Трансформатор со стальным сердечником

Обновлено: 03.05.2024

В недалёком 2016 году на одного молодого, но очень впечатлительного четверокурсника факультета энергетики оказала влияние статья, в которой автор весьма популярно показал что такое в день сегодняшний высокотемпературные сверхпроводники (далее ВТСП). Ослеплённый желанием оживить в своей душе довольно однообразную и предельно консервативную электроэнергетику, пробираясь сквозь пелену противоречий и острую нехватку финансов, молодой бакалавр вместе со своими коллегами всё же построил трансформатор с обмотками из высокотемпературного сверхпроводника.

Приятного чтения!

Зачем делать трансформаторы сверхпроводящими?

Нынешние продукты трансформаторостроения воистину достигли в некотором смысле идеала. Крупные силовые трансформаторы, те самые, которые стоят в кирпичных или железных трансформаторных подстанциях (ТП-ушках) у вас во дворе, а также более крупные представители имеют КПД порядка 99%. Огромное количество нормативных документов регулирует работу, диагностику, способ установки и создания таких трансформаторов, а на конференциях и выставках появляются всё новые и новые представители с инновационной гайкой в остове магнитопровода или революционным маслом с пониженной концентрацией растворённых в нём газов.


Типичный представитель силовых трансформаторов

И, казалось бы, куда нам невеждам лезть в эту отполированную до мелочей область инженерной мысли. Неужели лишние полпроцента КПД, которые могут дать сверхпроводящие обмотки трансформатора, стоят затрат и организации специального криогенного хозяйства, переобучения инженеров и переоборудования производства? Зачем изобретать велосипед? Первичный анализ показывает, что незачем. Однако позвольте мне привести один аргумент, который и стал причиной по которой впоследствии и стала возможна эта статья: «Что если велосипед будет противоаварийный?».

Преимущества трансформатора с ВТСП обмотками перед обычным:

— Практически полное отсутствие потерь энергии в обмотках (провода ведь сверхпроводящие, они не греются);
— Взрыво- и пожаробезопасность (жидкий азот, в отличие от трансформаторного масла, не выделяет взрывоопасных газов);
— Меньшая масса и габариты (плотность тока в сверхпроводящем проводе может в 10 раз превышать аналогичную в медном, при равном напряжении);
— Возможность ограничивать токи короткого замыкания.

Несмотря на сильную составляющую первых трёх преимуществ, все они блекнут перед гнётом огромной цены, которую приходится платить за сверхпроводимость. Поэтому, боюсь коммерческий успех ВТСП трансформаторов может состояться, разве что в особо требовательных видах военной и космической техники или на особых по уровню пожаробезопасности объектах. Однако четвёртое свойство может резко изменить картину и лично мне уже оно одно кажется достаточным, чтобы не только обратить внимание на ВТСП парадигму, но и провести какие-нибудь исследования. Собственно что и сделали многие мои коллеги по всему миру, взять хотя бы работы 3.
В чём же тут фокус?

О физике токоограничения

В настоящий момент, говоря о ВТСП проводах в контексте электроэнергетики, мы почти всегда говорим о композитных ВТСП лентах на основе керамических соединений. Как видно из изображения ниже, сверхпроводник (слой YBCO) нанесённый на металлическую подложку, покрывается со всех сторон некоторым защитным слоем. Этим защитным слоем могут выступать некоторые металлы и их сплавы, например медь. Естественно эти материалы не обладают сверхпроводящими свойствами при температуре жидкого азота, а значит в случае, если сверхпроводимость по каким-то причинам у YBCO-керамики пропадает, то весь ток распараллеливается между этими слоями, сообразно их резистивному сопротивлению.


Всякий ток пропорционален напряжению, приложенному к данному сопротивлению, а значит, если вдруг откуда ни возьмись в цепи появилось сопротивление там где его раньше не было (сверхпроводимость разрушилась), то ток (при неизменном напряжении) уменьшится. Притом степень этого уменьшения зависит от сопротивления материалов окружающих, ВТСП-слой. Но как разрушить сверхпроводимость? Есть на самом деле 2 фундаментальных способа: поднять температуру свыше критической, при которой сверхпроводимость не может существовать или подействовать на ВТСП магнитным полем выше критического. Притом, если по сверхпроводнику протекает ток, то он также создаёт магнитное поле, которое старается проникнуть в этот сверхпроводник, и если ток создаёт слишком большое поле, то сверхпроводимость начинает постепенно разрушаться. Ток, при котором сверхпроводимость начала разрушаться, принято называть критическим.

Строим трансформатор!

Ну всё! Теперь, уверен, вы понимаете достаточно для того чтобы приступить к постройке трансформатора, и, поверьте, для меня это было действительно увлекательным путешествием, поскольку если намотка провода для обычного трансформатора (привет тем, кто мотал) представляет собой весьма скрупулёзное и довольно нудное дело, то у ВТСП трансформатора сложность вырастает в разы. Особенно, когда подобное устройство собирается из подручных материалов. Разбираемся почему!

Каркасы обмоток

Одним из серьёзных недостатков ВТСП трансформатора есть то, что сердечник не является и не может являться сверхпроводящим. Поэтому у нас есть два варианта как поступить, тепло- и гидроизолировать сердечник от обмоток, увеличивая расстояние между им и обмотками и уменьшая КПД, или засунуть сердечник в азот вместе с обмотками, создавая большой кипятильник для азота, поскольку потери на холостой ход трансформатора никуда не деть. Мы решили пойти по первому пути, сделав криостат в виде полого цилиндра. Для чего в качестве каркаса для вторичной обмотки (которая ближе к сердечнику) выбрали это:



Труба из полипропилена и бумага обёрточная подле неё

Труба внутренним диаметром 100 мм. из полипропилена является идеальным гидроизолятором, но не очень хорошим теплоизолятором. Более того некоторые виды пластика имеют свойство усаживаться при низких температурах, из-за чего обмотка намотанная непосредственно на такую трубу может быть деформированна вместе с трубой. Поэтому было принято решение дополнительно армировать данную трубу обмотав её поверх бумагой, пропитанной эпоксидной смолой. С бумагой проблем не возникло, такую в достатке можно раздобыть у выхода из различных (крупных) строительных магазинов (аля Леруа), там она бесплатная. С компаундом потяжелее. У нас не было опыта работы с самодельными текстолитами на основе бумаги, и мы не знали, как поведёт себя бумажно-пропитанный каркас при -196 градусов Цельсия. Посоветовались и решили взять первую попавшуюся эпоксидную смолу марки ЭД-20. При покупке смолы нас предупредили, что отвердитель (второй компонент, с которым смешивается смола, после чего затвердевает в ходе хим. реакции) срабатывает за 20 минут. Отчего сразу стало понятно, что медлить будет нельзя и пропитывать бумагу нужно будет быстро. Для этого верные соратники предстали в образе человеческого конвейера.



Импровизированный конвейер по пропитке бумаги эпоксидной смолой

Запах был, прямо скажем, не очень. А ещё берегите руки при работе с компаундами!



Процесс пропитки бумаги

Второй каркас (для наружной обмотки) делался уже по образу и подобию первого и прямо поверх него. Чтобы каркасы не слиплись, подложили немного случайного материала, который впоследствии можно было бы отодрать. В итоге получилось:



Готовые каркасы для обмоток

Резюмируя эту часть скажу, что более дешёвого способа сотворить два немагнитных, неметаллических, криостойких и достаточно прочных каркаса, наверное просто нету. Самый дорогой элемент в создании каркаса оказался конечно же компаунд ~500 р./кг., за ней следует ПП труба, ну а далее кисточки, перчатки — это опционально.

Пожалуй, центральным и самым дорогим элементом этой истории являются сами ВТСП обмотки. Причина, по которой в заголовке статьи присутствует слово «почти», это цена. 40 метров ВТСП ленты шириной 4 мм и толщиной 0,1 мм, с критическим током 80 А. было приобретено нами по цене 2500 р./метр. Понятно физ. лицо едва ли станет платить за подобное. Посмотрим же на их ослепительно дорогое величие.



Ослепительно дорогая часть описываемого проекта

Помимо дороговизны ВТСП лента ещё и очень прихотливый материал. Она не любит сильных перегревов (свыше 500 градусов), у неё большой предельный радиус изгиба (около 20 мм, при превышении начнётся деформация сверхпроводника), её также нельзя скручивать, мять, бить. Всё это превращает работу с ВТСП проводами в подобие ювелирного искусства. Как будем наматывать?

Честно говоря, способ намотки ленты на каркас выбран наверное самый примитивный. Лента покрывается повдоль с одной стороны каптоновым скотчем, а выступающие за пределы ленты края скотча приклеиваются вместе с лентой к каркасу. В результате в процессе намотки мы получаем два фактора, удерживающие обмотку на каркасе: адгезия скотча и поверхности текстолита и сила трения ленты о ту же поверхность. В итоге, на удивление, получилось довольно надёжно.

Каптоновый скотч выделен не случайно. Дело в том, что не каждый материал может быть надёжной изоляцией при низких температурах. Например, обычный скотч становится едва не стеклянным и усаживается. Изолента тоже усаживается. Электроизоляционные лаки трескаются (правда не все), ПВХ изоляция также усаживается. Каптоновый (или полиимидный) скотч ведёт себя крайне спокойно при низких температурах (равно как и при высоких), его традиционно и выбирают для ВТСП проводов, когда нужно сделать что-то «по-быстрому», хотя надо сказать он недешёвый по сравнению с обычным скотчем. Когда же нужно сделать что-то основательное, используют покрытие всё также на основе полиимида.



Процесс намотки наружной (первичной) обмотки

Мотали, собственно, трансформатор с числом витков 50:25, на практике получилось немного меньше, но не суть. Первичная обмотка (наружная) была однозаходная (одна спиралька по всей высоте), вторичная обмотка (внутренняя) была двухзаходная (две спиральки идут, чередуясь). Что собственно даёт критический ток первичной = 80 А и для вторичной 160А. Если учесть что сетевое напряжение (под которое делался трансформатор) = 220 В. То получается около 10 кВт передаваемой мощности практически без потерь, в довольно небольшом объёме. Итоги намотки:



Первичная (слева) и вторичная (справа) обмотки ВТСП трансформатора

Мы добрались до самого нервного процесса в изготовлении трансформатора. Как было сказано выше, сверхпроводник не любитель высоких температур. Когда мы говорим о медном проводе, способном длительно нести 60-80 Ампер не особо перегреваясь, то мы имеем ввиду сечения 16 или 25 мм^2. Это довольно массивные и непослушные провода, которым тяжело придать нужную изящную форму для удобного спаивания с 4 миллиметровой ВТСП лентой. Если брать достаточно мощный паяльник и незатейливый припой, то можно перегреть ленту. Поэтому лучше взять Индий-Оловянный припой с температурой плавления ~103 град. С. А ещё лучше растопить его в паяльной ванне, покрыть ленту и провод паяльной кислотой и получить сказочный отблеск самообожания от хорошо проделанной работы в отражении горячего металла.

Нюанс. Токовые контакты лучше припаивать, не жалея площади ленты, для лучшего токоввода. Мы брали 3 см. ленты по поверхность касания с токовым контактом, но можно и больше. Контакты напряжения мы удалили от токовых на несколько сантиметров, чтобы не мерить падение напряжения на точке контакта, а непосредственно на обмотке. К сожалению, сохранилось только фото финала этого действа.



Обмотки с контактами

Финальная и самая кустарная часть нашего производства. Криостат выполнялся из пенопласта и акрилового герметика. И всё. К сожалению, не каждая марка пенопласта подойдёт. Пенопласт с крупными гранулами при попадании на него азота немедленно самоуничтожится с треском и грохотом.



Неправильный пенопласт (слева) и правильный пенопласт (справа)

Что же до герметика, то, кроме шуток, взяли самый дешёвый из тех, что был. Не знаю, в чём тут фокус. Главное, чтобы герметик был именно акрилловый, а не силиконовый, ибо последний (как нас заверили в магазине) может разъесть пенопласт.

Криостат был сборным, вырезались квадраты с круглыми отверстиями, такими, чтобы вся конструкция в итоге уместилась внутри, при этом снаружи криостата торчала труба, в которую в будущем предполагается поместить магнитопровод. Иначе говоря:



Сборный криостат

Как видно на фото, стыки всей этой конструкции жирно промазывались и пропитывались герметиком. На руку нам то, что герметик застывая при азоте, на ощупь напоминает сильно густой сыр, и выполняет свои функции крайне здорово. На последнем этапе, под трубу-каркас вырезается специальное дно, на которое он устанавливается и, наконец, вся эта конструкция собирается в единый ВТСП трансформатор.



ВТСП трансформатор

В итоге мы получили:

ВТСПТ-10000, 220/110 В, 50/100 А, ОХЛ

ВТСП Т — последняя буква означает трансформатор
10000 — мощность в ВА
220/100 — номинальные напряжения первичной/вторичной обмоток
50/100 — номинальные токи первичной/вторичной обмоток
ОХЛ — работа при очень холодных условиях

Эксперименты

Думаю, каждый экспериментатор хотя бы раз испытывал эту смесь трепета и безжалостности с которой он подвергал мучениям своего «новоиспеченного зверя». Конечно ВТСП трансформатор был создан для того, чтобы быть испепелённым. Однако испепелять мы его будем осторожно — по научному.

Здесь же я покажу главный опыт, ради которого и делался трансформатор. Замкнём накоротко вторичную обмотку и с помощью выключателя подадим на первичную обмотку напряжение от сети (220 В). Поскольку сопротивления первичной обмотки и магнитно связанной с ней (через воздух) вторичной обмотки малы, то в цепях будут протекать достаточно большие токи. Эти токи будут превышать критический уровень в 80 А и, следовательно, разрушать сверхпроводимость, из-за чего ВТСП обмотка начнёт постепенно обретать конечное электрическое сопротивление, что в свою очередь вызовет ограничение тока. Что мы зафиксируем в виде искажённой синусоиды тока. И появления на осциллограмме напряжения некоторых конечных значений (вместо нулевых в нормальном режиме). Измерения будут проходить с помощью неожиданного для данного опыта устройства: анализатора качества электроэнергии. Неожиданный он потому, что частота дискретизации данного устройства в режиме осциллографа оставляет желать лучшего. Но что поделать. Тем не менее давайте взглянем на качественную картину происходящего.



Осциллограммы токов (точки на графиках соответствуют реальным снятым данным)

На осциллограммах слева (для сравнения) приведён режим короткого замыкания в случае, если не заливать трансформатор жидким азотом: мы видим слегка искажённую, но спокойную синусоиду тока короткого замыкания, который спустя период (на рисунке приведено полпериода) отключается автоматическим выключателем. Справа приведён режим короткого замыкания если криостат предварительно заполнен жидким азотом: мы видим сильный начальный рост тока, который постепенно (уже начиная со 150 А) загибается под действием прирастающего сопротивления. Однако из-за большего значения тока короткого замыкания автоматический выключатель срабатывает уже на первом полупериоде.

Увы пока довольствуемся лишь этими качественными результатами, но в скором времени обязательно сделаем много других.

Конечно, ВТСП трансформатор оставляет после себя уйму противоречий. Эти противоречия проявляются даже в кустарном способе изготовления такого непростого устройства. Чего говорить о реальных действующих образцах, с которыми вы можете ознакомиться по [1,3]. Реальная ВТСП электроэнергетика далеко ускакала вперёд с разработками кабелей и токоограничителей, претерпевая трудности даже в этих более развитых её подразделениях. С ними довольно популярно можно ознакомиться не покидая этот сайт, например здесь.

Тем не менее, сколь противоречива бы ни была эта область инженерного знания, прав в конечном итоге останется тот, кто свою правоту сможет обосновать, так что будем стараться.

И в любом случае, это жутко интересно!

Благодарю за внимание!
Искренне Ваш DOK.

Также выражаю благодарности:

Высоцкому Виталию Сергеевичу и команде ВНИИКП за помощь и консультирование в этом нелёгком пути.
Павлюченко Дмитрию Анатольевичу за гигантскую поддержку и желание развивать это направление с нуля!

1. Dai S. et al. Development of a 1250-kVA superconducting transformer and its demonstration at the superconducting substation //IEEE Transactions on Applied Superconductivity. – 2016. – Т. 26. – №. 1. – С. 1-7.
2. Манусов В. З., Александров Н. В. Ограничение токов короткого замыкания с помощью трансформаторов с высокотемпературными сверхпроводящими обмотками //Известия Томского политехнического университета. – 2013. – Т. 323. – №. 4.
3. Lapthorn A. C. et al. HTS transformer: Construction details, test results, and noted failure mechanisms //IEEE Transactions on Power Delivery. – 2011. – Т. 26. – №. 1. – С. 394-399.

Трансформатор со стальным сердечником

Трансформатор представляет собой статическое устройство, служащее для преобразования уровней напряжения и тока, а в некоторых случаях просто для гальванической развязки электрических цепей.

Трансформатор обычно состоит из двух обмоток и магнитопровода. Последний служит для увеличения магнитного потока, что соответствует усилению магнитной связи между обмотками. Та обмотка, которая подсоединяется к источнику, называется первичной, та которая к потребителю – вторичной. Чаще всего обмотки располагаются на одной стороне магнитопровода. На рис. 4.34 изображена схема трансформатора, на которой для наглядности обмотки расположены на разных сторонах (стержнях).

Так же как в катушке со стальным сердечником ток первичной обмотки создает магнитное поле в сердечнике (основной магнитный поток Ф0) и поток рассеяния ФS . Основной магнитный поток пронизывает вторичную обмотку и наводит в ней э.д.с. Если вторичную обмотку замкнуть на сопротивление нагрузки, то по ней потечет ток. Этот ток в свою очередь создает свой магнитный поток, который суммируется с основным магнитным потоком, а также свой поток рассеяния. Независимо от действия вторичной обмотки суммарный основной магнитный поток остается неизменным, так как он напрямую зависит от напряжения источника.

Активные сопротивления обмоток и их индуктивные сопротивления можно вынести за пределы магнитопровода ввиду их линейного характера. Тогда получается схема для составления основных уравнений трансформатора со стальным сердечником (рис. 4.35).

У правильно сконструированного трансформатора первые два слагаемых достаточно малы, и ими можно пренебречь:

Поделив первое уравнение на второе, получим для действующих значений

где К – коэффициент трансформации.

Из последнего уравнения следует, что напряжения на обмотках пропорциональны числам витков.

Основной магнитный поток создается под суммарным воздействием обеих обмоток и остается неизменным. Поэтому

где I0 – намагничивающий ток, если I2 = 0, то I0 – ток холостого хода.

Поделим последнее уравнение на w1 :

Откуда появляется понятие приведенного тока

У правильно сконструированного трансформатора намагничивающий ток достаточно мал, и в режиме нагрузки им можно пренебречь. Тогда для действующих значений

Токи в трансформаторе обратно пропорциональны числам витков.

Для удобства расчетов используется так называемый приведенный трансформатор, у которого вторичное напряжение приводится к уровню первичной обмотки с учетом коэффициента трансформации. При этом

,

Расчетная схема замещения приведенного трансформатора представлена на рис. 4.36.

Векторная диаграмма (рис. 4.37) строится в соответствии с выбранными направлениями токов на схеме замещения. Вектора первичной стороны строятся так же как для катушки со стальным сердечником. Вектор тока I2 отстает от вектора напряжения нагрузки на угол φ2 . Величина вектора Е складывается из векторов падений напряжений на параметрах вторичной обмотки нагрузки. Ток первичной обмотки складывается из тока холостого тока (намагничивающего тока) и тока вторичной обмотки, взятой с обратным знаком.

В § 3.39 рассматривались соотношения, характеризующие работу трансформатора, для которого зависимость между напряженностью поля и потоком в сердечнике была линейной, а потери в сердечнике отсутствовали.

Для улучшения магнитной связи между первичной и вторичной обмотками трансформатора его сердечник выполняют из ферромагнитного материала (рис. 15.52).

В данном параграфе рассмотрены соотношения, характеризующие работу трансформатора с учетом того, что зависимость между напряженностью поля и потоком в ферромагнитном (стальном) сердечнике нелинейна и что в сердечнике есть потери, обусловленные гистерезисом и вихревыми токами.

Для уменьшения тока холостого хода сердечник трансформатора стремятся изготовить таким образом, чтобы он имел возможно меньший воздушный зазор, расположенный перпендикулярно магнитному потоку, либо совсем не имел его.

В силу нелинейной зависимости между потоком и напряженностью поля в сердечнике по обмоткам трансформатора протекают несинусоидальные токи.

Анализ работы трансформатора будем проводить, заменив несинусоидальные токи и потоки их эквивалентными в смысле действующего значения величинами: — комплекс действующего значения тока первичной обмотки; — комплекс действующего значения тока вторичной обмотки; — комплексная амплитуда основного магнитного потока, проходящего по сердечнику трансформатора, пронизывающего обмотки и наводящего в них ЭДС.

Вследствие наличия рассеяния небольшой по сравнению с поток — поток рассеяния первичной обмотки — замыкается по воздуху, образуя потокосцепление только с обмоткой .

Другой, также небольшой по сравнению с поток — поток рассеяния вторичной обмотки — замыкается по воздуху, сцепляясь только с обмоткой

Полагают, что потокосцепление потока с обмоткой пропорционально току

Коэффициент пропорциональности между потокосцеплением и током называют индуктивностью рассеяния первичной обмотки, зависит от числа витков и конструкции обмотки.

Принимают также, что потокосцепление потока с обмоткой пропорционально току вторичной цепи

Коэффициент пропорциональности между потокосцеплением обусловленным потоком рассеяния и током называют индуктивностью рассеяния вторичной обмотки, зависит от числа витков и конструкции вторичной обмотки.

Индуктивное сопротивление первичной обмотки, обусловленное потоком рассеяния

Аналогично, индуктивное сопротивление вторичной обмотки, обусловленное потоком рассеяния

Пусть — резистивное сопротивление первичной обмотки, резистивное сопротивление вторичной обмотки, — сопротивление нагрузки.

На рис. 15.53, а изображена схема того же трансформатора, что и на рис. 15.52, но на ней резистивные и индуктивные сопротивления, обусловленные потоками рассеяния, представлены отдельно выделенными Запишем уравнение по второму закону Кирхгофа для обеих цепей.

Для первичной цепи

для вторичной цепи

где напряжение, численно равное ЭДС, наводимой в обмотке основным рабочим потоком

Деление на объясняется переходом от амплитудного значения к действующему. Аналогично, напряжение, численно равное ЭДС, наводимой в обмотке основным рабочим потоком

Обозначим ток при холостом ходе трансформатора через МДС трансформатора при холостом ходе равна МДС трансформатора при наличии тока составляет . Трансформаторы конструируют обычно таким образом, что падения напряжения много меньше, чем падение напряжения Если это учесть, то для правильно сконструированных трансформаторов уравнение (15.76) запишем так:

Уравнение (15.76а) справедливо как при холостом ходе, так и при нагрузке, т. е. при переходе от холостого хода к режиму работы при нагрузке поток практически остается неизменным по модулю.

Но если в этих двух режимах поток один и тот же, то должны быть равны и создающие его МДС, т. е.

Поделив обе части равенства на получим

Таким образом, ток первичной цепи может быть представлен как геометрическая сумма двух токов: тока холостого хода и тока Ток называют приведенным (к числу витков первичной обмотки) вторичным током. Он численно равен току измененному в раз.

Кроме того, в правильно сконструированных трансформаторах падения напряжений и малы по сравнению с , поэтому из уравнения (15.77) следует, что

Если почленно разделить (15.76 а) на (15.79) и перейти к модулям, то

т. е. отношение напряжения на входе трансформатора к напряжению на его выходе (на нагрузке) приблизительно равно отношению числа витков первичной обмотки к числу витков вторичной обмотки.

В правильно сконструированных трансформаторах при нагрузке, близкой к номинальной, ток составляет 1 — 10% от тока поэтому уравнение (15.78) можно приближенно представить так:

Между модулями токов при нагрузке, близкой к номинальной, имеет место следующее приближенное соотношение:

т. е. ток почти пропорционален току . Эта пропорциональность немного нарушается за счет тока холостого хода

В резистивных сопротивлениях вторичной цепи выделяется энергия, которая переносится магнитным потоком из первичной цепи во вторичную и восполняется источником питания схемы. На рис. изображена схема замещения трансформатора со стальным сердечником. Для ее обоснования, уравнение (15.77) умножим на , заменим в нем ток на в соответствии с (15.786) и у всех слагаемых уравнения изменим знаки.

В результате получим

Схема (рис 15.53, б) удовлетворяет уравнениям (15.76), (15.78) и (15.81а).

Стальной магнитопровод у трансформатора уменьшает магнитное сопротивление и увеличивает коэффициент магнитной связи — между обмотками, Это приближает свойства трансформатора к свойствам

идеального трансформатора, но в магнитопроводе трансформатора наблюдаются потери энергии, обусловленные вихревыми токами и гистерезисом Вследствие нелинейной зависимости между магнитной индукцией и напряженностью магнитного поля ток в трансформаторе при синусоидальном приложенном напряжении может быть и несинусоидальным Все эти явления подробно рассматриваются в гл. 23. Сейчас важно отметить, что заметное отклонение формы кривых тока в трансформаторе от синусоидальнои наблюдается только в режимах, близких к холостому ходу В нагрузочных режимах эти отклонения настолько незначительны, что ими можно пренебречь и считать трансформатор со стальным магнитопроводом линейным элементом цепи

Эквивалентную схему трансформатора можно получить, подробно анализируя все происходящие в нем явления Именно такой способ ее получения приводится в курсах электрических машин и трансформаторов или в специальных монографиях, посвященных трансформаторам Здесь рассмотрим трансформатор как четырехполюсник и применим для него эквивалентные схемы, рассмотренные в предыдущем параграфе

Опыты показывают, что при холостом ходе трансформатора со стальным магнитопроводом отношение комплексных первичного и вторичного напряжений практически одинаково независимо от того, осуществляется ли питание трансформатора со стороны первичных или со стороны вторичных зажимов Опыты показывают также, что отношение этих комплексных напряжений практически можно считать вещественным числом, равным отношению их действующих значений и равным отношению чисел витков обмоток трансформатора.

где — соответственно напряжения на первичных и вторичных зажимах в режимах холостого хода при прямом и обратном питании

Отношение действующих значений первичного и вторичного напряжений трансформатора при холостом ходе называется его коэффициентом трансформации

Таким образом, рассматривая трансформатор как четырехполюсник, можно считать

При холостом ходе ток в трансформаторе существенно отличается от синусоидального сопротивления определяются

как комплексные сопротивления для эквивалентных синусоидальных токов, которые эквивалентны несинусоидальным токам в том смысле, что имеют одинаковые с токами действующие значения и тем, что при этих токах те же активные мощности

Экспериментальное определение сопротивлений может быть проведено так, как описано в § 3-18, в предположении что измеряемое амперметром действующее значение несинусоидального тока является действующим значением эквивалентного синусоидального тока.

Для трансформаторов сопротивления принято обозначать соответственно Эти сопротивления называют сопротивлениями холостого хода и короткого замыкания трансформатора, приведенными к первичной обмотке () и приведенными к вторичной обмотке ( ).

Обычно у трансформаторов полные сопротивления холостого хода намного больше полных сопротивлений короткого замыкания Поэтому во многих случаях можно применять упрощенные схемы без ветвей, содержащих сопротивления и Z в ориентировочных расчетах пренебрегают иногда и сопротивлениями Z и т. е. рассматривают реальные трансформаторы как трансформаторы идеальные

Расчет импульсного трансформатора для двухтактного преобразователя и согласующих устройств

В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Поскольку трансформатор имеет много взаимозависимых параметров, расчет ведут по шагам, уточняя при необходимости исходные данные.

1. Как определить число витков и мощность?

Габаритная мощность, полученная из условия не перегрева обмотки, равна [1]:

Pгаб = So ⋅ Sc ⋅ f ⋅ Bm / 150 (1)

Где: Pгаб - мощность, Вт;
Sc - площадь поперечного сечения магнитопровода, см 2 ;
So - площадь окна сердечника, см 2 ;
f - частота колебаний, Гц;
Bm = 0,25 Тл - допустимое значение индукции для отечественных никель-марганцевых ферритов на частотах до 100 кГц.

Максимальную мощность трансформатора выбираем 80% от габаритной:

Pmax = 0,8 ⋅ Pгаб (2)

Минимальное число витков первичной обмотки n1 определяется максимальным напряжением на обмотке Um и допустимой индукцией сердечника Bm:

n1 = ( 0,25 ⋅ 10 4 ⋅ Um ) / ( f ⋅ Bm ⋅ Sc ) (3)

Размерности единиц здесь те же, что и в формуле (1).

Плотность тока в обмотке j для трансформаторов мощностью до 300 Вт принимаем 3..5 А/мм 2 (большей мощности соответствует меньшее значение). Диаметр провода в мм рассчитываем по формуле:

d = 1,13 ⋅ ( I / j ) 1/2 (4)

Где I - эффективный ток обмотки в А.

Пример 1:

Для ультразвуковой установки нужен повышающий трансформатор мощностью 30..40 Вт. Напряжение на первичной обмотке синусоидальное, с эффективным значением Uэфф = 100 В и частотой 30 кГц.

Выберем ферритовое кольцо К28x16x9.

Площадь его сечения: Sc = ( D - d ) ⋅ h / 2 = ( 2,8 - 1,6 ) ⋅ 0,9 / 2 = 0,54 см 2
Площадь окна: So = π ⋅ ( d / 2 ) 2 = π⋅ ( 1,6 / 2 ) 2 = 2 см 2
Габаритная мощность: Pгаб = 0,54 ⋅ 2 ⋅ 30 ⋅ 10 3 ⋅ 0,25 / 150 = 54 Вт
Максимальная мощность: Pmax = 0,8 ⋅ 54 = 43,2 Вт
Максимальное напряжение на обмотке: Um = 1,41 ⋅ 100 = 141 В
Число витков: n1 = 0,25 ⋅10 4 ⋅ 141 / ( 30 ⋅ 10 3 ⋅ 0,25 ⋅ 0,54 ) = 87
Число витков на вольт: n0 = 87 / 100 = 0,87
Эффективное значение тока первичной обмотки: I = P / U = 40 / 100 = 0,4 A
Плотность тока выберем 5 А/мм 2 .
Тогда диаметр провода по меди: d = 1,13 ⋅ ( 0,4 / 5 ) 1/2 = 0,31 мм

2. Как уточнить плотность тока?

Если мы делаем маломощный трансформатор, то можем поиграть с плотностью тока и выбрать более тонкие провода, не опасаясь их перегрева. В книге Эраносяна [2, Стр.109] дана такая табличка:

Почему плотность тока зависит от мощности трансформатора?

Выделяемое количество теплоты равно произведению удельных потерь на объем провода. Рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм 2 [3].

3. Как уточнить число витков первичной обмотки?

Зная число витков первичной обмотки n вычислим ее индуктивность. Для тороида она определяется по формуле:

L = μ0 ⋅ μ ⋅ Sс ⋅ n 2 / la (5)

Где:
Площадь дана в м 2 ;
средняя длина магнитной линии la в м;
индуктивность в Гн;
μ0 = 4π ⋅ 10 -7 Гн/м - магнитная постоянная.

В инженерном виде эта формула выглядит так:

Коэффициент AL и параметр мощности Sо ⋅ Sc для некоторых типов колец приведены в Таблице 2 [4,5,6]:

Для работы трансформатора в качестве согласующего устройства должно выполняться условие:

L > ( 4 .. 10 ) ⋅ R / ( 2 ⋅ π ⋅ fmin ) (6)

Где L - индуктивность в Гн;
R = U 2 эфф / Pн приведенное к первичной обмотке сопротивление нагрузки Ом;
fmin - минимальная частота, Гц.

В ключевых преобразователях в первичной обмотке трансформатора текут два тока: прямоугольный ток нагрузки Iпр = Um / R и треугольный ток намагничивания обмотки IT:

Для нормальной работы преобразователя величина треугольной составляющей не должна превышать 10% от прямоугольной, т.е индуктивность обмотки должна удовлетворять неравенству:

При необходимости число витков увеличивают или применяют феррит с большей μ. Чрезмерно завышать число витков в обмотке не желательно. Из-за роста межвитковой емкости на рабочей частоте могут возникнуть резонансные колебания.

Выбранный феррит должен иметь достаточную максимальную индукцию и малые потери в рабочей полосе частот. Как правило, на низких частотах (до 1 МГц) применяют феррит с μ = 1000 .. 6000 , а на радиочастотах приходиться использовать материалы с μ = 50 .. 400.

Пример 2:

Трансформатор из Примера 1 намотан на кольце К28х16х9 из никель-марганцевого феррита 2000НМ с магнитной проницаемостью μ = 2000.
Мощность нагрузки P = 40 Вт , эффективное напряжение первичной обмотки Uэфф = 100 В , частота f = 30 кГц. Уточним число его витков.

Приведенное сопротивление нагрузки: R = 100 2 / 40 = 250 Ом
Площадь поперечного сечения магнитопровода: Sc = 0,54 см 2 = 0,54 ⋅ 10 -4 м 2
Средняя длина магнитной линии: la = π ( D +d ) / 2 = π ( 2,8 + 1,6 ) ⋅ 10 -2 / 2 = 6,9 ⋅ 10 -2 м
Коэффициент индуктивности: AL = 4π ⋅ 10 -7 ⋅ 2000 ⋅ 0,54 ⋅ 10 -4 / 6,9⋅10 -2 = 1966 нГн / вит 2

Минимальная индуктивность первичной обмотки по формуле (6):
L = 10 ⋅ 250 / ( 2π ⋅ 3 ⋅ 10 4 ) = 13,3 мГн
Число витков: n = (13,3 ⋅ 10 -3 / 1,963 ⋅ 10 -6 ) 1/2 = 82

Оно даже меньше, чем рассчитанное ранее в Примере 1 nmin = 87.
Таким образом, условие достаточной индуктивности выполнено и число витков первичной обмотки n = 87.

4. Какие ферриты можно применить и почему?

Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая индукция B и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор. Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.

Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.

После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начинают бегать по некой замкнутой кривой (называемой петлей гистерезиса). На кривой отмечают характерные точки — индукцию насыщения Bs, остаточную индукцию Br и коэрцитивную силу Нс.

Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 - 20кГц, 2 - 50кГц, 3 - 100 кГц.

Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 - 20кГц, 2 - 50кГц, 3 - 100 кГц.

По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко) пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.

Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим. Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах. Частотные свойства ферритов характеризует критическая частота fc , при которой тангенс потерь достигает 0,1. Тепловые — температура Кюри Тс , при которой μ скачком уменьшается до 1.

Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала.

Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту fc. Но у него большие магнитные потери и невысокая температура Кюри.

Никель-марганцевый феррит имеет обозначение НМ. Проводимость его больше, поэтому fc низкая. Зато малы магнитные потери, температура Кюри выше, он меньше боится механических ударов.

Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.

Какие марки ферритов нам наиболее интересны?

Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.

Что касается допустимой индукции Bm, этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать Bm = 0,75 Вsmin. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения Bs при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить Bm до 0,2 Тл.

Читайте также: