания, с несущими конструкциями из незащищенного ничем металла, начинают рушиться, складываться как карточный домик, унося жизни многих людей и принося огромный материальный ущерб.

Предотвратить такую ситуацию можно двумя различными путями:

  • Огнезащита несущих металлических конструкций – это самый эффективный способ довести все элементы здания/сооружения, отвечающие за целостность, устойчивость и надежность; что во многом определяется требуемой степенью, а также пределами огнестойкости для каждой детали в нем, указанными в СНиП 21-01-97* (СП 112.13330.2011). Но, этот путь решает проблему защиты от открытого пламени, теплового воздействия огня пожара внутри здания, чему также способствует обеспечение его современными стационарными системами пожаротушения, которые не только ликвидируют возгорание на начальной стадии; но и охлаждают несущие конструкции здания, в том числе выполненные из металла, понижают/сбивают высокую температуру во всем объеме строения/пожарном отсеке. исключит занесение источника открытого огня внутри здания, а содержание в надлежащем состоянии пожарных проездов/подъездов к зданиям/сооружения будет способствовать оперативному прибытию подразделений МЧС, негосударственных формирований для ликвидации ЧП.

Способы огнезащиты

Многочисленные решения по защите от прямого воздействия огня, огромного теплового воздействия развивающегося пожара металлических и деревянных конструкций, применяемых в строительном деле, найдены очень давно; но продолжают изобретаться как новые способы, так и новые составы.

Реальная картина находит отражение во многих нормах/правилах, регламентирующих обеспечение огнестойкости защищаемых объектов. Отдельно стоит упомянуть СП 2.13130.2012. Огнезащита металлических конструкций, как, впрочем, и всех остальных элементов зданий/сооружений, проходит в нем красной строкой.

Давно применяются, а также появились относительно недавно следующие способы/виды, методы и приемы предохранения поверхностей металла, находящихся под значительной нагрузкой в составе строения, от огня/теплового воздействия, называемые все вместе конструктивной огнезащитой.

Основана она на нанесении/создании на поверхности строительных конструкций, которые могут подвергаться внешнему воздействию, теплоизоляционного слоя, достаточной толщины и качества покрытия; чтобы он выдержал огонь/тепло в течение нормативного времени согласно требованьям ПБ при проектировании/строительстве в части обеспечения огнестойкости:

  • Огнезащита металлических колонн, опорных столбов, поддерживающих перекрытия/покрытия зданий/сооружений, используется очень давно, начиная со возведения старинных особняков/замков. Для этого использовался природный камень, кирпич, плитные материалы – сначала естественного, а позднее – искусственного происхождения.

Такая облицовка от пола до перекрытия надежно предохраняет конструкцию из металла от возможного воздействия факторов пожара. Если раньше такие материалы выкладывались вокруг колонны/столба с использованием строительного/известкового раствора, то сегодня разработаны виды/методы крепления плитных/листовых, а также рулонных огнезащитных материалов на каркасе с воздушными прослойками; что снижает нагрузку на междуэтажные перекрытия, значительно удешевляет этот вид противопожарных работ.

  • Огнезащита металлических балок. По понятным причинам облицевать камнем/кирпичом или плитными материалами такие конструкции, находящиеся под потолком помещений зданий, сложно/невозможно или просто опасно для людей, которые будут в нем находиться, особенно если это происходит на территориях с повышенной сейсмической активностью.

Поэтому металлические балки, как и колонны/столбы зданий, защищают слоем мокрой штукатурки, цементного раствора, бетонированием по деревянной дранке/металлической сетке, различными огнезащитными вязкими смесями – обмазками/мастиками, придавая в зависимости от толщины защитного покрытия требуемый предел огнестойкости. Недостаток такого метода огнезащиты – дополнительная нагрузка на перекрытия здания, дополнительные затраты, внешняя тяжеловесность таких решений, что часто не устраивает архитекторов/заказчиков проектируемых или строящихся зданий.

  • Огнезащита металлических лестниц. Так как это обязательная конструкция практически любого здания/сооружения, важный элемент организации/системы эвакуации людей из строений, то такому виду огнезащиты уделяется особое внимание. Использование быстровозводимых, сравнительно недорогих лестниц из металла, которым несложно придать нужный уклон, высоту/ширину маршей, широко распространено при проектировании/строительстве зданий большинства степеней огнестойкости, категории производства.

Защищают их всеми возможными вышеперечисленными способами, а также с использованием тонкослойных напыляемых составов – покрытий и красок, о которых речь пойдет в следующей главе.

  • Для защиты несущих конструкций зданий и лестниц в них используется также комбинированный способ, являющийся сочетанием различных видов огнезащитной обработки металла.

Следует отметить, что во всех случаях – при любых способах нанесения/крепления огнезащитных материалов они обязаны отвечать технологическим методам/приемам, приведенным в протоколах испытаний на стойкость к огневому воздействию, что требует СП 2.13130.2012 (см. выше).

В роли конструктивных средств огнезащиты металлических конструкций рассматривается базальтовое волокно. Современные методы огнезащиты подразумевают укладку определенных материалов, которые способны создать препятствие для распространения огня.

Металлические конструкции для обеспечения огнезащиты могут покрываться специальными составами, которые образуют теплоизолирующий слой. Для защиты стальных изделий могут применяться огнеупорные материалы, выкладываемые в несколько слоев.

Итоги: огнезащита металлоконструкций выполняется с применением защитных покрытий (цементный раствор, минеральные волокна, жидкое стекло), а так же вспучивающихся красок (бывают летние и зимние) на основе группы веществ (при нагревании краска вспучивается, образуя теплоизоляционный слой).

Составы для огнезащиты

Покрытие огнезащитным составом металлических конструкций

Покрытие огнезащитным составом металлических конструкций

Нормативные требования к таким многокомпонентным смесям, а также методикам определения эффективности устанавливает ГОСТ Р 53295-2009.

Эффективным решением стала относительно недавняя разработка – огнезащитные краски/покрытия. Это высокотехнологичные составы, состоящие из множества компонентов. Разработаны много торговых марок, принадлежащих в основном известным во всем мире производителям и соответственно разработчикам красок.

Такие огнезащитные жидкие материалы наносятся распылением, кистью в несколько слоев, обычно не более трех. После каждого нанесения в соответствие технических условий/сертификата соответствия ПБ необходим определенный промежуток времени для высыхания. Под воздействием огня огнезащитная краска вспучивается, образуя вспененный слой, напоминающий пемзу, который не пропускает тепло к защищаемой конструкции. Этим обеспечивается любой требуемый нормами предел огнестойкости.

Кроме практической функции огнезащиты, такие краски позволили воплощать в жизнь многие ранее нереализуемые идеи архитекторов и дизайнеров по строительству зданий с применением ажурных несущих конструкций из металла.

Так, эффективная огнезащита металлических ферм, особенно больших габаритов, монтируемых на значительной высоте, стала возможной на практике; а не только в проектных решениях, только после появления таких огнезащитных материалов, практически не увеличивающих нагрузку на эти ответственные во всех отношениях элементы сооружений; таких как стадионы, различные развлекательные, торговые, выставочные, спортивные комплексы, многопролетные здания производственных цехов, складских ангаров.

Эти составы можно покрывать сверху дисперсионными красками на водной основе, придавая нужный цвет конструкциям; а также стойкими к внешним воздействиям лаками, значительно продлевающими такому виду огнезащиты срок эксплуатации до ремонта/обновления.

Виды огнезащитных составов и материалов

Виды огнезащитных составов

Виды огнезащитных составов

Следует учитывать, что современные огнезащитные составы по металлу вещь, мягко говоря, недешевая. Особенно когда площади поверхностей несущих конструкций начинают измеряться тысячами метров. А если вспомнить про стоимость работ, значительная часть которых относится к высотным?

Поэтому до сих пор в ходу традиционные мастики/обмазки, даже мокрая штукатурка. Из более современных материалов, конкурентов тонкослойных покрытий/красок; если речь не идет об огнезащите сложных по форме, профилю/сечению конструкций, стоит упомянуть следующие материалы:

  • Базальтовый рулонный, выполненный на основе холста из базальтового волокна без связующих компонентов. Может быть прошит стекловолоконной/базальтовой нитью, иметь покрытие/подкладку.
  • Плита из минеральной ваты, покрытая стеклотканью/фольгой с одной/двух сторон.

Такие плитные/рулонные материалы в ходе огнезащитных работ оборачиваются или наклеиваются вокруг колонн, столбов, балок, обеспечивая требуемый предел стойкости к огню.

Для тех, кто желает и имеет средства идти в ногу со временем, российскими и зарубежными компаниями, химическими концернами выпускается огромный спектр тонкослойных огнезащитных покрытий по металлу, которые называют также термическими красками, конструктивными обмазками и прочими «отличными от других» названиями.

В массовом строительстве при использовании несущих металлоконструкций каркаса зданий/сооружений используются различные марки огнезащитных составов, количество которых исчисляется десятками. Чтобы только вкратце перечислить их и производителей понадобится новая статья на эту тему.

Не следует забывать, что право на проведение огнезащитных работ по металлу имеют только компании, обладающие соответствующей лицензией МЧС; а сами работы не так просты, как это может показаться на первый взгляд. Так, неправильно подобранные к установленным на строительном объекте грунтовка, краска и лак могут привести к тому; что вместо того, чтобы прослужить долгие годы свеженанесенное тонкослойное покрытие начнет шелушиться и осыплется. Вряд ли кому-то нужны такие натурные эксперименты за собственный счет.

Дополнительная информация

Поведение незащищённых стальных элементов при пожаре

Сталь — негорючий строительный материал, однако ее механические свойства (предел текучести, прочность на растяжение и модуль упругости) зависят от температуры. Предел текучести при разной температуре часто ошибочно рассматривается как критерий для оценки несущих качеств при пожаре. Так как пожар является катастрофическим случаем, то предел текучести может быть использован как резерв несущей способности до окончательного разрушения строительного элемента, оцениваемого достигнутой в это время температурой, так называемой критической температурой. Она в значительной мере зависит от степени напряженности строительного элемента. При полном использовании допускаемых напряжений критическая температура составляет: 560° С для стали St37, 580° С для стали St52. В связи с тем что при пожаре обычно не достигаются полные расчетные значения временных нагрузок, критическая температура практически еще выше, например при 50% допускаемого напряжения: 650° С для St37, 670° С для St52.

В равной степени на критическую температуру влияют резервы несущей способности статически неопределимых систем, если их расчет выполнен по упругой стадии. Многопролетная неразрезная балка имеет в этом случае такую же критическую температуру, как статически определимая опорная балка, расчетное сопротивление которой используется только на 75%. Полученные значения относятся к защищенным стальным профилям. В необлицованных стальных элементах расчетные критические температуры на наружной поверхности принимаются по крайней мере на 50° С ниже из-за большой скорости нагревания.

Влияние расчетной системы

Достижение критической температуры в одном поперечном сечении не всегда влечет за собой разрушение строительного элемента. Статически неопределимые системы имеют резервы. Неразрезные балки образуют пластический шарнир в том месте, которое прежде всего достигает критической температуры, но вся система при этом еще сохраняет несущую способность. Многопролетные неразрезные балки при образовании пластических шарниров во всех пролетах образуют цепь, в которой вместо изгиба возникает преимущественно растяжение. Когда благодаря целесообразному выбору статической схемы прочность системы не теряется при нарушении прочности конструкции в одной точке, критическая температура может быть более высокой. При учете этой связи возможна экономия на огнезащитной облицовке путем снижения требований к ней.

Влияние формы поперечного сечения

Время, за которое будет достигнута критическая температура, зависит от скорости восприятия количества тепла, вызывающего повышение температуры. Это количество тепла больше для профиля с большим поперечным сечением, чем для профиля небольшого поперечного сечения. Восприятие тепла происходит быстрее, когда профиль имеет большую наружную поверхность, например в сильно расчлененном тонкостенном профиле. Оно медленнее в замкнутых коробчатых или трубчатых профилях, поскольку тепло имеет доступ к материалу только с одной стороны. Зависимость, определяющая это значение, называется удельной поверхностью, т.е. U/F 1/см, где U — периметр профиля, см, F — поперечное сечение, см 2 .

График на рис. 1 показывает (кривая d=0) степень огнестойкости незащищенного стального профиля в минутах. Так, незащищенный профиль с удельной поверхностью U/F=0,33 при критической температуре 550° С имеет степень огнестойкости 30 мин, т.е. относится к классу огнестойкости F30 (огнезадерживающий).

Такая же степень огнестойкости достигается, например, для листовой стали толщиной 60,5 мм при U=2 см и F=6,05 см 2 на 1 см ширины, откуда U/F=2/6,05=0,33 1/см, или для коробчатого профиля с толщиной листа 30,3 мм: U/F=1:3,03=0,33 1/см. Коробчатому профилю равноценен открытый двутавровый профиль 1600 с заполнением бетоном углублений между полками. Двутавровый широкополочный профиль 300 без облицовки при 75%-ном использовании допускаемого напряжения также достигает класса огнестойкости F30.

График на рис. 1 показывает зависимость толщины защитного покрытия от удельной поверхности U/F. При малых значениях этого фактора уменьшается требуемая толщина облицовки.

Отведение тепла

Увеличение степени огнестойкости происходит также в том случае, когда часть получаемого стальным профилем тепла будет воспринята другой составной частью сооружения. Так, например, наполненные бетоном полые стальные колонны имеют более высокую степень огнестойкости, чем пустые, причем бетон не должен учитываться как несущий, потому что он тоже нагревается. Такой же перенос тепла наблюдается в составных сталежелезобетонных балках, верхний пояс которых охлаждается благодаря теплоотдаче в бетонную плиту.

Деформация

Строительные стали при достижении предела текучести начинают пластически деформироваться. Разрушению предшествуют большие деформации, например прогибы балок. Эти же положения относятся и к разрушению стальных элементов при пожаре, только с той разницей, что напряжения, при которых исчерпывается несущая способность, при вторичном нагревании становятся меньше. Внезапного обрушения во время пожара в сооружениях со стальным каркасом не наблюдается. Обрушению предшествуют значительные, отчетливо видимые деформации.

Повторное использование стальных элементов

Защита стальных элементов

Стальным профилям можно придать любую требуемую степень огнестойкости. Меры защиты: обетонирование, оштукатуривание, облицовка, изоляционное покрытие, наполнение водой, экранирование.

Обетонирование и оштукатуривание

Бетон или штукатурка наносится на поверхность профиля и покрывает его слоями, толщина которых зависит от материала и достигаемой степени огнестойкости. Чаще всего встречаемые методы исполнения — это цементная штукатурка с вермикулитом или асбестом, которая наносится путем многослойного набрызга на стальную конструкцию по проволочной сетке, которая в большинстве случаев при высокостенных профилях крепится коротышами. Штукатурка для лучшего приставания к металлу должна быть нанесена на непокрашенные, очищенные от ржавчины и окалины стальные поверхности. Небольшой налет ржавчины, который появляется в промежуток времени между изготовлением на заводе и нанесением штукатурки после монтажа, безвреден. Нанесение штукатурки приводит к загрязнению конструкций на строительной площадке. Поэтому штукатурка наносится, как правило, перед монтажом фасадных панелей. Свеженабрызганные поверхности должны быть защищены от намокания. В холодное время года могут потребоваться меры по утеплению облицовываемых элементов.

  • обетонирование балок перекрытий одновременно с бетонированием монолитного перекрытия;
  • разбрызгивание бетона торкретным способом, в большинстве случаев по проволочной сетке;
  • обетонирование стальных элементов в формах на строительной площадке или на заводе, также по проволочной сетке. Этот метод производится как для балок, так и для колонн.

Облицовка

Облицовка стальных элементов имеет в большинстве случаев коробчатую форму. Она выполняется на стройке в виде штукатурки или состоит из сборных элементов. В этом случае стальные элементы нуждаются в коррозионной защите. В большинстве случаев достаточно грунтовочной покраски. Штукатурка из вермикулита, перлита или асбеста или их смесь, известковый, цементный или гипсовый растворы многослойно наносятся на сетку, образуя замкнутую коробку.

При сборном способе строительства применяются плиты из вермикулита, перлита, асбеста, гипса, гипсокартона или асбестоцемента или фасонные детали из гипса, асбестоцемента или бетона. Плиты крепятся к стальным профилям на клею, гвоздями, болтами или фасонными деталями.

Изоляционные покрытия

Изоляционные покрытия наносятся в виде окраски или пленки. В завершенном виде они не заметны и проявляют свои защитные свойства только при пожаре от действия тепла. При наличии такого покрытия стальные профили имеют степень огнестойкости F30, толстостенные профили — F60 и больше. Испытания проводятся на сопротивление покрытия старению. Эти покрытия весьма гигроскопичны и поэтому применяются только внутри здания. Покрытия, которые могли бы применяться на открытом воздухё, находятся в разработке. Под покрытие нужно нанести слой, защищающий от коррозии.

Наполнение водой

Наполнение водой полых стальных труб — самый эффективный из известных способов противопожарной защиты, при этом профили остаются полностью пригодными к эксплуатации при любой продолжительности пожара. Вода циркулирует в замкнутой системе. Нагретая вода охлаждается или заменяется холодной из сети. Возможны также системы охлаждения водой горизонтальных стальных элементов.

Экранирование

Под экранированием понимают включение не защищенных другим способом стальных профилей в полые элементы сооружения, ограждающие составные части которых образуют вместе с несущими стальными профилями огнезащитную систему. Этой возможностью часто пользуются в перекрытиях и стенах. В большинстве случаев это наиболее экономичный способ противопожарной защиты, поскольку ограждающие элементы выполняют и другие функции и с незначительными дополнительными расходами или без них могут быть изготовлены так, чтобы вся система имела требуемую огнестойкость.

Системы перекрытий состоят из стальных балок, лежащих над ними плит перекрытия, потолка под ними и соответствующих боковых ограждений на наружных стенах и отверстиях.

В стеновых системах двойные стеновые оболочки защищают стоящие между ними стальные части сооружения — колонны, балки перекрытия и элементы вертикальных решетчатых связей.

Требования

Требования к строительной противопожарной защите должны определяться по пожароопасности элементов сооружения.

К каждому виду зданий предъявляются определенные требования, которые должны быть решены комплексно.

Меры противопожарной защиты не требуются, если элементы сооружения не подвергаются опасности возгорания при эксплуатации или если сознательно не применяют противопожарную защиту.

Защита людей и имущества

Защита людей и имущества должна быть обеспечена независимо.

Защита людей обеспечивается в первую очередь; на этом должны быть акцентированы строительные требования.

Защита имущества определяется экономическими соображениями и общественными интересами.

Риск разрушений и суммы страхования

Нарушение общей целостности здания происходит значительно позже, чем разрушение отдельных его элементов и сгорание находящихся в здании материалов и другого имущества. Поэтому целесообразно производить страхование всего здания и находящегося в нем имущества раздельно.

Строительные и производственные меры, которые повышают пожарную безопасность, и опыт, доказывающий, что стальные конструкции могут быть использованы после пожара, должны учитываться при назначении страховых платежей.

Поведение стальных конструкций во время пожара

Сталь относится к несгораемым материалам. Стальные элементы сооружения остаются несущими, пока не будет достигнута их критическая температура; последняя в зависимости от условий лежит между 500° и 750° С.

Если в случае пожара высокая температура не ожидается, то противопожарные меры не требуются.

Несущая способность материалов при температуре выше критической может быть исчерпана, о чем свидетельствуют появившиеся деформации.

Стальные части сооружения могут быть доведены соответствующими мерами до любой требуемой степени огнестойкости.

Разрушения стальных конструкций при пожаре легко определяются и сравнительно просто исправляются или восстанавливаются.

Читайте также: