В маркировке легированных сталей буквой ф обозначают

Обновлено: 24.04.2024

Легированные стали маркируются цифрой, указывающей процентное содержание углерода ( для инструментальны- в 10 долях, для конструкторских – в 100 долях). Буквами перечисляют легирующие элементы, цифра за буквой – процентное содержание, если цифры нет – до1,5%. Если сталь высококачественная, то в конце стоит буква А.

40Х - конструкторская легированная сталь, содержащая 0,40% углерода, до1,5% хрома
10ХСНД - конструкторская легированная сталь, содержащая 0,10% углерода, до1,5% хрома, до 1,5% кремния, до1,5% никеля, до1,5% меди
09Г2С - конструкторская легированная сталь, содержащая 0,09% углерода, до 2% марганца, до1,5% кремния
65С2ВА - конструкторская легированная сталь, содержащая 0,65% углерода, до2% кремния, до1,5% вольфрама, высококачественная
ХГН - инструментальная легированная сталь, содержащая до 1,5% хрома, до1,5% марганца, до1,5% никеля
20ГФЛ - конструкторская легированная сталь, содержащая 0,20% углерода, до 1,5% марганца, до1,5% ванадия,литейная

40Х - машиностроительная общего назначения (валы, оси, муфты,)
10ХСНД - мостовая (опоры мостов и др.)
09Г2С - строительная(опоры, перекрытия)
40ХН - хромоникелевая «нержавейка»
17Г1СУ - улучшенная (трубы, нефтепроводы)
14Г2АФ - азотосодержащая (кожух доменных печей)
60С2 - пружинная (рессоры, пружины)
20ГФЛ - литейная
65С2ВА - высококачественная

Легированные специализированные стали.

(с особыми свойствами)

- имеют особые свойства и маркировку, выносят легирующий элемент, который придает особые свойства)

А – автоматные (повышенное содержание серы и фосфора, легко обрабатывается резанием, предназначена для изготовления деталей на металлорежущих станках-автоматах и полуавтоматах).

Р – быстрорежущие (для изготовления металлорежущего инструмента, работающего при высоких скоростях резания, твердость сталям придает карбид вольфрама, но маркируется вольфрам).

Р18 – 18% вольфрама .

Р6М5 – 6% вольфрама, 5% молибдена.

предел прочности на растяжение 420Н/мм 2

Термическая обработка стали

- технологические процессы, при которых путем теплового воздействия целенаправленно изменяют структуру и свойства металлов и сплавов.

При термообработке не меняется химический состав.

Конструкторские стали обыкновенного качества СТ0-СТ6 и конструкторские качественные стали Сталь05,08,10,15,20,25 не подвергаются термообработке, так как выгорает верхний углеродный слой и меняется химический состав, что недопустимо.

Сущность термообработки заключается в нагреве, выдержке и охлаждении сплава.

По длительности все три процесса равноценны.

t 0 С Нагрев Выдержка Охлаждение

Виды термообработки.

1. Закалка - для повышения твердости, прочности, износостойкости
2. Отпуск - всегда проводится после закалки для снятия внутренних напряжений для устранения межузельных атомов для повышения пластичности и вязкости
3. Отжиг - предварительная термообработка для исправления структуры для улучшения обработки резанием, обработки давлением
4. Нормализация - назначение аналогично отжигу
5. Термомеханическая - совокупность операций пластического деформирования и термообработки для повышения прочности
6. Химикотермическая - совокупность операций диффузионного насыщения и термообработки

Закалка.

-нагрев стали выше критических температур на 30-50 0 С(выше линии Ст8К), выдержка и последующее охлаждение в воде или масле, при этом пластичность и вязкость снижаются.

(аустенит) (аустенит + цементит ІІ)

Инструментальные стали закаливают в масле.

Поверхностная закалка (1935).

- деталь помещают внутрь медной спирали (индуктора)

нагрев токами высокой частоты

Достоинства метода: высокая производительность, не образуется окалина, нет окисления и дкформации деталей, легко автоматизируется.

Применение: для зубчатых колес тепловозов и электровозов, шеек коленвалов.

Недостатки закалки: - остаточное внутреннее напряжение

- выгорание верхнего углеродного слоя (используется цементация)

Отпуск.

- для устранения вредного действия закалки

- низкий (150-250 0 С) Повышение твердости и прочности Подшипники, зубчатые колеса, валы - средний (360-450 0 С) Повышение упругости Пружины, рессоры -высокий (550-650 0 С) Повышение ударной вязкости Кондукторные плиты

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.01)

Классификация и маркировка легированных сталей. В маркировке легированных сталей буквой ф обозначают мти

Уже более 3 000 лет человечество обрабатывает железо изготавливая различные орудия, машины, домашнюю утварь. Несмотря на относительно высокие механические свойства этого металла его разрушение в результате коррозии не способствует долговременному использованию железных изделий на открытом воздухе.

Ещё одним существенным ограничением в использовании данного металла является его невысокие эстетические качества. Чтобы существенно улучшить данные свойства при производстве стали используются добавки придающие устойчивость к окислению, появлению на её поверхности блеска и существенному увеличению прочности металла.

Что такое легированная сталь

Это углеродистая сталь для улучшения технологических свойств которой введены специальные легирующие элементы. Процент добавок в составе невелик, но даже при незначительной концентрации, физические свойства металла улучшаются в несколько раз.

иллюстрация

В зависимости от вида используемых добавок при производстве стали металл приобретает следующие свойства:

  • неподверженность коррозии;
  • упругость;
  • тугоплавкость;
  • прочность.

Для придания перечисленных качеств в состав добавляют следующие металлы:

Зачастую в углеродистую сталь достаточно добавить 1 — 3% легирующих элементов для придания ей необходимых свойств и качеств.


Виды легированных сталей

От процентного содержания добавок стали разделяются на:

  1. Низколегированные — содержание добавок менее 2,5%
  2. Среднелегированные — 2,5 — 10%.
  3. Высоколегированные — более 10%.

Также легированные стали подразделяются на следующие виды:

  • конструкционные;
  • инструментальные;
  • с особыми физическими свойствами.

описание видов

Конструкционные и инструментальные изделия используются в тех областях применения металлов, где необходима повышенная прочность. Легированные стали с особыми физическими свойствами могут быть устойчивыми к коррозии, высокой температуре и к химически агрессивным средам.

Маркировка легированных сталей

Из-за большого разнообразия сплавов с улучшающими добавками появилась необходимость в их маркировке. Легированные стали классификация и маркировка которых будет приведена ниже очень легко идентифицировать по буквенному обозначению, а также по указанию процентного состава тех или иных веществ в металле.

обозначение элементов пример


Расшифровка

Маркировка включает в себя буквы, которые обозначают предназначение металла.

  1. Ж, Х, Е — обозначение нержавеющих, хромистых и магнитных сплавов.
  2. Я — хромоникелевая нержавеющая сталь.
  3. Ш — шарикоподшипниковая.
  4. Р — режущая.
  5. А, Ш — качественная и высококачественная легированная сталь.

Также в сплавах могут содержаться следующие элементы:

  • Азот — А
  • Алюминий — Ю
  • Бериллий — М
  • Бор — П
  • Вольфрам — В
  • Ванадий — Ф
  • Кобальт — К
  • Кремний — С
  • Марганец — Г
  • Медь — Д
  • Молибден — М
  • Магний — Ш
  • Ниобий — Б
  • Никель — Н
  • Селен — Е
  • Титан — Т
  • Фосфор — П
  • Хром — Х
  • Цирконий — Ц
  • Редкоземельные металлы — Ч

обозначение элементов

Если легированные стали маркировка которых после букв не имеет цифр не содержат ниобия, молибдена, ванадия, алюминия, азота, бора, титана, циркония и редкоземельных металлов, то это будет говорить о том, что в материале содержание легирующего элемента менее 1,5%. Для перечисленных выше металлов имеется исключение из данного правила, по причине влияния на механические свойства сплава даже десятых долей процента.

Если перед буквенным обозначением стоит цифра, то это показатель содержания кремния, а расположение цифр после буквы указывает процентное соотношение обозначенных химических элементов.

Применение легированных сплавов

Благодаря высоким эксплуатационным характеристикам легированная сталь применение находит в машиностроении, изготовлении инструментов, труб и строительных материалов.

Детали машин обычно изготавливают из перлитных металлов. К этой категории материалов относятся низколегированные и среднелегированные стали, которые после отжига имеют структуру позволяющую легко обрабатывать металл с помощью режущего инструмента.

таблица состав и свойства

Низколегированные стали благодаря повышенным прочностным характеристикам позволяют существенно экономить денежные средства при строительстве крупногабаритных сооружений и машин. Например, в судостроительстве благодаря использованию материала удаётся уменьшить толщину применяемого металла.

Легированные стали с добавками хрома широко используются для производства изделий, которые устойчивы к воздействия молочной и уксусной кислоты, а также следующих деталей работающих под значительным давлением:

  1. Поршневые пальцы, карданные крестовины и другие изделия предназначенные для эксплуатации в условиях повышенного износа.
  2. Кулачковые муфты, плунжеры и шлицевые валики.
  3. Шестерни коробок передач и червячные валы, а также другие изделия для работы на малых и средних скоростях.

таблица хромистых и высоколегированных

Высоколегированная сталь широко используется для производства деталей устойчивых к коррозионному разрушению. Такие изделия также устойчивы к высоким температурам и способны работать в условиях до +1100 градусов.

Некоторые виды сплавов благодаря особым тепловым качествам имеют специальное применение, например:

  1. ЭН42 — материал обладает коэффициентом расширения таким же как и у стекла, поэтому применяется в качестве электродов в лампах накаливания.
  2. Х8Н36 — обладает постоянной упругостью, которая не изменяется в температурных пределах от минус 50 до +100 градусов. Благодаря неизменяемой упругости такой материал широко используется для производства пружин для часовых механизмов и стрелочных измерительных приборов.
  3. И36 — сплав обладает нулевым коэффициентом температурного расширения, поэтому идеально подходит для изготовления различных эталонов и калибровочных изделий.

Углеродистые и легированные стали (определение и маркировка).

Углеродистой

называют нелегированную сталь, содержащую 0,04…2 % углерода. Кроме того, в состав стали входят постоянные примеси — кремний и марганец, а также вредные -фосфор и сера (их содержание не должно превышать 0,05…0,06 %). В зависимости от содержания углерода такие стали делятся на низко- (до 0,25 % углерода), средне- (0,25…0,6 %) и высокоуглеродистые (свыше 0,65 %).

По назначению углеродистые стали подразделяют на конструкционные и инструментальные.

Сталь углеродистую обыкновенного качества подразделяют на группы А, Б, В, учитывающие условия поставки. Сталь группы А поставляют потребителям по механическим свойствам: пределам прочности и текучести, относительному удлинению, способности к изгибу в холодном состоянии. В стали группы Б нормируют химический состав, а группы В — одновременно химический состав и механические свойства.

Маркировка сталей. Каждая группа включает несколько марок стали — от СтО до Стб. С увеличением номера возрастает прочность стали и уменьшается ее пластичность. Сталь марок от Ст1 до Ст4 выпускают кипящей, полуспокойной, спокойной, марок Ст5 и Стб — полуспокойной и спокойной. Указание о степени раскисления делают в-виде индекса: кп — кипящая, пс -полуспокойная, сп — спокойная. Стали марок СтЗГпс, СтЗГсп и Ст5Гпс содержат повышенное количество марганца, на что указывает буква Г. СтО содержит углерода не более 0,23 %, СтЗ — от 0,14 до 0,22 %, а Стб — от 0,38 до 0,49 %.

Сталь группы Б изготовляют тех же марок, что и сталь группы А, но в начале обозначения марки вводят букву Б, например сталь БСт1кп. Для сталей группы А букву впереди марки не ставят.

В обозначении марок сталей всех групп вводят также цифры от 1 до 6, характеризующие категорию стали. Категория определяется совокупностью механических свойств стали либо особенностями ее химического состава. Цифру 1 в сталях первой категории не указывают.

Примеры обозначения марок стали: СтЗкп — группа А, сталь 3, кипящая, категория 1; БСт2пс2 — группа Б, сталь 2, полуспокойная, категория 2; ВСт2спЗ — группа В, сталь 2, спокойная, категория 3.

В строительстве используют стали всех групп. Наиболее пластичные Ст1 и Ст2 применяют в конструкциях резервуаров, трубопроводах, для заклепок. Из СтЗ, Ст4 и Ст5 изготовляют строительные конструкции, а также арматуру для железобетона. В большом количестве углеродистая сталь обыкновенного качества расходуется на изготовление листового, круглого, швеллерного, двутаврового проката.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Легированные стали

кроме железа, углерода и нормальных примесей, содержат легирующие элементы, например хром, никель, молибден, ванадий, вольфрам, титан, которые повышают качество стали и придают ей специальные свойства. К таким элементам относят также марганец и кремний, если их содержание в стали превышает 1 %. Легирующие элементы образуют с железом химические соединения и твердые растворы замещения, которые играют роль упрочняющей фазы. Кроме того, большинство легирующих элементов образуют с углеродом простые и сложные карбиды, являющиеся, как и цементит Fe3C, хрупкими и твердыми веществами. В результате изменяется строение и существенно улучшаются механические свойства сталей.

Стали, применяемые для изготовления арматуры железобетонных конструкций, содержат в качестве легирующих элементов чаще всего марганец, кремний, хром. Марганец и кремний увеличивают прочность легированной стали, но снижают ее ударную вязкость. Хром и никель повышают не только прочность, но и ударную вязкость. Практически все легирующие элементы улучшают термическую обрабатываемость сталей. По химическому составу различают низко-, средне- и высоколегированную сталь. По назначению легированные стали разделяют на конструкционные, инструментальные и стали с особыми свойствами.

Для обозначения марок легированной стали по ГОСТу используют буквенно-цифровую систему. В начале обозначения приводят цифры, указывающие содержание углерода в сотых долях процента. Далее ставят буквы, обозначающие легирующий элемент: Ю — алюминий, Р — бор, Ф — ванадий, В — вольфрам, С — кремний, Г — марганец, Д — медь, М — молибден, Н -никель, Т — титан, X — хром, Ц — цирконий. Наконец, цифра, стоящая за буквами, указывает содержание легирующего элемента в процентах. Если содержание легирующего элемента не превышает 1 %, то цифру не ставят. При содержании I …1,5 % ставят цифру 1, свыше 1,5 до 2 % — цифру 2.

Например, марка стали 20ХГ2С означает: легированная сталь с содержанием углерода 0,20 %, хрома — менее 1 %, марганца — 2 %, кремния — менее 1 %.

Сталь для металлических конструкций обладает высокими пластичностью и ударной вязкостью, причем эти свойства незначительно ухудшаются при отрицательных температурах (до -40…50 °С). Основная характеристика такой стали — предел текучести — составляет в среднем 350 МПа, в то время как у углеродистой стали он равен 225 МПа.

Поможем написать любую работу на аналогичную тему

Углеродистые и легированные стали (определение и маркировка).

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Сварка легированных сталей: особенности

Легированные сплавы обладают хорошей пластичностью, поэтому из них можно изготовить сложные конструкции методом сварки. По причине различного содержания добавок каждый тип легированных изделий имеет свои особенности.

Сварка низколегированных сталей

Особенность сварных соединений низколегированных сталей заключается в высокой сопротивляемости холодным трещинам и хрупкому разрушению. Но, такие свойства соединительного шва можно достичь только при правильном сваривании.

Если процесс предварительного нагрева будет нарушен либо сварной шов подвергнется слишком быстрому остыванию металл может получить в местах соединения микроскопические повреждения, которые значительно уменьшат прочность всей конструкции.

таблица дешевого материала

Низколегированные стали марки 10Г2СД, а также 14ХГС и 15ХСНД свариваются с использованием аппарата постоянного тока с обратной полярностью. Электроды для сваривания должны иметь фтористо-кальциевое покрытие. Величина сварочного тока должна точно соответствовать типу электрода, толщине металла и типу сплава. Несоблюдение этого требования также отразится на качестве сварного шва и, как следствие, на прочности изготавливаемой конструкции.

Сварка низколегированной стали должна осуществляться без перерыва, чтобы весь шов был выполнен без при температуре металла не менее 200 градусов. Средняя скорость сварки составляет 20 м/ч, при напряжении 40 В и силе тока 80 А.

Сварка среднелегированных сталей

При изготовлении конструкций из среднелегированных сталей необходимо использовать сварочные материалы, в которых содержание легирующих элементов должно быть меньше, чем в свариваемом материале.

Только при использовании таких материалов можно добиться получения шва с высокой устойчивостью к деформации. Если при изготовлении изделий из среднелегированных сталей толщина листа не превышает 5 мм, то высокого качества соединения можно достичь при использовании аргонодуговой сварки.

Если для соединения деталей используется газовая сварка, то в качестве источника горения следует применять ацетилен в смеси с кислородом.

Сварка высоколегированных сталей

Если для производства металлических деталей применяется высоколегированная сталь, то в этом случае следует применять сварочное оборудование с минимальным тепловым захватом материала. Это необходимо для снижения вероятности коробления металла во время сварки, по причине большого содержания в составе металла различных примесей.

правильные показатели для сварки

Электрическая сварка высоколегированных сплавов осуществляется с использованием электродов с фтористокальциевым покрытием. В этом случае удаётся добиться высоких показателей механической и химической прочности сварного шва.

Применение газовой сварки при изготовлении конструкций из высоколегированных сталей нежелательно. В исключительных случаях возможно использование газовой сварки для соединения жаропрочного высоколегированного стального листа толщиной не более 2 мм.

Заключение

Применение легированных сплавов при изготовлении металлических деталей и конструкций позволяет придать ним необходимые физические качества. При работе с такими металлами обозначение легирующих элементов в стали помогает подобрать заготовку с нужными параметрами, из которой затем будет изготовлена конструкция.

При использовании таких сплавов необходимо не только знать их состав, но и способы соединения при помощи сварки. Поэтому если следовать рекомендациям изложенным в данной статье, то можно получить высококачественное изделия с заданными параметрами.

Где применяется конструкционная легированная сталь

Так как сфера применения конструкционной стали весьма широка, важно знать, область использования материала, и какая марка для чего применяется.

Легирующие элементы. Легированные стали, их маркировка.

Элементы, специально вводимые в сплав с целью изменения его строения и свойств, называют легирующими, a данный сплав легированным. Для легирования сталей используют значительное число элементов периодической системы (табл. 2.4.).

Наиболее существенное влияние легирующие элементы оказывают на свойства сталей, воздействуя на полиморфизм железа. Температура полиморфных превращений железа зависит от всех растворенных в нем элементов. В их присутствии расширяется область существования g-железа. При введении определенного количества легирующих элементов область g-состояния от комнатной температуры до температуры плавления. Такие сплавы называются аустенитными. Другие элементы (V, Si, Mo и др.) делают феррит устойчивым до температуры плавления. Такие сплавы называют ферритными. При нагреве и охлаждении в них не происходит эвтектоидное превращение.

Легирующие элементы могут находиться в сталях в свободном состоянии, в форме химических соединений с железом или между собой, в виде оксидов, сульфидов и других неметаллических примесей, в карбидной фазе, а также в виде твердых растворов в железе. Наиболее часто они растворяются в основных фазах сплавов железа с углеродом (в феррите, аустените, цементите) или образуют специальные карбиды.

Карбидообразующие элементы (молибден, ванадий, вольфрам, титан) задерживают выделение карбидов при отпуске и увеличивают конструкционную прочность стали.

Влияние легирующих элементов на свойства сталей проявляется, прежде всего, в изменении свойств феррита, дисперсности карбидной фазы, прокаливаемости, размера зерна и т. д. По объему (более 90%) феррит — основная составляющая конструкционных сталей. Легирующие элементы растворяются в нем, замещая атомы железа в решетке и искажая ее, что приводит к возрастанию прочности и твердости феррита. Увеличению последней наиболее сильно способствует введение кремния, марганца и никеля. Большинство легирующих элементов, однако, снижают вязкость феррита и повышают порог его хладноломкости. Исключением является никель, оказывающий наиболее благоприятное влияние на свойства стали. Хром и никель являются основными легирующими компонентами нержавеющих сталей (табл. 2.4.).

Влияние легирующих элементов на свойства сталей.

Легирующий элемент Обозначение Свойства, придаваемые сталям Примеры марок сталей
Азот (N) А Обработка в атмосфере азота (азотирование) приводит к образованию твёрдого раствора в феррите, нитридных соединений, что придаёт твёрдость поверхностным слоям
Ниобий (Nb) Б Ниобий - повышает кислотостойкость сталей 03Х16Н15М3Б
Вольфрам (W) В Вольфрам увеличивает твердость и красностойкость, способность сохранять при высоких температурах износостойкость. Вольфрам придает стали вязкость. В18 В6М5К5
Марганец (Mn) Г Марганец - при содержании свыше 1 процента увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок. Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, т. е. для удаления из неё кислорода. Связывает серу, что также улучшает свойства сталей. Иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твердой и сопротивляющейся износу и ударам (сталь резко упрочняется и становится тверже при ударах). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. 14Г2 ШХ15ГС 30ХГС-Ш А40Г
Медь (Cu) Д Медь - уменьшает коррозию сталей 10Х18Н3Г3Д2Л
Кобальт (Co) К Кобальт - повышает жаропрочность, магнитопроницаемость Р6М5К5
Молибден (Mo) М Молибден - увеличивает красностойкость, прочность, коррозионную стойкость при высоких температурах. Молибден используется для легирования сталей, как компонент жаропрочных и коррозионную стойких сплавов. Р6М5К5 03Х16Н15М3Б
Никель (Ni) Н Никель - повышает прочность, пластичность, коррозионную стойкость Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более стойкой к коррозии (нержавеющая сталь) и к низким температурам. 03Х16Н15М3Б 12Х2Н4А
Фосфор (P) П Повышает текучесть, хрупкость
Бор (B) Р Увеличивает прокаливаемость стали, делает сталь чувствительной к перегреву.
Кремний (Si) С Придает прочность, увеличивает ударную вязкость, способствует раскислению. 30ХГС-Ш 60С2ХФА 33ХС 38ХС
Титан (Ti) Т Повышает прочность, сопротивление коррозии
Ванадий (V) Ф Повышает плотность, прочность, сопротивление удару, истиранию. Замедляет старение стали. 9Х2МФ
Хром (Cr) Х Повышает твердость, коррозионную стойкость. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое; чувствительна к перегреву, прокаливаемость невелика. При введении легирующих элементов происходит скачкообразное повышение коррозионной стойкости. Стали хорошо свариваются. ШХ15ГС 30ХГС-Ш ШХ6 03Х16Н15М3Б 40Х
Цирконий (Zr) Ц Легирование сталей цирконием (до 0,8 %) повышает их механические свойства и обрабатываемость.
Алюминий (Al) Ю Алюминий – повышает окалиностойкость Алитированием придают коррозионную и окалиную стойкость стальным и другим сплавам. Повышает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов. Замедляет старение стали. АК7М2АК21М2
Редкоземельные металлы Ч Используются для связывания серы, фосфора в тугоплавкие соединения

В основу классификации легированных сталей заложены четыре признака: химический состав, равновесная структура (после отжига), структура после охлаждения на воздухе (после нормализации), назначение.

В зависимости от вводимых элементов легированные стали подразделяют на хромистые, марганцовистые, хромоникелевые, хромоникельмолибденовые Разновидностью классификации по химическому составу является классификация по качеству. Легированные стали подразделяют на качественные (до 0,04% S и до 0,035% Р), высококачественные (до 0,025% S и до 0,025% Р) и особовысококачественные (до 0,015% S и до 0,025% Р) (раздел 2.5. классификация сталей).

По типу равновесной структуры.

По этому признаку стали подразделяются на доэвтектоидные, эвтектоидные, заэвтектоидные и ледебуритные. Эвтектоидные стали имеют перлитную структуру, а доэвтектоидные и заэвтектоидные наряду с перлитом содержат соответственно избыточный феррит или вторичные карбиды типа М3С. Таким образом, с учетом фазового равновесия легированные стали относят к перлитному, карбидному, ферритному или аустенитному классам.

По структуре после нормализации. Здесь предполагается разделение сталей на три основных класса: перлитный, мартенситный и аустенитный.

Такое подразделение обусловлено тем, что с увеличением содержания легирующих элементов в стали возрастает устойчивость аустенита в перлитной области (это проявляется в смещении вправо С-образных кривых); одновременно снижается температурная область мартенситного превращения. Все это приводит к изменению получаемых при нормализации структур от перлита (сорбита, троостита и бейнита) в относительно малолегированных сталях до мартенсита (в легированных) и аустенита (в высоколегированных).

По назначению. По назначению стали подразделяют на конструкционные (например, цементуемые, улучшаемые), инструментальные и с особыми свойствами. К последним относят «автоматные», пружинные, шарикоподшипниковые, износостойкие, коррозионностойкие, теплоустойчивые, жаропрочные, электротехнические и другие стали. «Особые свойства» стали бывают физическими, например, с определенными магнитными характеристиками или малым коэффициентом линейного расширения: электротехническая сталь, суперинвар, химическими, например, нержавеющие, жаростойкие, жаропрочные стали.

Жаропрочные стали и сплавы. К жаропрочным, или окалиностойким, относят стали, обеспечивающие эксплуатацию изделий при температурах свыше 500 °С в течение заданного времени (их подробное изложение приведено далее, в разделе 2.13).

По содержанию легирующих элементов жаропрочные стали и сплавы разделяют на низко-, средне- и высоколегированные.

Нагруженные детали установок с температурой рабочей среды 450 – 470 °C изготовляют из хромистых сталей. Для повышения эксплуатационных характеристик в состав сталей вводят ванадий, вольфрам, молибден, ниобий, титан. Эти элементы, образуя карбиды и фазы Лавеса, увеличивают жаропрочность стали. Легирование бором, цирконием, церием, а также азотирование способствуют дополнительному увеличению ее жаропрочности (раздел 2.13).

Инструментальные стали и твердые сплавы. Низколегированные стали с небольшой прокаливаемостью применяют для изготовления инструмента, работающего при температурах до 200 – 260 °С. Из таких сталей можно изготавливать инструменты больших размеров и сложной формы.

Низколегированные стали выпускают в виде прутков, лент и прутков с повышенным качеством отделки поверхности. Для изготовления высокопроизводительного инструмента, предназначенного для работы с высокими скоростями резания, применяют быстрорежущие стали. Главным достоинством быстрорежущих сталей является высокая теплостойкость, которая обеспечивается введением значительного количества карбидообразующих элементов: W, Мо, V, Со. Быстрорежущие стали сохраняют мартенситную структуру вплоть до температур 600 – 640 °С, что позволяет повысить скорость резания в 3-5 раз по сравнению с обработкой обычным инструментом. Содержащиеся в быстрорежущих сталях легирующие элементы обусловливают уменьшение критической скорости закалки.

Стоимость быстрорежущих сталей примерно в 5-6 раз превышает стоимость легированных инструментальных сталей. Поэтому инструменты из них применяют преимущественно для резания высокопрочных и трудно обрабатываемых материалов.

Маркировка легированных сталей. Легирующие сталимаркируют цифрами и буквами, указывающими на примерный состав стали. В начале марки приводятся двузначные цифры (например, 12ХН3А), указывающие среднее содержание углерода в сотых долях процента. Русские буквы справа от цифры обозначают легирующие элементы, входящие в состав стали (табл. 2.5.).

Если после буквы, обозначающей легирующий элемент, находится цифра, то она указывает содержание этого элемента в процентах. Если цифры нет, то сталь содержит 0,8 – 1,5% легирующего элемента, за исключением молибдена и ванадия (содержание которых в сталях обычно до 0,2 – 0,3%), а также бора (в стали с буквой Р его должно быть не менее 0,0010%).

Высококачественные и особовысококачественные стали маркируют, так же как и качественные, но в конце марки высококачественной стали ставят букву А, (эта буква в середине марочного обозначения указывает на наличие азота, специально введённого в сталь), а после марки особовысококачественной через тире букву "Ш".

Отдельные группы сталей обозначают несколько иначе.

Шарикоподшипниковые стали маркируют буквами "ШХ", после которых указывают содержание хрома в десятых долях процента:

ШХ6 - шарикоподшипниковая сталь, содержащая 0,6 % хрома;

ШХ15ГС - шарикоподшипниковая сталь, содержащая 1,5 % хрома и от 0,8 до 1,5 % марганца и кремния.

Быстрорежущие стали. Обозначения марок быстрорежущих сталей начинаются с буквы Р и цифры, указывающей среднее содержание вольфрама в стали. Далее следуют буквы и цифры, определяющие массовые доли других элементов. В отличие от легированных сталей в наименованиях быстрорежущих сталей не указывается процентное содержание хрома, т.к. оно составляет около 4% во всех сталях, и углерода (оно пропорционально содержанию ванадия). Буква Ф, показывающая наличие ванадия, указывается только в том случае, если содержание ванадия составляет более 2,5%.

Р18 – быстрорежущая сталь, содержащая в среднем 18,0 % вольфрама.

Обозначения корозионно - стойких (нержавеющих), жаростойких и жаропрочных сталей согласно ГОСТ 5632-72 состоят из цифр и строятся по тем же принципам, что и обозначения конструкционных легированных сталей. В обозначения литейных корозионно-стойких сталей такого вида добавляется буква Л.

08Х18Н10Т имеет состав 0,08% C, 17,0-19,0 % Cr, 9,0-11,0 % Ni, 0.5 -0.7 % Ti, литейная сталь

Опытные стали, выплавленные на заводе «Электросталь», первоначально обозначают буквами ЭИ (электросталь исследовательская) или ЭП (электросталь пробная) с порядковым номером разработки (освоения), например ЭИ962 (11Х11Н2В2МФ), ЭПЗЗ (10Х11Н23ТЗМР). Такое упрощенное обозначение сталей, особенно высоколегированных, в дальнейшем широко используется и в заводских условиях.

При маркировке сплавов на железоникелевой основе указывается коли­чественное содержание никеля (в процентах) с перечислением лишь буквен­ных обозначений остальных легирующих элементов, например ХН38ВТ, ХН45МВТЮБР.

03Х16Н15М3Б - высоко легированная качественная сталь, спокойная содержит 0,03% углерода, 16,0% хрома, 15,0% никеля, до 3,0% молибдена, до 1,0% ниобия.

Виды сталей, их марки, состав, области применения (примеры).

Сталь инструментальная углеродистая

У7, У7А, У8, У8А, У8Г, У8ГА, У9, У9А, У10, У10А, У11, У11А, У12, У12А, У13А

Сплав жаропрочный

10Х15Н35В3ТЮ; ХН35ВТР; ХН45Ю; ХН56ВМКЮ; ХН60Ю; ХН70ВМТЮФ; ХН32Т; ХН65ВМТЮ; ХН75ВМЮ; ХН78Т

Сталь для отливок с особыми свойствами

07Х17Н16ТЛ; 08Х15Н4ДМЛ; 10Х12НДЛ; 10Х18Н3Г3Д2Л; 120Г10ФЛ; 12Х25Н5ТМФЛ; 15Х18Н22В6М2Л; 15Х13Л; 10Х18Н9Л; 07Х18Н9Л.

Сталь для отливок обыкновенная

03Н12Х5М3ТЛ; 110Г13Л; 12Х7Г3СЛ; 15ГЛ; 20ГЛ; 20Л; 20ХМЛ; 25Л; 27Х5ГСМЛ; 12ДН2Ф.

Сталь жаропрочная высоколегированная

08Х15Н24В4ТР; 08Х20Н14С2; 09Х16Н16МВ2БР; 10Х11Н20Т3Р; 10Х15Н25М3В3ТЮК; 10Х7МВФБР; 12Х25Н16Г7АР; 13Х12Н2В2МФ; 15Х18СЮ; 18Х12ВМБФР.

Сталь жаропрочная низколегированная

12МХ; 15Х5ВФ; 15ХМФКР; 12Х1МФ; 15Х1М1Ф; 15Х5М; 16ГНМ; 12Х2МФБ; 15ХМ.

Сталь жаропрочная релаксационностойкая

20Х1М1Ф1БТ; 25Х1М1Ф; 30ХМА; 20Х1М1Ф1ТР; 25Х1МФ; 35ХМ; 20Х3МВФ; 25Х2М1Ф; 38Х2МЮА; 20ХМФБР.

Сталь инструментальная легированная

05Х12Н6Д2МФСГТ; 13Х; 5ХВ2СФ; 6Х4М2ФС; 8Х6НФТ; 9Х5ВФ; 9ХФМ; ХВ4Ф; 9Г2Ф; 6Х3МФС.

Сталь инструментальная штамповая

27Х2Н2М1Ф; 3Х3М3Ф; 4Х3ВМФ; 4Х5МФС; 5Х3В3МФС; 6ХВ2С; 7ХГ2ВМ; Х12; 5Х2МНФ; 4Х2НМФ.

Сталь инструментальная быстрорежущая

11М5Ф; Р12; Р18К5Ф2; Р2М5; Р6М5Ф3; Р9М4К8; 11Р3АМ3Ф2; Р12Ф3; Р18Ф2; Р9.

Сталь инструментальная валковая

45ХНМ; 60ХН; 75ХСМФ; 9X2; 55X; 60ХСМФ; 7Х2СМФ; 9Х2МФ; 60Х2СМФ; 75ХМ.

Сталь конструкционная низколегированная для сварных конструкций

06Г2СЮ; 09Г2Д; 10Г2БД; 10ГТ; 12Г2Б; 12ХГН2МФБАЮ; 14ХГС; 15Г2СФД; 08Г2С; 10Г2С1.

Сталь конструкционная подшипниковая

11Х18М-ШД; ШХ20СГ; 8Х4В9Ф2-Ш; ШХ4; ШХ15; ШХ15СГ.

Сталь конструкционная легированная

10Г2; 12ХН; 14Х2ГМР; 15Н2М; 15ХФ; 18Х2Н4МА; 20Г; 20Х2Н4А; 15ХА; 12ХН3А.

Сталь конструкционная повышенной обрабатываемости

А11; A35; А45Е; АС14ХГН; АС35Г2; АС45Г2; A12; А35Е; АС30ХМ; А40ХЕ;

Сплав прецизионный с высоким электрическим сопротивлением

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.022)

Легированная сталь

Легированная сталь

Легированная сталь – это стальной сплав, который в своем составе имеет железо (феррум), углерод и другие химические элементы, влияющие на механические и физические свойства стали. Тип добавок и их количество в сплаве зависит от вида готовой металлопродукции. Это позволяет классифицировать ее по составу, основным характеристикам, назначению.

Химический состав и классификация

Самым главным компонентом (кроме железа) является углерод. Он снижает вязкость и пластичность, а также делает сплавы более прочными и твердыми. При этом материал легко поддается гибке, резке. Но легированная сталь отличается от углеродистой тем, что этого химического элемента здесь гораздо меньше (подробнее об отличиях расскажем ниже).

Для улучшения свойств металлоизделия используются другие добавки, в число которых входит:

  • хром,
  • никель,
  • кремний,
  • ванадий,
  • марганец,
  • медь,
  • алюминий,
  • вольфрам.

Учитывая то, какие легирующие элементы входят в состав, сталь классифицируется по следующему принципу:

  • низколегированная сталь. К этой категории относят сплавы, в которых количество легирующих добавок не превышает 2,5%;
  • среднелегированная. Иных химических элементов в ее составе может быть до 10% от общего содержания;
  • высоколегированная сталь. В эту группу вошли сплавы, в которых процент добавок составляет от 10 до 50%.

Бывает также и нелегированная сталь. Она состоит из чистого феррита и минимальным количеством прочих примесей. Выпускается в качестве сортового проката.

Наличие и общий процент в составе углерода позволяет классифицировать легированную сталь на три вида. Она может быть:

  • низкоуглеродистой. Содержит очень мало этого химического элемента – до 0,25%;
  • среднеуглеродистой. В ее составе присутствует от 0,25 до 0,65% углеродной добавки;
  • высокоуглеродистой. Содержание этого вещества составляет в пределах 0,65% и выше.

Все легирующие добавки влияют на свойства металлоизделия:

  • алюминий сказывается на жаропрочности материала;
  • ванадий делает структуру стали мелкозернистой. Она становится более плотной, твердой и крепкой;
  • вольфрам защищает сталь от термического воздействия, полностью сохраняя ее характеристики даже при максимально высоких температурах;
  • наличие кремния говорит о высокой упругости материала. К тому же, металлоизделие обретает магнитные свойства. А это означает, чем больше кремния в составе, тем лучше оно будет магнититься;
  • марганец влияет на повышенные прочностные характеристики. Сталь с большим содержанием этого химического элемента обладает высокой износостойкостью;
  • медь противостоит воздействию кислот, а также делает металлоизделие устойчивым перед распространением коррозии;
  • присутствие никеля говорит о высокой пластичности и прочности материала;
  • хром придает металлопродукции антикоррозийные свойства. В большем количестве он присутствует в нержавеющих сталях.

Если вас интересует, ржавеет или нет легированная сталь, то ответим, что это зависит именно от состава и общего количества введенных в него элементов, которые и обладают антикоррозионной способностью.

Процентное содержание других компонентов определяет структуру и характеристики материала. Это позволяет разделить его на следующие классы:

  • доэвтектоидный — имеет много железа (феррита);
  • эвтектоидный — структура такой стали перлитовая;
  • заэвтектоидный — имеет карбиды вторичного типа;
  • ледебуритный — структура представлена в виде первичных карбидов.

Как вы сумели заметить, влияние легирующих элементов на свойства стали огромно. Поэтому любой сплав делится на марки.

Заметим, что все химические элементы могут быть карбирующими и некарбирующими (изменяют состав железа и растворяются во всех его состояниях). К первым относится: хром, вольфрам, ванадий, титан, ниобий, марганец, молибден, цирконий. Ко вторым – медь, никель, кобальт, кремний, алюминий.

Маркировка и ее расшифровка, виды

То, как маркируются готовые металлоизделия, говорит о том, какие легирующие элементы и в каком количестве присутствуют в составе. Исходя из этого выделяют:

  • инструментальные стали. Они жаропрочные. Используются для производства рабочих ручных и станочных инструментов, деталей для промышленного оборудования;
  • легированные конструкционные стали. Относятся к прочному и износостойкому материалу. Из них изготавливаются механизмы, конструкции и детали для автомобилей, станков и т.д. К таким относиться сталь 45.

Именно маркировка стали позволяет определить ее назначение. Ее расшифровка достаточно проста. Для примера возьмем марку 110Г13Л:

Легированные стали: классификация и маркировка

Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.

Круглый прокат из легированной стали

Круглый прокат из легированной стали

Классификация легированных сталей

По содержанию в составе стали углерода идет разделение на:

    (до 0,25% углерода);
  1. среднеуглеродистые стали (до 0,25% до 0,65% углерода); (более 0,65% углерода).

В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:

  1. низколегированная (не более 2,5%);
  2. среднелегированная (не более 10%);
  3. высоколегированная (от 10% до 50%).

Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:

  1. доэвтектоидные — в составе присутствует избыточный феррит;
  2. эвтектоидные — сталь имеет перлитную структуру;
  3. заэвтектоидные — в их структуре присутствует вторичные карбиды;
  4. ледебуритные — в структуре присутствует первичные карбиды.

По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.

Назначение конструкционных легированных сталей:

  • Машиностроительные — служат для производства деталей всевозможных механизмов, корпусных конструкции и тому подобного. Отличаются тем, что в подавляющем большинстве случаев проходят термическую обработку.
  • Строительные — чаще всего используются при изготовлении сварных металлоконструкций и термической обработке подвергаются в редких случаях.

Классификация машиностроительных легированных сталей выглядит следующим образом.

    активно используются для производства деталей, предназначенных для работы в сфере энергетики (например, комплектующие паровых турбин), а также из них делают особо ответственный крепеж. В качестве легирующих добавок в них используют хром, молибден, ванадий. Жаропрочные относятся к среднеуглеродистым, среднелегированным, перлитным сталям.
  • Улучшаемые (из категорий среднеуглеродистых, низко- и среднелегированных) стали, при производстве которых используют закалку, применяются для изготовления сильно нагруженных деталей, испытывающих нагрузки переменного характера. Отличаются чувствительностью к концентрации напряжения в рабочей детали.
  • Цементуемые (из категорий низкоуглеродистых, низко- и среднелегированных) стали, как можно понять по названию, подвергаются цементации и следующей после нее закалке. Их применяют для изготовления всевозможных шестерен, валов и других похожих по назначению деталей.

Зависимость толщины цементованного слоя от температуры и времени обработки

Зависимость толщины цементованного слоя от температуры и времени обработки

Классификация строительных легированных сталей подразумевает их разделение на следующие виды:

  • Массовая — низколегированные стали в виде труб, фасонного и листового проката.
  • Мостостроительная — для автомобильных и ж/д мостов.
  • Судостроительная хладостойкая, нормальная и повышенной прочности — хорошо противостоит хрупкому разрушению.
  • Судостроительная хладостойкая высокой прочности — для сварных конструкций, которым предстоит работать в условиях низких температур.
  • Для горячей воды и пара — допускается рабочая температура до 600 градусов.
  • Низкоопущенные высокой прочности — применяются в авиации, чувствительны к концентрации напряжений.
  • Повышенной прочности с применением карбонитритного упрочнения, создающим мелкозернистую структуру стали.
  • Высокой прочности с применением карбонитритного упрочнения.
  • Упрочненные прокаткой при температуре 700-850 градусов.

Применение инструментальных легированных сталей

Применение инструментальных легированных сталей

Инструментальная легированная сталь широко используется при производстве разнообразного инструмента. Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость. Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят. Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.

Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов. Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.

К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками. От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми. Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.

Легирующие элементы и их влияние на свойства сталей

Маркировка легированных сталей указывает на то, какие добавки в ней содержатся, а также на их количественное значение. Но также важно знать и то, какое именно влияние на свойства металла оказывает каждый из этих элементов в отдельности.

Добавка хрома увеличивает коррозионную стойкость, повышает прочность и твердость, является основным компонентом при создании нержавеющей стали.

Добавление никеля повышает пластичность, вязкость стали и коррозионную стойкость.

Титан уменьшает зернистость внутренней структуры, повышая прочность и плотность, улучшает обрабатываемость и коррозионную стойкость.

Присутствие ванадия уменьшает зернистость внутренней структуры, что повышает текучесть и порог прочности на разрыв.

Добавка молибдена дает возможность улучшить прокаливаемость, повысить коррозионную устойчивость и снизить хрупкость.

Вольфрам повышает твердость, не дает зернам увеличиваться при нагреве и снижает хрупкость при отпуске.

При содержании до 1-15% кремний повышает прочность, сохраняя вязкость. При увеличении процента содержания кремния повышается магнитопроницаемость и электросопротивление. Также данный элемент увеличивает упругость, стойкость к коррозии и сопротивляемость к окислению, но также повышает хрупкость.

Введение кобальта увеличивает ударопрочность и жаропрочность.

Добавление алюминия способствует повышению окалиностойкости.

Таблица назначения некоторых видов стали

Таблица назначения некоторых видов стали

Отдельно стоит упомянуть примеси и их влияние на свойства сталей. Любая сталь всегда содержит технологические примеси, так как полностью удалить их из состава стали чрезвычайно трудно. К такого рода примесям относятся углерод, серу, марганец, кремний, фосфор, азот и кислород.

Оказывает на свойства стали очень значительное влияние. Если его содержится до 1,2%, то углерод способствует повышению твердости, прочности, предела текучести металла. Превышение указанного значения способствует тому, что начинает значительно ухудшаться не только прочность, но и пластичность.

Если количество марганца не превышает 0,8%, то он считается технологической примесью. Он призван повысить степень раскисления, а также противостоять негативному влиянию серы на сталь.

При превышении содержания серы выше 0,65% механические свойства стали существенно снижаются, речь идет об уменьшении уровня пластичности, коррозионной стойкости, ударной вязкости. Также высокое содержание серы негативно влияет на свариваемость стали.

Даже незначительное превышение содержания фосфора выше необходимого уровня чревато повышением хрупкости и текучести, а также снижением вязкости и пластичности стали.

Азот и кислород

При превышении определенных количественных значений в составе стали вкрапления данных газов повышают хрупкость, а также способствуют понижению ее выносливости и вязкости.

Слишком большое содержание водорода в стали ведет к увеличению ее хрупкости.

Маркировка легированных сталей

К категории легированных относится большое разнообразие сталей, что и вызвало необходимость в систематизации их буквенно-цифрового обозначения. Требования к их маркировке оговаривает ГОСТ 4543-71, согласно которому сплавы, наделенные особыми свойствами, обозначаются маркировкой, где на первой позиции стоит буква. По этой букве как раз и можно определить, что сталь по своим свойствам относится к определенной группе.

Пример расшифровки маркировки легированной стали

Пример расшифровки маркировки легированной стали

Так, если маркировка легированных сталей начинается с букв «Ж», «Х» или «Е» — перед нами сплав нержавеющей, хромистой или магнитной группы. Сталь, которая относится к нержавеющей хромоникелевой группе, обозначается буквой «Я» в ее маркировке. Сплавы, относящиеся к категории шарикоподшипниковых и быстрорежущих инструментальных, обозначаются буквами «Ш» и «Р».

Стали, относящиеся к легированным, могут принадлежать к категории высококачественных, а также особо высококачественных. В таких случаях в конце их марки ставится буква «А» или «Ш» соответственно. Стали, которые обладают обычным качеством, таких обозначений в своей маркировке не имеют. Специальное обозначение также имеют сплавы, которые получены прокатным методом. В таком случае в маркировке присутствует буква «Н» (нагартованный прокат) или «ТО» (термически обработанный прокат).

Точный химический состав любой легированной стали можно посмотреть в нормативных документах и справочной литературе, но получить такую информацию позволяет и умение разбираться в ее маркировке. Первая цифра позволяет понять, сколько углерода (в сотых долях процента) содержит легированная сталь. После этой цифры в марке перечисляются буквенные обозначения легирующих элементов, которые содержатся дополнительно.

Обозначение легирующих элементов в маркировке стали

Обозначение легирующих элементов в маркировке стали

После каждой такой буквы проставляется количественное содержание указанного элемента. Выражается это содержание в целых долях. После буквы, обозначающей элемент, может не стоять никакой цифры. Означает это то, что его содержание в стали не превышает 1,5%. Государственный стандарт 4543-71 регламентирует обозначение легирующих добавок, входящих в состав легированной стали: А — Азот, Б — Ниобий, В —Вольфрам, Г — Марганец, Д — Медь, К — Кобальт, М — Молибден, Н — Никель, П — Фосфор, Р — Бор, С — Кремний, Т — Титан, Ц — Цирконий, Ф — Ванадий, Х — Хром, Ю — Алюминий.

Использование легированных сталей

Сегодня сложно найти сферу жизни и деятельности, в которых бы не использовалась легированная сталь. Из инструментальных и конструкционных сталей производится практически любой инструмент: резцы, фрезы, штампы, измерительные устройства, шестерни, пружины, подвески, растяжки и многое другое. Нержавеющие легированные стали активно используются и в быту, из них изготавливают посуду, корпуса и другие элементы многих видов бытовой техники.

Легированные стали по причине их высокой стоимости используются только для производства самых ответственных конструкций и деталей, где изделия из других металлов просто не смогут выполнить возложенные на них задачи.

Читайте также: