Свариваемость сталей влияние углеродного эквивалента на свариваемость

Обновлено: 11.05.2024

Свариваемость это свойство металла или сплава образовывать при установленной технологии сварки неразъемное соединение, отвечающее требованиям, конструкции и эксплуатации изделия.

Различают физическую и технологическую свариваемость.

Физическая свариваемость – свойство материалов образовывать монолитное соединение с межатомной связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний металлов с неметаллами.

Технологическая свариваемость это характеристика металла, определяющая его реакцию на воздействие сварки и способность при этом образовывать сварное соединение с заданными эксплуатационными свойствами.

Технологическая свариваемость зависит от физических и химических свойств материала, его кристаллической решетки, степени легирования, наличия примесей и пр.

Основные критерии технологической свариваемости являются:

- окисляемость металла при сварочном нагреве

- сопротивляемость образованию горячих и холодных трещин

- чувствительность металла к тепловому воздействию, характеризующаяся склонностью металла к росту зерна, структурным и фазовым изменениям в шве и зоне термического влияния, изменением прочностных и пластических свойств

- чувствительность к преобразованию

- соответствие свойств сварного соединения заданным эксплуатационным свойствам

- обеспечение качества формирования сварного шва

- удовлетворение требованиям минимальных (допустимых) напряжений и деформаций.

Свариваемость сталей зависит от степени легирования, структуры содержания примесей. Наибольшее влияние на свариваемость сталей оказывает углерод. С увеличением содержания углерода, а также ряда лигирующих элементов свариваемость сталей ухудшается.

Чем выше содержание углерода в стали, тем выше опасность образования холодных и горячих трещин. Ориентировочным количественным показателем свариваемости стали является эквивалентное содержание углерода, которое определяется по формуле Сефериана [1]

где [C] - содержание углерода и легирующих элементов дается в процентах. Рассчитанные значения химического эквивалента углерода для углеродистых и низколегированных сталей перлитного класса позволяют классифицировать их по свариваемости в зависимости от химического состава на: хорошо, удовлетворительно, ограниченно и плохо свариваемые.

На количественное значение эквивалента углерода для каждой группы свариваемости существенное влияние оказывает толщина свариваемой стали, определяемая размерным эквивалентом углерода.

Размерный эквивалент углерода Ср равен

где S – толщина свариваемой стали в мм, 0,005 – коэффициент толщины, определенный экспериментально.

Конструкционные стали с повышенным содержанием углерода, легированные Cr, Mn, Ni и другими элементами склонны при сварке к образованию в зоне термического влияния неравновесной мартенситной структуры, интенсивность образования которой возрастает с увеличением содержания углерода и легирующих элементов. На образование закалочных структур в околошовной зоне влияют также выбранные режимы сварки, так как они определяют температуру нагрева и скорость охлаждения. Для снижения интенсивности образования мартенситных прослоек в зоне термического влияния, которые могут привести к образованию холодных трещин требуется применение специальных технологических мер. Наиболее эффективными из которых является снижение скорости охлаждения околошовной зоны путем предварительного подогрева. При выборе температуры предварительного подогрева закаливающихся сталей следует учитывать, что недостаточный подогрев приводит к повышению вероятности появления холодных трещин, а излишне высокий снижает пластичность и особенно ударную вязкость стали вследствие чрезмерного роста зерен аустенита (Ас3 + 100°С).

Определение необходимой температуры предварительного подогрева производится с учетом полного эквивалента углерода

Температура предварительного подогрева ровна

где 350 – температура в градусах Цельсия, принятая как наиболее характерная для конструкционных и теплоустойчивых сталей;

[C] –полный эквивалент углерода;

0,25 – определенное содержание углерода, при котором углеродистые стали не закаливаются и не возникает трещин в зоне термического влияния сварного соединения.

В некоторых случаях размерный коэффициент не учитывают. При этом эквивалент углерода определяют по выраженению [2].

Температура предварительного подогрева в этом случае определяется по графику (рис.1).

Рис.1 Зависимость температуры предварительного подогрева от эквивалента углерода в стали

Влияние легирующих элементов на свариваемость стали

Углерод(С) — одна из основных примесей, определяющих сва­риваемость стали. Содержание углерода в обычных конструк­ционных сталях до 0,25 % не ухудшает свариваемости. При более высоком содержании свариваемость стали резко ухудшается, так как в зонах термического влияния образуются структуры закал­ки, приводящие к трещинам. Повышенное содержание углерода в присадочном материале вызывает при сварке пористость ме­талла шва.

Марганец(Мп) не ухудшает свариваемости стали, если его со­держание не превышает 0,3. 0,8 %. В сред немарганцовистых (1,8. 2,5 %) сталях марганец повышает их закаливаемость и склонность к образованию трещин при сварке.

Кремний(Si) не влияет на свариваемость стали, если его со­держание не превышает 0,3 %. В обычных углеродистых ста­лях содержится не более 0,2. 0,3 % кремния, в специальных сталях содержание кремния достигает 0,8. ..1,5 %. В таких коли­чествах кремний затрудняет сварку из-за высокой жидкотекуче­сти стали, легкой ее окисляемости и образования тугоплавких оксидов.

Хром(Сг) содержится в низкоуглеродистых сталях в количе­стве 0,2. 0,3 %, в конструкционных — 0,7. 3,5, в хромистых — 12. 18, в хромоникелевых — 9. 35 %. Он затрудняет сварку, так как усиливает окисление металла, образует химические со­единения с углеродом (карбиды хрома), ухудшающие коррози­онную стойкость стали и резко повышающие твердость металла в зонах термического влияния. Хром также содействует образо­ванию тугоплавких оксидов, затрудняющих процесс сварки.

Никель(Ni) в низкоуглеродистых сталях содержится в ко­личестве до 0,2. 0,3 %, в конструкционных — 1. 5, в легиро­ванных — 8. 35 %. В некоторых сплавах содержание никеля достигает 85 %. Он увеличивает пластические и прочностные 9войсТва стали, измельчает зерна, не ухудшая свариваемости.

Молибден(Мо) в сталях содержится в количестве 0,15. 0,8 %. Он измельчает зерно, затрудняет сварку, вызывает образование трещин в наплавленном металле и зонах термического влияния, сильно окисляется и выгорает при сварке.

Содержание в стали 0,8. 1,8 % вольфрама(W) резко увели­чивает ее твердость и работоспособность при высоких темпера­турах. Он сильно окисляется при сварке, требует хорошей защиты от кислорода, затрудняет сварку.

Ванадий(V) обычно содержится в сталях в количестве 0,2. 0,8 %, в штамповых сталях — 1. 1.5 %. Он улучшает закали­ваемость стали, что затрудняет сварку. В процессе сварки актив­но окисляется и выгорает.

Титан(Ti) и ниобий(Nb) содержатся в коррозионно-стойких сталях в количестве до 1 %, не усложняют сварочный процесс и не ухудшают свариваемость стали.

Медь(Си) в специальных сталях имеется в количестве 0,3. 0,8 %. Она улучшает ряд свойств стали (прочность, пластич­ность, ударную вязкость, коррозионную стойкость) и не ухуд­шает ее свариваемость.

Сера(S) в количествах, превышающих предельно допустимые, ухудшает свариваемость стали, вызывает появление Горячих трещин.

Фосфор(Р) в концентрациях, превышающих предельно до­пустимые, ухудшает свариваемость стали, вызывает появление холодных трещин.

Кислород(О) содержится в сплаве в виде оксида железа, ухуд­шает свариваемость стали, снижая ее механические свойства.

Азот(N) образует с железом химические соединения (нитри­ды) в металле сварочной ванны при ее охлаждении, что снижает пластичность стали.

Водород(Н) является вредной примесью. Скапливаясь в от­дельных местах сварного шва, он образует газовые пузырьки, вызывает появление пористости и мелких трещин.

Свариваемость стали можно приближенно определить по коли­честву легирующих элементов, эквивалентных (приравненных) углероду:

„ „ Мп Si Cr Ni Мо V Си Р

6 24 5 10 4 5 13 2

где Сэ — эквивалент углерода, %; С, Мп, Si, Cr, Ni, Мо, V, Си, Р — содержание в стали легирующих элементов, %.

Легирующие элементы в различной степени влияют на свари­ваемость сталей. Поэтому их воздействие сравнивают с влиянием углерода — приводят к эквиваленту углерода. Чтобы опреде­лить Сэ, в формулу вместо символов подставляется процентное содержание легирующих элементов. При Сэ< 0,35 % сталь хо­рошо сваривается. Если толщина свариваемых элементов менее 8 мм, то сталь хорошо сваривается при Сэ < 0,5 %. При большей толщине металла или при С, >0,35 % требуется предваритель­ный подогрев, другие технологические методы сварки или по­следующая термообработка.

Как видно из приведенной выше формулы, увеличение в стали содержания кремния, никеля, меди в меньшей степени влияет на ухудшение свариваемости. Ухудшают свариваемость стали увеличение содержания марганца, хрома, молибдена, ванадия. Значительно ухудшает свариваемость увеличение содержания фосфора (более 0,05 %). Наличие фосфора в количестве 0,05 % и менее в формуле не учитывается.

При суммарном содержании в стали примесей марганца, крем­ния, хрома и никеля меньше 1 % сталь хорошо сваривается, если содержание углерода не превышает 0,25 %, удовлетворительно — 0,25. 0,35; ограниченно — 0,35. 0,45 и плохо — свыше 0,45 % углерода.

Если суммарное содержание указанных примесей составляет 1. 3 %, сталь сваривается хорошо при содержании до 0,20 % углерода, удовлетворительно — при 0,2. 0,3, ограниченно — при 0,3. 0,4 и плохо — при содержании более 0,4 % углерода.

При суммарном содержании указанных примесей в стали свы­ше 3 % сталь хорошо сваривается, если количество углерода не превышает 0,18 %, удовлетворительно — 0,18. 0,28, ограничен­но — 0,28. 0,38 и плохо, если в стали более 0,38 % углерода.

Формула эквивалентного углерода в сталях получена опыт­ным путем и не всегда отражает точную картину взаимодействия различных элементов в сварочной ванне и изменения структуры при охлаждении металла шва. Поэтому для определения свари­ваемости обычно сваривают специальные образцы, исследуют микроструктуру наплавленного металла и т.д.

Особую сложность представляет сварка металлов, разли­чающихся своими свойствами. Разные температуры плавления, склонность к образованию хрупких соединений и другие причи­ны вынуждают разрабатывать специальные приемы сварки, осо­бые сварочные материалы.

Для оценки свариваемости металла берут, например, две пластины и сваривают их на нескольких режимах. Затем изго­товляют образцы и определяют ударную вязкость, критическую температуру хрупкости, зернистость, твердость наплавленного металла и зоны термического влияния.

При оценке свариваемости стали помимо химического состава учитываются: форма сварной конструкции, толщина металла и его механические свойства, количество и расположение швов в конструкции, технологические особенности сварки и другие характеристики.

Влияние химические элементов на свойства стали и свариваемость

Свариваемость — это способность материала образовывать неразъёмные соединения, отвечающие требованиям изготовления и проектирования и работающие должным образом в течение срока службы. Свариваемость считается хорошей для низкоуглеродистой стали, С повышением содержания углерода требуется применять специальные меры, такие как предварительный нагрев, контроль подвода тепла и термическая обработка после сварки. Кроме углерода на свариваемость влияет содержание других легирующих элементов. Качественный подход к определению свариваемости стали заключается в расчете ее углеродного эквивалента.

где Сэ – углеродный эквивалент,

С, Mn, Cr, Mo, V, Ni, Cu – массовые доли углерода, марганца, хрома, молибдена, ванадия, никеля, и меди, %.

Классификация сталей по свариваемости

По технологической свариваемости легированные углеродистые стали условно можно разбить на четыре группы:

1) стали, свариваемые без ограничений (Сэ ≤ 0,25%);

4) трудно свариваемые стали (Сэ > 0,45 %), применение которых для изготовления сварных конструкций не желательно

Методы оценки свариваемости металлов

Все испытания, проводимые для определения показателей свариваемости, условно можно разделить на две основные группы.

Косвенные способы позволяют оценить склонность к образованию холодных трещин расчетным путем без непосредственного испытания материалов

Прямые способы предусматривают сварку технологических проб,
проведение специализированных испытаний сварных соединений
или основного материала, подлежащего сварке, в условиях, имитирующих сварочные

Влияние химических элементов на свариваемость

Углерод (C)

Углерод является самым важным элементом в стали, его содержание определяет твердость и прочность материала, а также реакцию на термическую обработку, способность стали к закалке. С повышением содержания углерода увеличивается прочность и твёрдость, а свариваемость пластичность, и обрабатываемость стали снижаются.

Кремний (Si)

Кремний является одним из основных раскислителей стали. Кремний помогает удалять пузырьки кислорода из расплавленной стали. Это элемент, обязательно используется в производстве сталей, и обычно содержится в количествах менее 0,40 процента. Кремний растворяется в железе и имеет свойство увеличивать прочность.

При сварке кремний улучшает очистку и раскисления металла при сварке на загрязненных поверхностях и способствует получения металла сварного шва повышенной прочности Кремний добавляется как раскисляющий элемент в сварочную проволоку. Он предотвращает соединение железа с кислородом и уменьшает количество FeO в сварочной ванне, однако при этом образуются оксиды SiO2 имеющие высокую температуру плавления (около 1710℃), и остающиеся в металле при застывании.

Марганец (Mn)

Действие марганца аналогично действию кремния, но его способность к раскислению несколько хуже, чем у кремния. Марганец добавляемый в сварочную проволоку соединяться с серой и образовывает сульфида марганца (MnS). Оксиды и сульфиды марганца имеет температуру плавления (около 1270 ℃) и низкую плотность благодаря чему они могут агломерироваться в крупный шлак и всплывают в сварочной ванне, обеспечиваю хороший эффект очищения от кислорода и серы. Марганец также является важным легирующим элементом, оказывающим влияние на повышение прочности но снижется вязкость металла сварного шва.

Марганец может быть вторым по важности элементом после углерода в стали. Mn обладает эффектами, аналогичными эффектам углерода, и производитель стали использует эти два элемента в сочетании для получения материала с желаемыми свойствами. Марганец необходим для процесса горячей прокатки стали путем его сочетания с кислородом и серой.

Стали обычно содержат не менее 0,30% марганца, однако в некоторых углеродистых сталях может содержаться до 1,5%.

Сталь с низким содержанием марганца может содержать серу в виде сульфида железа (FeS), что может привести к образованию трещин в сварном шве.

Сера (S)

Сера улучшает обрабатываемость, но снижает пластичность и ударную вязкость. При сварке сера является вредной примесью, оказывающей неблагоприятное влияние на свариваемость и механические свойства стали. Содержание серы в сталях ограничено до 0,05%.

Сера обычно присутствует в стали в виде сульфида железа и распределяется по границе зерен в виде сетки. По содержанию серы и фосфора стали классифицирую по качеству. Стали с содержанием серы и фосфора менее 0,025% относят к высококачественным.

Фосфор (Р)

Фосфор может быть полностью растворен в феррите в стали. Фосфор хотя и увеличивает прочность и коррозионную стойкость стали, также является вредной примесью, так как приводит к охрупчиванию, особенно при низкой температуре. Поэтому он крайне не благоприятен для сварки и его содержания ограничивается так же как и серы.

Хром (Cr)

Хром один из основных легирующим элементом в стали. Хром повышает прокаливаемость стали, коррозионную стойкость, а также предела текучести но при этом ударная вязкость и пластичность незначительно снижаются. Стали с содержанием хрома боле 12% относят к нержавеющим.

Хром также обладает сильной антиоксидантной способностью и термостойкостью. Поэтому хром широко используется в жаропрочных сталях.

Алюминий (Al)

Алюминий является одним из сильнейших раскисляющих элементов, поэтому использование алюминия в качестве раскислителя приводит к снижению оксидов в сварочной ванне, азота и снижает пористость. способность противостоять пористости CO. В то же время высокое содержание в сварочной проволоке алюминий приводит к сильному разбрызгиванию. При оптимальном содержания алюминия в сварочной проволоке, формируется мелкозернистая структура, незначительно повышается твердость, предел текучести и прочность на растяжение металла сварного шва.

Титан (Ti)

Титан очень прочный и легкий металл, который можно использовать отдельно или легировать сталями. Он добавляется в сталь для придания ей высокой прочности при высоких температурах.

Титан является сильным раскисляющим элементом, и также может связывать азот и кислород, что приводит к снижению пористости сварного шва. Содержание титана в металле препятствует росту зерна и улучшает структуру.

Молибден (Мо)

Молибден в сталях повышает прочность и твердость, придает структуре мелко зернистость, уменьшает склонность к образованию трещин и повышает ударную вязкость. Молибденом используется для придания стали жаропрочности, в нержавеющих сталях добавляется для повышения их коррозионной стойкости, а также используется в быстрорежущих инструментальных сталях.

Ванадий (V)

Ванадий повышает прочность стали, способствует уменьшению роста зерна и улучшить прокаливаемость. Ванадий является сильным карбидообразующим элементом, увеличивает склонность стали к закалке. Карбид ванадия обладает высокой температурной стабильностью, поэтому он может улучшить высокотемпературную твердость стали. Ванадий образует тугоплавкие оксиды, что увеличивает сложность газовой сварки и резки.

Ванадий используется в жаропрочных, инструментальных и пружинных сталях вместе с другими легирующими элементами.

Вольфрам (W)

Используется с хромом, ванадием, молибденом или марганцем для производства быстрорежущей и инструментальной стали. Вольфрам в виде карбида вольфрама придает стали высокую твердость, которая сохраняется даже при сильном нагреве, что делает ее особенно подходящей для режущего инструмента.

Кобальт (Co)

Кобальт повышает прочность и твердость при высоких температурах. Усиливает действие других элементов в высоко легированных сталяз индивидуальные эффекты других элементов в более сложных сталях.

Никель (Ni)

Никель улучшает коррозионную стойкость, низкотемпературные характеристики стали и свариваемость. Часто используется в сочетании с другими легирующими элементами, особенно хромом и молибденом. Это ключевой компонент в нержавеющих сталях, в низких концентрациях, обнаруживаемых в углеродистых сталях.

Медь (Cu)

Медь является еще одним основным элементом коррозионной стойкости. Она также оказывает небольшое влияние на прокаливаемость стали. Наиболее часто медь встречающаяся в качестве остаточного металла в сталях и содержится в количестве не менее 0,20 процента.

Ниобий (Nb)

Ниобий улучшает пластичность, твердость, износостойкость и коррозионную стойкость и улучшает структуру зерна. Ниобий является сильным карбидообразователем и образует очень твердые, очень мелкие карбиды.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Свариваемость сталей влияние углеродного эквивалента на свариваемость

Основными характеристиками свариваемости сталей является их склонность к образованию трещин и механические свойства сварного шва.
По свариваемости стали подразделяют на четыре группы:

1 – хорошая свариваемость; 2 – удовлетворительная свариваемость; 3 – ограниченная свариваемость; 4 – плохая свариваемость.

К группе 1 относят стали, сварка которых может быть выполнена без подогрева до сварки и в процессе сварки и без последующей термообработки.
Но применение термообработки не исключается для снятия внутренних напряжений.

К группе 2 относят преимущественно стали, при сварке которых в нормальных производственных условиях трещины не образуются, а также стали, которые для предотвращения трещин нуждаются в предварительном нагреве, стали, которые необходимо подвергать предварительной и последующей термообработке.

К группе 3 относят стали, склонные к образованию трещин в обычных условиях сварки.
Их предварительно подвергают термообработке и подогревают.
Большинство сталей этой группы термически обрабатывают и после сварки.

К группе 4 относят стали, наиболее трудно сваривающиеся и склонные к образованию трещин.
Сваривают обязательно с предварительной термообработкой, подогревом в процессе сварки и последующей термообработкой.

Снижать свариваемость могут вредные примеси, если содержание их превышает норму.
Вредные примеси могут ухудшать свариваемость даже и при среднем содержании, не выходящем за норму, если они образуют местные скопления, например вследствие ликвации.
Вредными для сварки элементами в низкоуглеродистой стали могут являться углерод, фосфор и сера, причем последняя, особенно склонна к ликвации с образованием местных скоплений.

Отрицательное влияние на свариваемость может оказывать также засоренность металла газами и неметаллическими включениями.
Засоренность металла вредными примесями зависит от способа его производства, и о ней частично можно судить по маркировке металла: сталь повышенного качества сваривается лучше, чем сталь обычного качества соответствующей марки; сталь мартеновская лучше, чем сталь бессемеровская, а сталь мартеновская спокойная – лучше, чем кипящая.

При изготовлении ответственных сварных изделий указанные отличия в свариваемости низкоуглеродистых сталей должны обязательно приниматься во внимание и учитываться при выборе марки основного металла.

Углеродистые стали, содержащие более 0,25% углерода, обладают пониженной свариваемостью по сравнению с низкоуглеродистыми, причем свариваемость постепенно снижается по мере повышения содержания углерода.


Стали с повышенным содержанием углерода легко закаливаются, что ведет к получению твердых хрупких закалочных структур в зоне сварки и может сопровождаться образованием трещин.
С повышением содержания углерода растет склонность металла к перегреву в зоне сварки.
Увеличенное содержание углерода усиливает процесс его выгорания с образованием газообразной окиси углерода, вызывающей вскипание ванны и могущей приводить к значительной пористости наплавленного металла.

При содержании свыше 0,4–0,5% углерода сварка стали становится одной из сложных задач сварочной техники.
Углеродистые стали вообще обладают пониженной свариваемостью и, если это возможно, рекомендуется заменять их низколегированными конструкционными сталями, которые дают ту же прочность при значительно меньшем содержании углерода за счет других легирующих элементов.

При сварке углеродистых сталей плавлением обычно не придерживаются соответствия химического состава присадочного и основного металлов, стремясь получить наплавленный металл равнопрочным с основным за счет легирования марганцем, кремнием и др. при пониженном содержании углерода.

Сварка углеродистых сталей часто выполняется с предварительным подогревом и последующей термообработкой, причем, если возможно, во многих случаях стремятся совместить термообработку с процессом сварки, например, с газовой сваркой мелких деталей, с газопрессовой, точечной, со стыковой контактной сваркой и т. д.

Ввиду возросшего значения сварки конструкционная низколегированная сталь новых марок, как правило, отличается удовлетворительной свариваемостью.
Если же испытания пробных партий стали показывают недостаточно удовлетворительную свариваемость, то обычно для улучшения свариваемости изготовители корректируют состав стали.
В некоторых случаях требуется небольшой предварительный подогрев стали до 100–200° С, реже приходится прибегать к последующей термообработке.

Для предварительной грубой качественной оценки свариваемости низколегированных сталей иногда прибегают к подсчету эквивалента углерода по химическому составу стали по следующей эмпирической формуле:
Cэ = С+ Mn /20 + Ni /15 + (Cr + Mo + V) /10 , где символы элементов означают процентное содержание их в стали.

При эквиваленте углерода меньше 0.45 свариваемость стали может считаться удовлетворительной, если же эквивалент углерода больше 0.45, то необходимо принимать специальные меры, например, проводить предварительный подогрев и последующую термообработку.
Метод оценки свариваемости по эквиваленту углерода является ориентировочным и далеко не всегда дает верные результаты.

По структуре низколегированные стали относятся обычно к перлитному классу, большое разнообразие химического состава низколегированных сталей весьма затрудняет получение одинакового состава наплавленного и основного металлов при сварке плавлением, что требует большого разнообразия присадочных материалов.
Поэтому, за исключением некоторых особых случаев, когда требуется соответствие химического состава основного и наплавленного металлов (например, получение устойчивости против коррозии, крипоустойчивости и т. п.), обычно ограничиваются получением необходимых механических свойств наплавленного металла, не принимая во внимание его химический состав.
Это позволяет при сварке многих сортов сталей пользоваться немногими видами присадочных материалов, что является существенным практическим преимуществом.
Например, электродами УОНИ-13 успешно свариваются десятки марок углеродистых и низколегированных сталей.

В сварных конструкциях низколегированные стали обычно предпочитают углеродистым той же прочности.
Для установления необходимости небольшого предварительного подогрева и последующего отпуска часто принимают во внимание максимальную твердость металла зоны термического влияния.
Если твердость не превышает НВ200–250, то подогрев и отпуск не требуются, при твердости НВ 250–300 подогрев или отпуск желательны, при твердости выше НВ 300–350 – обязательны.

Из высоколегированных сталей обладают хорошей свариваемостью и находят широкое применение в сварных конструкциях стали аустенитного класса.

Наиболее широко применяются хромоникелевые аустенитные стали, например общеизвестная нержавеющая сталь 18–8 (18% Сг и 8% Ni).
Хромоникелевые аустенитные стали применяются как нержавеющие, а при более высоком легировании, например при содержании 25% Сг и 20% Ni, они являются и жароупорными сталями.
Содержание углерода в хромоникелевых аустенитных сталях должно быть минимальным, не превышающим 0,10–0,15%, иначе возможно выпадение карбидов хрома, резко снижающее ценные свойства аустенитной стали.

Для частей машин, работающих на истирание, например для щек камнедробилок, а также для рельсовых крестовин, применяется обычно в форме отливок сравнительно дешевая марганцовистая аустенитная сталь, содержащая 13–14% Мn и 1–1,3% С.

Сварка аустенитных сталей должна, как правило, сохранить структуру аустенита в сварном соединении и связанные с аустенитом ценные свойства: высокое сопротивление коррозии, высокую пластичность и т. д.
Распад аустенита сопровождается выпадением карбидов, образуемых освобождающимся из раствора избыточным углеродом.
Распаду аустенита способствуют нагрев металла до температур ниже точки аустенитного превращения, уменьшение содержания аустенитообразующих элементов, повышение содержания углерода в низкоуглсродистых аустенитных сталях, загрязнение металла примесями и т. д.
Поэтому при сварке аустенитных сталей следует сокращать до минимума продолжительность нагрева и количество вводимого тепла и применять возможно более интенсивный отвод тепла от места сварки – посредством медных подкладок, водяного охлаждения и т. д.

Аустенитная сталь, предназначенная для изготовления сварных изделий, должна быть высшего качества, с минимальным количеством загрязнений.
Поскольку распад хромоникелевого аустенита вызывается образованием и выпадением карбидов хрома, стойкость аустенита может быть повышена введением в металл карбидообразователей более сильных, чем хром.
Для этой цели оказались пригодными титан и ниобий, в особенности первый элемент, к тому же не являющийся дефицитным.
Титан весьма прочно связывает освобождающийся углерод, не позволяя образовываться карбидам хрома, и тем самым предотвращает распад аустенита.

Для сварки рекомендуется применять аустенитную сталь с небольшим содержанием титана.
Хорошей свариваемостью отличается, например, нержавеющая аустенитная хромоникелевая сталь X18Н9T типа 18–8 с небольшим количеством титана (не свыше 0,8%).

Более строгие требования, естественно, предъявляются к присадочному металлу, который должен быть аустенитным, желательно с некоторым избытком легирующих элементов, с учетом возможного их выгорания при сварке и со стабилизирующими добавками – титаном или ниобием.
ГОСТ 2240-60 предусматривает аустенитную присадочную проволоку для сварки нержавеющих и жароупорных сталей.
Аустенитная присадочная проволока иногда применяется и для сварки сталей мартенситного класса.
Дефицитность и высокая стоимость аустенитной хромоникелевой проволоки заставляют разрабатывать более дешевые заменители.

Стали мартенситного класса, отличающиеся высокой прочностью и твердостью, находят применение как инструментальные стали, как броневые и т. д.

Сварка их связана с известными трудностями.
Стали легко и глубоко закаливаются, поэтому после сварки обычно необходима последующая термообработка, заключающаяся в низком или высоком отпуске.
Часто необходим также предварительный подогрев изделия.
Существенное значение может иметь предшествующая термообработка изделия перед сваркой; желательно по возможности равномерное мелкодисперсное распределение структурных составляющих.

При сварке плавлением часто отказываются от сходства наплавленного и основного металла не только по химическому составу, но и по механическим свойствам, стремясь в первую очередь обеспечить повышенную пластичность наплавленного металла и устранить образование в нем трещин.
Для этой цели при дуговой сварке довольно часто применяют, например, электроды из аустенитной стали.

Стали карбидного класса применяют главным образом как инструментальные, и на практике чаще приходится иметь дело не со сваркой, а с наплавкой этих сталей при изготовлении и восстановлении металлорежущего инструмента, штампов и т. п.
Предварительный подогрев и последующая термообработка для этих сталей по большей части обязательны.

Для дуговой сварки и наплавки применяются электродные стержни легированных сталей, близких по свойствам к основному металлу, а также стержни низкоуглеродистой стали с легирующими покрытиями, содержащими соответствующие ферросплавы.
По окончании сварки или наплавки обычно производится термообработка, состоящая из закалки и отжига.

Стали ферритного класса отличаются тем, что в них совершенно подавлено или ослаблено образование аустенита при высоких температурах за счет введения больших количеств стабилизаторов феррита.
Существенное практическое значение имеют хромистые ферритные стали с содержанием 16–30% Сг и не свыше 0,1–0,2% С, отличающиеся кислотоупорностью и исключительной жаростойкостью.
Стали могут быть сварены с присадочным металлом того же состава или аустенитным.
Обязателен предварительный подогрев; по окончании сварки производится продолжительный отжиг в течение нескольких часов, за которым следует быстрое охлаждение.

Литература:
1.ГОСТ 29273-92 Свариваемость.Определение.
2.ГОСТ 30242-97 Дефекты соединений при сварке металлов плавлением.Классификация, обозначение и определения.
3.Словарь-справочник по сварке / Под ред. К.К. Хренова. Киев, Наукова думка, 1974. 195с.
4.Советский энциклопедический словарь / Гл. ред. А.М. Прохоров; редкол.: А.А. Гусев и др. – Изд. 4-е. – М.: Сов. энциклопедия, 1987. – 1600с.
5.Сварочные работы. – М.: Вече, 2002. – 176с.

Классификация сталей по свариваемости

При оценке свариваемости роль химического состава стали является превалирующей. По этому показателю в первом приближении проводят оценку свариваемости. Влияние основных легирующих примесей на свариваемость сталей приведены ниже.

Углерод (С) – одна из важнейших примесей, определяющая прочность, пластичность, закаливаемость и др. характеристики стали. Содержание углерода в сталях до 0,25% не снижает свариваемости. Более высокое содержание "С" приводит к образованию закалочных структур в металле зоны термического влияния (далее по тексту – ЗТВ) и появлению трещин.

Сера (S) и фосфор (P) – вредные примеси. Повышенное содержание "S" приводит к образованию горячих трещин – красноломкость, а "P" вызывает хладноломкость. Поэтому содержание "S" и "P" в низкоуглеродистых сталях ограничивают до 0,4÷0,5%.

Кремний (Si) присутствует в сталях как примесь в к-ве до 0,3% в качестве раскислителя. При таком содержании "Si" свариваемость сталей не ухудшается. В качестве легирующего элемента при содержании "Si" – до 0,8÷1,0% (особенно до 1,5%) возможно образование тугоплавких оксидов "Si", ухудшающих свариваемость.

Марганец (Mn) при содержании в стали до 1,0% – процесс сварки не затруднен. При сварке сталей с содержанием "Mn" в к-ве 1,8÷2,5% возможно появление закалочных структур и трещин в металле ЗТВ.

Хром (Cr) в низкоуглеродистых сталях ограничивается как примесь в количестве до 0,3%. В низколегированных сталях возможно содержание хрома в пределах 0,7÷3,5%. В легированных сталях его содержание колеблется от 12% до 18%, а в высоколегированных сталях достигает 35%. При сварке хром образует карбиды, ухудшающие коррозионную стойкость стали. Хром способствует образованию тугоплавких оксидов, затрудняющих процесс сварки.

Никель (Ni) аналогично хрому содержится в низкоуглеродистых сталях в количестве до 0,3%. В низколегированных сталях его содержание возрастает до 5%, а в высоколегированных – до 35%. В сплавах на никелевой основе его содержание является пре­валирующим. Никель увеличивает прочностные и пластические свойства стали, оказывает положительное влияние на свариваемость.

Ванадий (V) в легированных сталях содержится в количестве 0,2÷0,8%. Он повышает вязкость и пластичность стали, улучшает ее структуру, способствует повышению прокаливаемости.

Молибден (Мо) в сталях ограничивается 0,8%. При таком содержании он положительно влияет на прочностные показатели сталей и измельчает ее структуру. Однако при сварке он выгорает и способствует образованию трещин в наплавленном металле.

Медь (Си) содержится в сталях как примесь (в количестве до 0,3% включительно), как добавка в низколегированных сталях (0,15 до 0,5%) и как легирующий элемент (до 0,8÷1%). Она повышает коррозионные свойства стали, не ухудшая свариваемости.

При оценке влияния химического состава на свариваемость стали, кроме содержания углерода, учитывается также содержание других легирующих элементов, повышающих склонность стали к закалке. Это достигается путем пересчета содержания каждого легирующего элемента стали в эквиваленте по действию на ее закаливаемость с использованием переводных коэффициентов, определенных экспериментально. Суммарное содержание в стали углерода и пересчитанных эквивалентных ему количеств легирующих элементов называется углеродным эквивалентом. Для его расчета существует ряд формул, составленных по различным методикам, которые позволяют оценить влияние химического состава низколегированных сталей на их свариваемость:

СЭКВ = С + Мn/6 + Сr/5 + Мо/5 + V/5 + Ni/15 + Си/15 (метод МИС);

СЭКВ = С + Мn/6 + Si/24 + Ni/40 + Сr/5 + Мо/4 (японский метод);

[С]Х = С + Мn/9 + Сr/9 + Ni/18 + 7Мо/90 (метод Сефериана),

где цифры указывают содержание в стали в массовых долях процента соотвтствующих элементов.

Каждая из этих формул приемлема лишь для определенной группы сталей, однако значение углеродного эквивалента может быть использовано при решении практических вопросов, связанных с разработкой технологии сварки. Достаточно часто расчеты химического углеродного эквивалента для углеродистых и низколегированных конструкционных сталей перлитного класса выполняются по формуле Сефериана.

По свариваемости стали условно делят на четыре группы: хорошо сваривающиеся, удовлетворительно сваривающиеся, ограниченно сваривающиеся, плохо сваривающиеся (табл. 1.1).

К первой группе относят наиболее распространенные марки низкоуглеродистых и легированных сталей ([С]Х≤0,38), сварка которых может быть выполнена по обычной технологии, т.е. без подогрева до сварки и в процессе сварки, а также без последующей термообработки. Литые детали с большим объемом наплавленного металла рекомендуется сваривать с промежуточной термообработкой. Для конструкций, работающих в условиях статических нагрузок, термообработку после сварки не производят. Для ответственных конструкций, работающих при динамических нагрузках или высоких температурах, термообработка рекомендуется

Ко второй группе относят углеродистые и легированные стали ([С]х=0,39÷0,45), при сварке которых в нормальных условиях производства трещин не образуется. В эту группу входят стали, которые для предупреждения образования трещин необходимо предварительно нагревать, а также подвергать последующей термообработке. Термообработка до сварки различная и зависит от марки стали и конструкции детали. Для отливок из стали 30Л обязателен отжиг. Детали машин из проката или поковок, не имеющих жестких контуров, можно сваривать в термически обработанном состоянии (закалка и отпуск). Сварка при температуре окружающей среды ниже 0°С не рекомендуется. Сварку деталей с большим объемом наплавляемого металла рекомендуется проводить с промежуточной термообработкой (отжиг или высокий отпуск)

Таблица 1. Классификация сталей по свариваемости.

Хорошо сваривающиеся

Хорошо сваривающиеся

Удовлетворительно сваривающиеся

Ограниченно сваривающиеся

Плохо сваривающиеся

*ДСТУ 2651-94 (ГОСТ 380-94). ** В Украине отменен.

В случае, когда невозможен последующий отпуск, заваренную деталь подвергают местному нагреву. Термообработка после сварки разная для различных марок сталей. При заварке мелких дефектов стали, содержащей более 0,35% углерода, для улучшения механических свойств и обрабатываемости необходима термическая обработка (отжиг или высокий отпуск по режиму для данной стали).

К третьей группе относят углеродистые и легированные стали ([С]Х=0,46÷0,59) перлитного класса, склонные в обычных условиях сварки к образованию трещин. Свариваемость этой группы сталей обеспечивается при использовании специальных технологических мероприятий, заключающихся в их предварительной термообработке и подогреве. Кроме того, большинство изделий из этой группы сталей подвергают термообработке после сварки. Для деталей и отливок из проката или поковок, не имеющих особо жестких контуров и жестких узлов, допускается заварка в термически обработанном состоянии (закалка и отпуск).

Без предварительного подогрева такие стали можно сваривать в случаях, когда соединения не имеют жестких контуров, толщина металла не более 14мм, температура окружающей среды не ниже +5°С и свариваемые соединения имеют вспомогательный характер. Во всех остальных случаях обязателен предварительный подогрев до температуры 200°С.

Термообработка данной группы сталей назначается по режиму, выбираемому для конкретной стали.

К четвертой группе относят углеродистые и легированные стали ([С]х≥0,60) перлитного класса, наиболее трудно поддающиеся сварке и склонные к образованию трещин. При сварке этой группы сталей с использованием рациональных технологий не всегда достигаются требуемые эксплуатационные свойства сварных соединений. Эти стали свариваются ограниченно, поэтому их сварку выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой. Перед сваркой такая сталь должна быть отожжена. Независимо от толщины и типа соединения сталь необходимо предварительно подогреть до температуры не ниже 200°С. Термообработку изделия после сварки проводят в зависимости от марки стали и ее назначения.

Эксплуатационная надежность и долговечность сварных конструкций из низколегированных теплоустойчивых сталей зависит от предельно допустимой температуры эксплуатации и длительной прочности сварных соединений при этой температуре. Эти показатели определяются системой легирования теплоустойчивых сталей. По системе легирования стали можно разделить на хромомолибденовые, хромомолибденованадиевые и хромомолибденовольфрамовые (табл. 1.2). В этих сталях значение углеродного эквивалента изменяется в широких пределах и оценка свариваемости сталей по его значению нецелесообразна. Расчет температуры предварительного подогрева выполняется для каждой кон­кретной марки сталей.

Разделение высоколегированных сталей по группам (нержаве­ющие, кислотостойкие, жаростойкие и жаропрочные) в рамках ГОСТ5632-72 выполнено условно в соответствии с их основными служебными характеристиками, так как стали жаропрочные и жаростойкие являются одновременно кислотостойкими в определенных агрессивных средах, а кислотостойкие стали обладают одновременно жаропрочностью и жаростойкостью при определенных температурах.

Остановимся на кратких рекомендациях по технологии сварки высоколегированных сталей, которые, как уже отмечалось, разделяются на четыре группы.

Для хорошо сваривающихся высоколегированных сталей термообработку до и после сварки не проводят. При значительном наклепе металл необходимо закалить от 1050÷1100°С. Тепловой режим сварки нормальный. К этой группе сталей можно отнести ряд кислотостойких и жаропрочных сталей с аустенитной и аустенитно-ферритной структурой.

Для удовлетворительно сваривающихся высоколегированныхсталей перед сваркой рекомендуется предварительный отпуск при 650÷710°С с охлаждением на воздухе. Тепловой режим сварки нормальный. При отрицательной температуре сварка не допускается. Предварительный подогрев до 150÷200°С необходим при сварке элементов конструкции с толщиной стенки более 10мм. После сварки для снятия напряжений рекомендуется отпуск при 650÷710°С. К этой группе в первую очередь можно отнести большую часть хромистых и некоторых хромоникелевых сталей.

Таблица 2. Марки теплоустойчивых и высоколегированных сталей и сплавов на железоникелевой и никелевой основе.

Перлитный или мартенситный

Ферритный, мартенситно-ферритный и мартенситный

Аустенитный и аустенитно-ферритный

Ферритно-аустенит-ный

Для ограниченно сваривающихся высоколегированных сталей термообработка перед сваркой различная (отпуск при 650÷710°С с охлаждением на воздухе или закалка в воде от 1050÷1100°С). При сварке большинства сталей этой группы обязателен предварительный нагрев до 200÷300°С.

После сварки для снятия напряжений и понижения твердости детали сварного соединения подвергают отпуску при 650÷710°С. Для сварки ряда сталей аустенитного класса обязательна закалка в воде от 1050÷1100°С.

Для плохо сваривающихся высоколегированных сталей перед сваркой рекомендован отпуск по определенным режимам для различных сталей.

Для всей группы сталей обязателен предварительный подогрев до 200÷300°С. Сварка стали 110Г13Л в состоянии закалки производится без нагрева. Термообработку после сварки выполняют по специальным инструкциям, в зависимости от марки стали и назначения. Для стали 110Г13Л термообработка не требуется.

Подготовка металла под сварку

При подготовке деталей под сварку поступающий металл подвергается правке, разметке, наметке, резке, подготовке кромок под сварку, холодной или горячей гибке.

Основной метали и присадочный материал перед сваркой должен быть тщательно очищены от ржавчины, масла, влаги, окалины и различного рода неметаллических включений. На месте указанных загрязнений приводит к образованию в сварных швах пар, трещин, шлаковых включений, что приводит к снижению прочности и плотности сварного соединения.

Читайте также: