Укажите основные характеристики прочности сталей

Обновлено: 18.05.2024


1. Предел прочности (временное сопротивление) - напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца.
Прочность – свойство твердых тел сопротивляться разрушению и необратимому изменению формы под действием внешних нагрузок.
2. Условный предел текучести - напряжение, при котором остаточная деформация достигает 0,2% от начальной длины образца.
Предел текучести - наименьшее напряжение, при котором, не смотря на продолжающуюся деформацию образца, не происходит заметного увеличения нагрузки.
3. Предел длительной прочности – наибольшее напряжение, которое вызывает за определенное время при данной температуре разрушение образца. - предел длительной прочности за 1000 ч. при 7000С.
4. Условный предел ползучести – напряжение, которое вызывает за определенное время при данной температуре заданное удлинение образца или скорость ползучести. - предел ползучести при допуске на деформацию 0,2% за 100 ч. испытания при 7000С.
Ползучесть – деформация металла с определенной скоростью при нагружении металла постоянно действующим напряжением ниже предела текучести в течение длительного времени при высокой температуре. Жаропрочность - сопротивление металла ползучести и разрушению в области высоких температур при длительном действии нагрузки.
5. Предел выносливости - наибольшее значение максимального напряжения цикла, при действии которого не происходит усталостного разрушения образца после произвольно большого или заданного числа циклов нагружения. Цикл нагружения – совокупность переменных значений напряжений за один период их изменения. 108,107.
Постепенное накопление повреждений в металле под действием циклических нагрузок, приводящее к образованию трещин и разрушению, называют усталостью, а свойство металлов сопротивляться усталости называют выносливостью.
Условный предел пропорциональности - отступление от линейной зависимости между напряжениями и деформациями достигает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации с осью напряжений, увеличивается на 50% от своего значения на линейном (упругом) участке.
Условный предел упругости - напряжение, при котором остаточная деформация достигает 0,05% от начальной длины образца.


1.2. Методы дефектоскопии, применяемые для контроля качества материалов деталей турбин и компрессоров: лопаток, дисков, роторов.


Методы делятся на разрушающие и неразрушающие.
Физические методы, неразрушающие:
1. Магнитная дефектоскопия используется для определения поверхностных трещин и непроваров. Метод основан на том, что в участках, в которых создаются подобные дефекты, возникают поля рассеивания; они обнаруживаются спец. приборами или по изменению расположения наносимого на поверхность магнитного порошка после наложения или при наложении магнитного поля.
2. Ультразвуковая дефектоскопия основана на различиях в отражении (рассеивании) направленного ультразвукового луча от внутренних, в том числе глубоко расположенных в детали, несплошностей.
3. Радиационная дефектоскопия основана на различиях в поглощении ионизирующих излучений средами с различной плотностью. Используют рентгеновскую и гамма дефектоскопию.
4. Травление поверхности. На поверхность наносятся слабые растворы соляной (HCl), азотной (HNO3) кислот или царской водки, в местах дефектов проявляются черные полоски – сеточка.
5. Метод снятия серных отпечатков. В местах неоднородностей сера меняет цвет.
6. Визуальный. Осмотр поверхности, как правило, обработанной, с помощью дополнительных источников света.
Разрушающие методы – испытания образцов на растяжение, сжатие, изгиб – статические. Испытания на ударный изгиб, на определение динамических свойств при переменных циклических нагрузках.
Макроскопический метод – дает общую картину строения металла в больших объемах. Исследования проводят на специально шлифованных образцах, которые после этого подвергают травлению. Выявляется форма и расположение зерен, наличие деформированных кристаллов, волокон, пузыри, раковины, трещины, неоднородности сплава.
Микроскопические методы – изучает микроструктуру, мельчайших пороков. Образец шлифуют, полируют, подвергают травлению. Для испытания применяют оптические и электрические микроскопы, рентгеноструктурный анализ. Метод основан на интерференции лучей, рассеянных атомами вещества. Контроль производится по анализу рентгенограммы.

1.3. Область применения углеродистых и легированных сталей в турбостроении. Обозначения сталей и других металлических материалов.


По области применения стали, делят на конструкционные ( <0,65%C) – для деталей машин и инструментальные (0,65-1,4%С) – для режущего инструмента.
По химическому составу стали делят на углеродистые (только С и примеси (S, P, Si…) и легированные (Сr, Ni, Ti, Mn, Al…) – содержат легирующие элементы (>1%) с суммарным содержанием < 50%.
Первые две цифры в обозначении сталей - содержание углерода в сотых долях % (до 2,14%) . Буквы – легирующие элементы. Цифры – содержание в процентах, если за буквой нет цифры, то содержание Х – хром, Н – никель, Т – титан, С – кремний, М – молибден, Г – марганец, В – вольфрам, Ф – ванадий, Ю – алюминий, Р - бор.
Углеродистые стали, применяются в качестве материалов рамных конструкций, обшивки…

1.4. Влияние легирования хромом, никелем, молибденом, ванадием, вольфрамом на жаропрочность и жаростойкость сталей.


Добавление в сталь хрома увеличивает сопротивляемость коррозии, повышает прочность и твердость, сохраняют вязкость.
Добавление никеля повышает прочность, ударную вязкость, жаропрочность, коррозионную ст ойкость, прокаливаемость.
Вольфрам повышает твердость, прочность, сопротивляемость высоким температурам.
Ванадий увеличивает плотность, делает зерно мельче, увеличивает прочность и твердость.
Кобальт увеличивает ударную вязкость, жаропрочность, магнитные свойства.
Молибден увеличивает упругость, прочность, сопротивляемость высоким температурам, коррозионную стойкость, окалиностойкость.
Медь улучшает антикоррозийные свойства.
Титан увеличивает прочность, сопротивляемость коррозии, повышает обрабатываемость.
Алюминий – увеличивает жаростойкость, вместе с кремнием повышает коррозионную стойкость.
Ниобий увеличивает сопротивляемость коррозии.
Цирконий делает сталь мелкозернистой.

1.5. Баббиты, бронзы и латуни в турбостроении.


Применяются в качестве антифрикционных материалов, например в подшипниках скольжения.
Баббиты – сплавы олова или свинца с сурьмой, медью, кадмием, цинком. Марка баббита (Б83) – указывает содержание олова в %. Б83 – олова 83%, сурьмы – 4%, меди – 6%, свинец – менее 0,3%. Рабочая температура 800С. При 100 -1200С ухудшение прочностных показателей. Хорошая прирабатываемость, малый коэффициент трения, образование коллоидных растворов
Латунь – медь и цинк.
Бронзы – медь со всеми элементами кроме цинка и никеля.
Мельхиоры – сплав меди и никеля.
Нейзильберы – медь, никель, цинк.
Алюминиевые бронзы – высокие антикоррозийные и механические свойства (зубчатые колеса, втулки, колеса).
Оловянистые бронзы – подшипники скольжения, арматура.
В качестве антифрикционных в ТС применяют серый чугун, оловянистую и свинцовую бронзы, порошковые материалы и баббиты.

1.6. Применение никелевых, титановых и алюминиевых сплавов в газотурбостроении.


Титан – легкий и очень прочный металл, устойчив к коррозии (повышает коррозионную стойкость до 40%), хорошо сваривается, имеет высокую удельную прочность. При высокой температуре поглощает водород (водородная хрупкость). N, O2, C - вредные примеси. Хорошо обрабатывается давлением, имеет хорошую пластичность, уменьшает массу детали.
Введение алюминия увеличивает жаропрочность, термическую стабильность, коррозионную стойкость.
Алюминий – повышенная коррозионная стойкость, легко обрабатывается давлением, хуже резанием. Используется для изготовления конструкций не несущих нагрузки. Хорошая свариваемость. Дюралюминий – легирующие элементы: медь, марганец, магний. Ковочные сплавы – медь, марганец и кремний. Высокопрочные алюминиевые сплавы – медь, марганец, цинк.
В настоящее время на основе алюминия получают сплавы из порошков – спечные сплавы, .полученные распылением жидкого алюминия. Такие сплавы хорошо деформируются, обрабатываются резанием, имеют высокую удельную прочность, коррозионную стойкость - перспективно изготовлять лопатки компрессоров.
Никелевые сплавы – нимоники - высокая коррозионностойкость, механические свойства для работы в агрессивных средах, жаропрочные (ХН77Т до 850оС, ХН77ТЮР).

1.7. Связь видов термообработки заготовок и деталей с их механическими свойствами.


Термообработка – тепловая обработка для изменения свойств материала.
Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемым к полуфабрикатам (отливкам, поковкам, прокату) и готовым изделиям, являются отжиг, нормализация, закалка и отпуск.
1. Отжиг – нагревание до высоких температур, выдержка и медленное остывание, для повышения пластичности.
I рода – устраняет химическую или физическую неоднородность, созданную предшествующими обработками.
Отжиг II рода – подготовительная термообработка – понижая прочность и твердость, улучшает обработку резанием средне и высокоуглеродистой стали. Измельчает зерно, снимает внутренние напряжения, уменьшает структурную неоднородность, повышает пластичность и вязкость. В некоторых случаях (крупные отливки) является окончательной термообработкой.
2. Закалка – термическая обработка, заключается в быстром нагревании стали до температуры выше критической и последующем охлаждении со скоростью, превышающей критическую. Не является окончательной операцией термообработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергается отпуску. Инструментальную сталь обычно подвергают З и О для повышения твердости, износостойкости и прочности, а конструкционную сталь – прочности, твердости, получения достаточно высокой пластичности и вязкости, а для ряда деталей и высокой износостойкости.
3. Отпуск – нагрев закаленной стали до температур ниже критической, выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Окончательная операция. Полностью устраняет внутренние напряжения, возникающие при закалке. Служит для уменьшения хрупкости и повышения пластичности. Температура позволяет изменять свойства: прочность, вязкость, предел упругости, выносливости.
Термомеханическая обработка – позволяет повысить механические свойства стали по сравнению с полученными при обычной закалке и отпуске. Заключается в сочетании пластической деформации стали в аустенитном состоянии с ее закалкой (термообработкой). Повышается прочность и пластичность, мельчают зерна, уменьшаются внутренние напряжения.


1.8. Виды химикотермической обработки деталей и их влияние на механические свойства материала.


Химикотермической обработкой называют поверхностное насыщение металла соответствующими элементами (углеродом, азотом, алюминием, хромом, бором и бромом и т.д.), повышающими твердость, износостойкость, коррозионностойкость. Диффузионный процесс, протекающий в твердом состоянии, требующий высоких температур и длительных выдержек.
1. Цементация – насыщение поверхностного слоя углеродом. Увеличивает твердость поверхности, износостойкость и сопротивление коррозии, повышает предел выносливости..
2. Азотирование – диффузионное насыщение азотом поверхностного слоя сильно повышает твердость, износостойкость, предел выносливости и сопротивление коррозии в таких средах, как атмосфера, вода, пар и т.д.
3. Нитроцементация - диффузионное насыщение одновременно углеродом и азотом поверхностного слоя при 8500С в газовой среде, состоящей из науглероживающего газа и аммиака повышает твердость и износостойкость стальных изделий.
4. Цианирование - = нитроцементация но при 820-9500С в расплавленных солях, содержащих группу СN (углерод и азот).
5. Борирование – повышает износостойкость (абразивную), твердость, коррозионностойкостью, окалиностойкостью, теплостойкостью.
6. Диффузионная металлизация – поверхностное легирование различными элементами– жаростойкость, коррозионностойкость, повышенная износостойкость и твердость.

ВНИМАНИЕ: Данная информация получена путем сканирования, цифровой обработки физических носителей или обмена с неравнодушными пользователями. Она не имеет отметок грифа секретности и тайны, если вы считаете, что эта информация нарушает Ваши авторские или другие права. Незамедлительно сообщите администратору для удаления ее из портала.

Механические свойства стали

Несомненно, наиболее важными свойствами стали, которые способствуют ее обширному применению, являются механические. Они подразумевают сочетание очень высокой прочности со способностью значительно изменять форму до окончательного разрушения, например, из-за пластического прогиба.

Были разработаны различные методы для определения данных параметров. Существует множество разновидностей стальных сплавов. Об их механических свойствах и пойдет речь в нашей статье.



Прочность

Прочность данного материала – это то свойство, которое определяет его способность выдерживать значительную внешнюю нагрузку без разрушения. Количественно этот показатель характеризуется пределом текучести и пределом прочности.

  • Предел прочности – максимальное механическое напряжение, выше которого стальной сплав разрушается.
  • Предел текучести – этот параметр определяет уровень механического напряжения, при превышении которого материал продолжает растягиваться в условиях нулевой нагрузки.

При небольших деформациях стержень ведет себя упруго – он «возвращается» к своей исходной длине, если приложенные напряжения снимаются. Когда последние превышают предел текучести, заготовка начинает пластически деформироваться. Это означает, что она больше не возвращается к своей исходной длине, но получает необратимое удлинение.

При растяжении стержня до разрыва определяется максимальное напряжение, что представляет собой предел прочности на разрыв или предел прочности материала.

Пластичность

Благодаря этому свойству металл меняет свою форму под воздействием внешней нагрузки и сохраняет её впоследствии. Этот показатель количественно оценивается удлинением при растяжении и углом изгиба. Если металл разрушается при простом испытании на изгиб только после большого пластического прогиба, он считается пластичным. Если таковой отсутствует или незначителен, сталь считается хрупкой.

Хорошая пластичность сплава выражается в испытании на растяжение большим удлинением образца и/или его сжатием. Удлинение определяется как процент увеличения длины металла после разрушения до его первоначальной длины. Точно так же сужение в процентах определяет уменьшение площади образца по сравнению с его исходным объемом.



Вязкость

Важным механическим свойством металла является его вязкость. Данная характеристика обозначает способность материала противостоять динамическим нагрузкам. Количественно это свойство оценивается по работе, необходимой для разрушения образца, отнесенной к его площади поперечного сечения. Обычно термин «вязкость» используется для определения уровня способности металла нехрупко разрушаться.

Характер разрушения (хрупкое или пластичное) удобно рассмотреть на примере ферритных стальных сплавов. Все металлы с объемно-центрированной кубической атомной решеткой, как и ферритные стали, имеют один общий недостаток: хрупкий характер разрушения при низких температурах, а при довольно высоких – пластичный характер.

Температура перехода от одного состояния к другому называется температурой вязко-хрупкого перехода.

Другие свойства

Твердость

Сталь обладает и таким механическим свойством, как твердость. Она позволяет металлу противостоять попаданию в него твердых частиц. Его твердость измеряют при помощи индентора – это более твердый материал, который внедряют в сталь до появления отпечатка. Идеальный индентор – алмазный конус, но также применяются металлические шарики. Все методы определения твердости металлов используют механическое воздействие на исследуемый образец – вдавливание индентора. Однако это не приводит к разрушению материала.

На твердость металла влияет зависимость от температуры закалки и содержания углерода. Наиболее распространенными методами замера твердости являются:

  • метод Виккерса;
  • метод Бринелля;
  • метод Роквелла.

Усталость

Усталость стали – это свойство, описывающее постепенное накопление повреждений под действием циклических нагрузок, которое приводит к образованию трещин. Усталостное разрушение имеет ряд отличительных черт. Возникает внезапно, без заметных внешних признаков пластической деформации. При усталостном переломе обычно выделяют две характерные зоны. Первая, имеющая гладкую поверхность, создается за счет появления и постепенного развития усталостной трещины, вторая – это зона окончательного разрушения остальной части сечения изделия.

После возникновения царапины или потертости напряжение в точке концентрации превысит предел текучести. Это приведет к трещинам и другим дефектам, из-за которых металл может разрушиться. Предотвратить разрушение в связи с усталостью металла невозможно, но продлить срок его службы можно, осуществляя регулярный осмотр и профилактику.

Маркировка и свойства разных марок стали

Стальные сплавы классифицируются по нескольким параметрам:

  • химический состав (углеродистые, легированные);
  • качество (обыкновенного качества, качественные, высококачественные, особо высококачественные);
  • способ проката (конверторные, мартеновские, электростали, особых методов выплавки);
  • структура в отожженном состоянии (перлитные, аустенитные, ферритные, карбидные);
  • назначение (конструкционные, инструментальные, специального назначения, строительные).

В России по маркировке стали можно приблизительно определить состав и другие ее характеристики, так как для обозначения применяются буквы названий элементов, которые добавляют в сплав, а цифры отображают количественное содержание. Также буквы используются для обозначения уровня раскисления. Для примера, кипящие стали имеют маркировку «КП», полуспокойные – «ПС», а спокойные – «СП».

Тем сплавам, которым присущи обыкновенные свойства, присваивается индекс Ст, вслед за которым указывается условный номер марки (от 0 до 6). Затем обозначается уровень раскисления. Легированные сплавы маркируют при помощи следующих буквенных обозначений легирующих веществ: Н – никель, Ю – алюминий, Х – хром, Т – титан, М – молибден, В – вольфрам. Для быстрорежущих инструментальных сплавов указывается индекс «P» и процентное содержание вольфрама, например P16.

Стали повышенной и высокой прочности (низко- и среднелегированные) поставляются в соответствии с ГОСТами и особыми техническими условиями.



Обозначение легированных сталей в определенной степени отражает их химический состав. Первые две цифры обозначают среднее содержание углерода в сотых долях процента, следующие буквы – легирующие добавки. Число после буквы показывает содержание добавки в процентах, округленное до целых значений. Если количество легирующих компонентов составляет 0,3-1%, то цифру не ставят. Содержание добавки менее 0,3% не наблюдается.

Все о пределе и классах прочности стали

Прочность металлоконструкций – та характеристика металла, от которой особенно зависит их безопасность и надежность. Долгое время вопрос прочности решался так: если ломается изделие, в следующий раз его нужно сделать толще. Но потом ученые поняли, что нужно менять качественный состав сплава.



Что это такое?

Пределом прочности называется максимальное значение напряжений, который металл испытывает до начала разрушения. С точки зрения физики это сводится к усилию растяжения, прилагаемого к стержневидному образцу конкретного сечения, чтобы его разорвать. Кстати, понятие «предел прочности» хотя и употребляется повсеместно, не самое корректное.

Правильнее говорить «временное сопротивление», но раз предыдущий вариант уже прижился, и даже в официальной технической документации, можно простить это небольшое смысловое искажение.

Прочностные испытания – это тесты, проверяющие сопротивление разрыву, и они организовываются на особых испытательных стендах. В них недвижимо крепится один конец тестируемого образца, к другому же подсоединяют крепление гидравлического либо электромеханического привода. Этот привод создает усилие, которое, в свою очередь, плавно увеличивается. Оно действует на разрыв образца, на его изгиб либо скручивание. А благодаря умной электронной системе контроля можно отметить усилие растяжения и относительное удлинение, а также иные виды деформаций.



Такие испытания крайне важны, и специально для них создаются те станки, формируются те условия, которые максимально приближены к производственным. Они дают если не самую точную, то вполне достоверную оценку того, как металл будет вести себя в контексте эксплуатации. И прочность материала оценивается очень точно, а именно нужно посмотреть, как металл выдерживает нагрузку, не разрушаясь полностью. Если материал хрупкий, например, он может разрушаться сразу в нескольких местах.

Иначе говоря, предел прочности – есть максимальная механическая сила, которая может применяться к объекту до того, как тот начнет разрушаться. Только нет речи о химическом воздействии, но вот о каких-то негативных природных условиях, об определенных показателях среды говорить можно. Именно они могут как улучшать свойства металла, так и ухудшать их. Инженер не может при проектировании применить крайние значения, ведь он должен подразумевать погрешность, связанную с окружающими факторами, с длительностью использования и так далее.

Сталь – самый применяемый конструкционный материал, хотя и уступающий сейчас пластмассам и композитным составам, если и не полностью, то по ряду важных позиций. Если расчет предела прочности сделан корректно, материал будет долговечным и безопасным. Предел прочности стали связан с тем, о какой именно марке речь. На значение этого параметра влияет химический состав сплава, а также те температурные процедуры, которые могут повысить прочность материала – это и закалка, и отпуск, и отжиг.




Отдельные примеси могут снизить показатели прочности, а потому от них лучше избавляться еще во время отливки либо проката. Другие, напротив, повышают показатели. И их вносят в состав сплава.

Примеры легирующих добавок в сплавах, меняющих их характеристики: добавляет сплаву прочности молибден, ванадий и никель.

Металлурги усложняют комбинации добавок, чтобы получить особые сочетания физических и механических характеристик стали. Но цена таких марок куда выше цены низкоуглеродистых стандартных сплавов. И для каких-то очень важных узлов и конструктивных систем использование дорогих сталей оправдано.

Виды предела прочности

Немного подробнее о том, какими они бывают.

При сжатии

Под таким термином понимается пороговая величина постоянного или переменного механического напряжения. Превышая этот предел, механическое напряжение сожмет тело из того или иного материала. Тело либо разрушится, либо деформируется. Пороговая величина постоянного напряжения соответствует статическому пределу прочности, переменного – динамическому. Механическое напряжение сжимает тело за небольшой период времени.

При растяжении

А это уже пороговая величина постоянного или переменного механического напряжения, превышение которого механическим напряжением приведет к разрыву металлического тела. И это также происходит за короткий временной эпизод. На практике же очевидно, что деталь может неприемлемо истончиться, и этого уже достаточно для понимания пороговой величины, не обязательно дожидаться именно разрывания тела.

При кручении

Под этим термином понимаются максимальные касательные напряжения, которые обычно возникают в опасном срезе вала, и они не могут превысить допустимые напряжения. Условие прочности может использоваться для расчета проверки прочности (так называемого проверочного расчета), подбора сечения и определения допускаемого крутящего момента.

При изгибе

Он пребывает в обратной зависимости от твердости и возрастает с увеличением процентного содержания цементирующего металла. То есть на прочность при изгибе будет влиять химический состав сплава, а еще величина зерен карбидов и особенности слоев цементирующего металла.

Немалое значение здесь приобретает величина прослоек цементирующей фазы. Чем эта прослойка толще, тем меньше местные напряжения и тем выше прочность. Чем меньше прослойки цементирующей фазы, тем меньше и прочность сплава. Хорошо считывается пропорциональность. Чтобы определить этот предел прочности, нужно использовать метод разрушения свободно лежащего образца одной сосредоточенной силой.

То есть образец будет лежать на двух опорах, в центре образца – статическая нагрузка.

Особенности классов

Чтобы унифицировать стали по гарантированным пределам прочности (а точнее, текучести и временному сопротивлению разрыву), стали делятся на классы. Всего их 7.

И вот эта классификация:

  • сталь класса С225 – это сталь нормальной прочности (условное название);
  • 3 последующих класса (от 285 до 390 МПа) – сталь повышенной прочности;
  • оставшиеся три класса (от 440 до 735 МПа) – сталь высокой прочности.

Первый класс обычно связывается с прокатом углеродистой обыкновенной стали в горячекатаном состоянии. Последующие классы (от второго до пятого) ассоциированы с прокатом низколегированной стали в нормализованном либо горячекатаном состоянии. Шестой и седьмой классы прочности связаны с прокатом экономно легированной стали, которая обычно поставляется в термооптимизирванном состоянии.



Правда, прокат второго и третьего класса реально получить термическим и термомеханическим упрочнением. А, возможно, и контролируемой прокаткой.

Категории прочности сталей согласно ГОСТ 977-88 условно принято обозначать индексами «К» и «КТ». А после индекса ставится число, которое и определяет требуемый предел текучести. Индекс «К» носят отожженные стали, нормализованные или отпущенные. «КТ» же присваивают сталям, которые прошли закалку и отпуск. Например, К48, К52, К60 и т. д.

Уже не раз упоминался в тексте предел текучести, стоит немного расшифровать этот показатель. Он связан с механическим определением металла, характеризующим напряжение, при котором будут расти деформации, не сопряженные с увеличением нагрузки. Этот параметр, в частности, помогает рассчитать допустимые показатели напряжения для разных материалов.

Когда в металле пройден предел текучести, в образце начнутся некорректируемые изменения: перестроится кристаллическая решетка, появятся деформации пластического типа. Металл ожидает самоупрочнение. Здесь же стоит добавить, что если углеродная добавка не превышает 1,2%, предел текучести стали растет, как следствие, повышая прочность, твердость, а еще и термоустойчивость. Если процент углерода возрастет, технические параметры однозначно будут ухудшаться – такая сталь плохо поддается сварке, не лучшим образом демонстрирует себя и в штамповке. В той же сварке куда охотнее используются сплавы, где углерода мало.

Если вернуться к классам прочности, то всегда важно рассмотреть, о каких именно изделиях идет речь. Например, винты, шпильки и болты производят обычно из углеродистых сталей с разными классами прочности. Хотя, в принципе, даже из одной и той же стали можно соорудить болты, прочность которых будет разной. Просто отличаются способы обработки металла и использование/неиспользование закалки. Из стали 35, к примеру, делаются болты разных классов прочности: 5.6 – если болты вытачиваются на токарном (либо фрезерном) станке и 6.6, 6.8 – если используется объемная штамповка и высадочный пресс. А если сталь закалить, класс прочности возрастает до 8.8.



Показатели для разных марок

Сталь, как известно, это сплав железа с углеродом и некоторыми другими включениями. Так как используется она в огромном перечне промышленных отраслей, то и марок стали существует немало. Все они различны по структуре, по химсоставу, физическим и механическим характеристикам. Предел прочности тоже будет разным, и измеряют его в МПа.

Например, у стали 20 он равен 420 МПа, у стали 40 – 580 МПа, у стали 10 – 340, у стали 30 – 500, у стали 25 – 460, а у стали 45 – возрастает до 610. Сталь 20Х имеет предел прочности 600 МПа, а сталь Ст3 – 390. Максимальный предел прочности имеет марка 60С2А (1600 МПа), повышенные показатели у марки 50ХФА (1300), 60С2 (тоже 1300).






Также в металлургии учитывается и коэффициент запаса – показатель, который определяет, как конструкция выдерживает предполагаемые нагрузки сверх расчета. Это важно для исключения повреждений, если случились промахи в проектировании, неточности. Или не в проектировании, а уже в ходе изготовления и использования.

Любой специалист скажет, что крайне важно для сплавов, которые будут работать в стандартных условиях, оценить их физико-механические особенности. Химические свойства же становятся важны, если работать сталь будет в экстремальном контексте (с точки зрения радикально низких либо, напротив, высоких температур), при высоком давлении или повышенной влажности, в агрессивных средах.

И химсвойства сплавов, и физико-механические определяются в основном их химическим составом. Чем больше процент углерода в металле, тем больше снижается его пластичность, и в параллель с этим возрастает прочность. Но данное утверждение справедливо только до достижения 1% доли углерода, после чего прочностные характеристики очевидно снижаются.

Чтобы влиять на качества металла, на его возможности, на коррекцию тех или иных свойств (даже в пределах одной марки или группы марок), металлурги пробуют добавлять в формулу стали те или иные компоненты. Например, кремний используется как раскислитель, и при производстве ферритов он серьезно поднимает их прочность. Но пластичность при этом остается прежней.

А вот если в состав добавить азот, прочностные параметры существенно снизятся, и пластичность, впрочем, тоже.

Можно сказать в итоге, что предел прочности – не рядовая характеристика стали. Современному производству, как показывает практика, необходимо все больше именно прочных стальных изделий. Это касается и строительства зданий, и сооружения сверхновых мостов, готовых к высочайшим нагрузкам. И один из ключевых вопросов сегодня в этой сфере – как рассчитать прочность металла и значение напряжения арматуры из стали.

Особенности высокопрочных сталей

Знание особенностей высокопрочных сталей — в том числе и того, какая из них самая прочная, — очень полезно для заказчиков металлургической продукции. Внимание придется уделить конкретным маркам и расшифровке их маркировки. Также актуальными темами будут применение таких металлов и ГОСТ на них, состав и свойства сталей конкретного типа, их сварка.

Общее описание

Начать следует с определения того, что же, собственно, следует считать высокопрочными сталями. В России под таким термином подразумевают сплав железа с углеродом, который способен переносить более или менее длительное время нагрузку 1800—2000 МПа и выше. Помимо этого показателя, очень важен и другой момент — хорошая устойчивость к хрупкому разрушению. Дополнительно требуется контролировать пластичность и вязкость. Только при четком соблюдении всех этих моментов металлургии производители могут заявить, что они действительно делают высокопрочный металл.


Марки

Среди упрочненных сплавов популярностью пользуется низкоотпущенная сталь со средним легированием. В ней содержится от 0,25 до 0,4% углерода. Специалисты научились значительно повышать в таких сплавах вязкость и пластичность. Их состав включает:



Популярная марка 30ХГСА выпускается согласно различным ГОСТ — сообразно форме исполнения. Так, сортовой прокат должен соответствовать стандарту 4543 от 1971 года. Калиброванные прутки делают по ГОСТ 8559-75. А для полос применяют ГОСТ 103-2006, и это еще не полный перечень. Необходимая прочность поддерживается за счет старения мартенсита.

Такие мартенситно-стареющие стали имеют привлекательные технологические свойства. После закаливания они будут весьма пластичны и хорошо обрабатываемы режущим инструментом. Вырабатывают эти металлы в индукционных печах либо электрошлаковой плавкой. Мартенситно-стареющие стали имеют иногда высокую коррозионную устойчивость. Рассмотреть их состав уместно на примере маркировки 03Х9К14Н6М3Д.

В нее входят:

Также стоит обратить внимание на ПНП-стали, делящиеся на две подгруппы. Одна имеет полностью аустенитную структуру — и называется еще трип-сталями. В таком виде сплавов создается высокая концентрация никеля и прочих стабилизирующих аустенит компонентов. Это существенно удорожает продукцию. Свариваемость ПНП-металла ограничена, обработать его механически также будет весьма трудно.



Многофазные марки стали содержат аустенит, обогащаемый углеродом. В процессе деформации или при активном механическом воздействии он будет преобразовываться в мартенсит. Концентрация углерода составляет 0,2%. Доля марганца достигает 1,5%.

Подобные стали, наряду с высокой прочностью, имеют еще одно хорошее свойство — они легко деформируются, что позволяет получать конструкции со сложной геометрией.



Говоря про другие марки, надо упомянуть еще 20Х2Г2СНВМ. При концентрации углерода 0,18—0,25% она содержит также:

Среди трип-сталей выделяется 30Х9Н8М4Г2С. Это метастабильный аустенитный сплав. В его состав входят:

2% марганца и кремния.



Применение

Особо стойкие марки стали применяют не только для болтов и других крепежей. Тот же сплав 30ХГСА используют, чтобы делать:

прочие улучшаемые части, эксплуатируемые при температуре до 200 градусов;

сварные конструкции, применяемые для ответственных работ;

прочие изделия, рассчитанные на знакопеременные нагрузки.

Марка 35ХГСА после грамотного отпуска прочнее предыдущего сплава. Такой материал подойдет для получения:

сварных сложных деталей;

прочих изделий, рассчитываемых на особые нагрузки.

Примечательна сталь ЭИ643. Она подходит для дисков и валов. Из нее делают шестеренки редукторов и различные крепежи. Ее, наряду с 30ХГСА и ВЛ-1, используют даже в авиационной промышленности. Мартенситно-стареющая сталь представлена еще и сплавом Н18К9М5Т; здесь аналогами будут:

Мартенситно-стареющий металл может работать при охлаждении до — 196 градусов и при нагреве до 400 градусов. Допускается его эксплуатация в среде со слабой химической агрессивностью. Такие вещества имеют превосходную эрозионную стойкость. Хорошими примерами являются:


Такие металлы применяют, чтобы делать:

резервуары, рассчитанные на высокое давление;

зубчатые передачи различных моторов;

двигательные валы на вертолетах.

Сварка

Высокопрочные стали варят по особой технологии. Среднеуглеродистый легированный металл относительно вязок и пластичен. Рессорная сталь с легирующими компонентами варится при условии непременной предварительной термической обработки. В ходе самой работы требуется обеспечить подогрев. Но и после окончания сварки придется заниматься термообработкой.

Средние по содержанию углерода сплавы отличаются хорошей прокаливаемостью. Прогрев свариваемых изделий не понижает скорости падения температуры. Это приводит к ускоренному росту зерен. Вывод прост: варить подобный металл следует без заблаговременного подогрева.

Однако могут использоваться специализированные методики: блочная, каскадная сварка, работа на укороченных участках.

Иногда используются специальные приспособления, подогревающие шов. Это позволяет поддержать его дольше при заданной температуре. Чтобы перегреть сталь, исключая возникновение мартенситной структуры, могут применять отжигающие валики. Концентрация углерода в создаваемом шве должна составлять максимум 0,15%. Иначе обстоят дела при сварке на умеренно легируемых глубоко прокаленных сталях особой прочности.

Это требует подбора сварочных материалов, позволяющих формировать швы с повышенной деформационной способностью. Такое свойство должно достигаться при ограниченном насыщении ванны водородом. Недопустимо применение электродов с органическими покрытиями. В шве должно содержаться максимум:

1,5% хрома и марганца;

0,5% кремния и ванадия;

Среднеуглеродистый металл варят под аргоновой защитой. При этом используют неплавкий электрод. Присадочное вещество подбирают сообразно применяемому газу.

Улучшить работу помогает использование активирующего флюса. Он позволит отказаться от разделки кромок.

Какая сталь самая прочная в мире?

Наивысшую прочность имеет нитинол. Такая сталь известна также как SM-100. Изначально ее создавали для использования в ракетах в США. Этот металл весьма прочен и отличается жесткостью. Сегодня SM-100 применяют широко и для изготовления ножей.

Механические свойства стали

Механические свойства стали во многом определяют то, в каких сферах она применяется. Именно поэтому мы можем отнести их к наиболее важным. Такие качества, как высокая прочность и способность значительно изменять форму, дают возможность применять металл практически везде: от изготовления хирургических инструментов до космической отрасли.

Для определения данных параметров применяются различные методы. Кроме того, они учитывают механические свойства не только сталей, но и их сплавов, благодаря чему данные металлы можно с уверенностью назвать универсальными и удобными в работе. О том, какие параметры данных материалов позволяют применять их в самых разнообразных сферах, поговорим далее.

Состав стали

Основными компонентами стали являются железо и углерод, на долю последнего приходится до 2,14 %. Все существующие на данный момент подобные сплавы классифицируют, исходя из их химического состава.

В производстве используются два вида стали:

  • Углеродистая, в состав которой, помимо основных составляющих, входят фосфор, сера, марганец, кремний. Сырье может относиться к высоко-, средне- и низколегированным маркам в соответствии с долей углерода в материале. Такой металл подходит для любых нужд, в том числе для изготовления инструмента, эксплуатируемого в условиях высоких нагрузок под постоянным напряжением.
  • Легированная содержит в себе железо, углерод в сочетании с легирующими элементами (такими как кремний, бор, азот, хром, цирконий, ниобий, вольфрам, титан). От состава легированной стали зависят ее механические и иные свойства, цена, качество продукции, сферы возможного применения. Сегодня можно найти жаропрочные, цементуемые, улучшаемые стали. По структуре специалисты выделяют сырье доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.

Определить химические и механические свойства стали, а также область ее использования позволяет марка.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

В процессе производства в сталь вносят примеси. На основании их доли в составе сплава выделяются два типа продукции:

  • Обыкновенного качества, что предполагает наличие до 0,6 % углерода и соответствие металла ГОСТ 14637 и ГОСТ 380-94. Для маркировки подобной продукции используются буквы «Ст» – данное сокращение говорит о том, что сталь имеет стандартное качество. Такое сырье входит в число наиболее доступных по цене.
  • Качественная сталь, то есть легированная и углеродистая, которая производится по ГОСТ 1577. Маркировка обязательно содержит в себе особенности состава, количество углерода в сотых долях. Данный материал более дорогой, чем аналог обыкновенного качества, его ценят за высокую пластичность, способность противостоять механическому воздействию. Кроме того, подобный металл можно без труда варить.

Физические, химические и технологические свойства стали

Физические свойства:

  1. Плотность, которая определяется как масса металла на единицу объема. Высокий данный показатель стальных изделий, в том числе арматуры а500с, позволяет активно использовать их для строительных нужд.
  2. Теплопроводность, то есть способность стали обеспечивать распространение теплоты от более нагретых частей к менее нагретым.
  3. Электропроводность – способность материала пропускать электрический ток.

Физические, химические и технологические свойства стали

Химические свойства:

  1. Окисляемость, что предполагает возможность соединения металла кислородом. Данное свойство усиливается при нагревании стали. На сплавах, имеющих малую долю углерода, в процессе окисления под действием воды, влажного воздуха формируется ржавчина, то есть оксиды железа.
  2. Стойкость к коррозии – способность металла не вступать в химические реакции, не окисляться.
  3. Жаростойкость представляет собой отсутствие окислительных процессов на сплаве под воздействием высокой температуры, а также способность не образовывать окалину.
  4. Жаропрочность – сохранение сталью прочности в условиях высокой температуры.

Технологические свойства:

  1. Ковкость, то есть способность материала принимать заданную форму под действием внешних сил.
  2. Обрабатываемость резанием – важное свойство стали, которое упрощает производство металлопроката, так как данный металл хорошо поддается обработке режущим инструментом.
  3. Жидкотекучесть – способность расплава проникать в узкие зазоры, заполнять пространство.
  4. Свариваемость – позволяет осуществлять эффективные сварочные работы, формируя надежное неразъемное соединение, лишенное дефектов.

Механические свойства стали по ГОСТу

Прочность

От данной характеристики зависит, сможет ли металл не разрушиться под действием больших внешних нагрузок. Это механическое свойство стали измеряется количественно при помощи предела текучести и прочности:

  • Пределом прочности называют максимальное механическое напряжение, при превышении которого происходит разрушение сплава.
  • Предел текучести, то есть степень механического напряжения. Превышение данного показателя вызывает дальнейшее растяжение металла без дополнительной нагрузки.

Так, при небольших деформациях металлический стержень сохраняет упругость, возвращаясь к исходной длине после снятия приложенного напряжения. Если же напряжение оказывается выше предела текучести, наблюдается пластическая деформация изделия. Иными словами – происходит необратимое удлинение стержня, после которого он не способен вернуться к исходной длине.

Растяжение стержня до разрыва позволяет установить максимальное напряжение, то есть предел прочности материала на разрыв.

Пластичность

Данное механическое свойство стали позволяет ей под действием внешней нагрузки менять форму и потом сохранять ее. Для количественной оценки этого показателя измеряют удлинение при растяжении и угол изгиба. Если во время простого испытания на изгиб металл разрушается при большом пластическом прогибе, его признают пластичным. В противном случае речь идет о хрупком сплаве.

Механические свойства стали по ГОСТу

Хорошая пластичность проявляется при испытании растяжением в виде значительного удлинения заготовки либо ее сжатия. Под удлинением понимают увеличения длины в процентном выражении после разрушения до первоначальной длины. А сужение в процентах – это сокращение площади изделия в сравнении с исходным объемом.

Вязкость

Еще одно важное механическое свойство стали, которое подразумевает способность материала справляться с динамическими нагрузками. Его оценивают количественно как отношение работы, необходимой для разрушения образца, к площади его поперечного сечения. Чаще всего понятием «вязкость» обозначают уровень, при котором происходит нехрупкое разрушение металла.

Характер разрушения может быть хрупким или пластичным – разница между этими явлениями наиболее ярко прослеживается на примере ферритных стальных сплавов. Ферритные стали и все металлы, обладающие объемно-центрированной кубической атомной решеткой, имеют общую особенность: при низких температурах им свойственен хрупкий характер разрушения, а при высоких – пластичный. Температуру перехода из одного состояния в другое специалисты обозначают как температуру вязко-хрупкого перехода.

Маркировка сталей

В машиностроении высоко ценятся механические свойства конструкционной, то есть углеродистой и легированной стали, а также высоколегированных нержавеющих сталей. При обозначении марок конструкционной легированной стали (ГОСТ 4543) первые две цифры свидетельствуют о среднем содержании углерода, которое указывается в сотых долях процента.

Маркировка сталей

Буквы в маркировке имеют такую расшифровку:

  • Р – бор;
  • Ю – алюминий;
  • С – кремний;
  • Т – титан;
  • Ф – ванадий;
  • Х – хром;
  • Г – марганец;
  • Н – никель;
  • М – молибден;
  • В – вольфрам.

После буквы идут цифры, которые обозначают примерное содержание легирующего элемента в целых единицах процента. Если цифр нет, то доля конкретного вещества в металле не превышает 1,5 %. Буква «А» в конце маркировки является признаком высококачественной стали. Показателем особенно высококачественной стали является буква «Ш» через три тире.

Механические свойства нержавеющих высоколегированных сталей (ГОСТ 5632) зависят от перечисленных далее компонентов. При маркировке они обозначаются таким образом:

  • А – азот;
  • В – вольфрам;
  • Д – медь;
  • М – молибден;
  • Р – бор;
  • Т – титан;
  • Ю – алюминий;
  • Х – хром;
  • Б – ниобий;
  • Г – марганец;
  • Е – селен;
  • Н – никель;
  • С – кремний;
  • Ф – ванадий;
  • К – кобальт;
  • Ц – цирконий.

После букв идут цифры, отражающие долю легирующего элемента в составе сплава в процентах.

Для фиксации основных механических свойств сталей применяют следующие обозначения:

  • E – модуль упругости. Представляет собой коэффициент пропорциональности между нормальным напряжением и относительным удлинением.
  • G – модуль сдвига, также известный как модуль касательной упругости. Это коэффициент пропорциональности между касательным напряжением и относительным сдвигом.
  • μ – коэффициент Пуассона. Является абсолютным значением отношения поперечной к продольной деформации в упругой области.
  • σт – условный предел текучести, то есть напряжение, при котором после снятия нагрузки остаточная деформация находится на уровне 0,2 %.
  • σв – временное сопротивление, известное как предел прочности. Представляет собой такое механическое свойство металла, в том числе углеродистой стали, как прочность на разрыв.
  • δ – относительное удлинение. Это отношение абсолютного остаточного удлинения образца после разрыва к начальной расчетной длине.
  • HB, HRC, HV – твердость.

Таблица механических свойств сталей разных марок

Далее представлены механические свойства стали после термической обработки.

E = 200. 210 ГПа, G = 77. 81 ГПа, коэффициент Пуассона μ = 0,28. 0,31.

Наименование

Параметры термической обработки

Предел прочности σв, МПа

Предел текучести σт, МПа

Калибровка после отжига и отпуска

После отжига и отпуска

Пруток, закалка +860 °C, отпуск +500 °C в воде, масле

Пруток, закалка и отпуск

Пруток, закалка +1020…+1 100 °C на воздухе, в масле, воде

Влияние углерода на механические свойства стали

Механические свойства углеродистой стали определяются в первую очередь количеством углерода в составе сплава. При увеличении его доли возрастает объем цементита, сокращается величина феррита. Иными словами, повышаются прочность и твердость, снижается пластичность.

Влияние углерода на механические свойства стали

Стоит оговориться, что прочность становится выше при доле углерода в пределах 1 %, а при переходе этой отметки показатель уменьшается. Данная особенность объясняется тем, что по границам зерен в заэвтектоидных сталях образуется сетка вторичного цементита, которая негативно отражается на прочности материала.

Рост доли углерода приводит к увеличению количества цементита, а он является очень твердой и хрупкой фазой. Превосходит феррит по твердости примерно в 10 раз, имея показатель 800HB против 80HB. Вот почему увеличение содержания углерода позволяет повысить такие механические свойства стали, как прочность и твердость, и снизить пластичность, вязкость.

Когда количество углерода доходит до 0,8 %, возрастает доля перлита в сплаве от 0 % до 100 %, вызывая повышение твердости, прочности. Однако не стоит забывать, что последующий рост количества углерода вызывает образование вторичного цементита по границам перлитных зерен. Это явление мало влияет на твердость, но негативно сказывается на прочности, так как цементитная сетка очень хрупкая.

Повышение доли углерода отражается не только на механических, но и на физических свойствах стали. Снижается плотность, теплопроводность, магнитная проницаемость, тогда как удельное электросопротивление, коэрцитивная сила увеличиваются.

С ростом количества углерода происходит повышение порога хладноломкости, а именно: каждая десятая доля процента повышает t50 примерно на 20є. Поэтому сталь с долей углерода в 0,4 % при нулевой температуре становится хрупкой, из-за чего считается недостаточно надежной.

В железоуглеродистом сплаве содержится преимущественно связанный углерод в форме цементита. Тогда как в чугунах он присутствует в свободном состоянии в виде графита. Увеличение доли данного компонента приводит к изменению свойств металла: возрастает твердость, прочность, снижается пластичность.

Рекомендуем статьи

Количество углерода влияет как на механические, так и на технологические свойства стали. Чем выше содержание данного вещества, тем тяжелее металл режется, сваривается и деформируется. Последняя характеристика наиболее ярко проявляется в холодном состоянии.

От механических и химических свойств стали зависит сфера применения материала – ее можно узнать по маркировке. Металл, обладающий высокой жаропрочностью, подходит для использования при постоянных высоких температурах. Это же правило распространяется на марки стали с хорошей свариваемостью и стойкостью к образованию ржавчины.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: