Виды сталей марки и расшифровка

Обновлено: 07.05.2024

Основная особенность нержавеющих сталей заключается в том, что активное железо в их составе связано в соединениях с другими металлами, и не может реагировать с атмосферным воздухом, водой, и рядом агрессивных окислителей. На поверхностях полуфабрикатов образуется устойчивая защитная пленка окислов никеля, хрома, марганца.

Изменения, произведенные на молекулярном уровне, в значительной степени влияют на физические свойства. Коррозионно-стойкие стальные сплавы обладают меньшей теплопроводностью, большим тепловым расширением, за некоторым исключением, теряют магнитные качества, что позволяет применять их в изготовлении радиотехнического оборудования. Разработано огромное количество типов нержавеющих сталей специального назначения, характеристики которых уникальны.

Влияние основных легирующих элементов на эксплуатационные свойства:

  • Хром: отвечает за коррозионную стойкость при высоких температурах и воздействии кислот, повышает прочность и твердость, снижает ударную вязкость, поэтому хромоникелевая группа не устойчива к ударным нагрузкам;
  • Никель: увеличивает пластичность, технологичные качества и сопротивляемость коррозии, повышает устойчивость к высоким температурам, защищает поверхность от образования царапин;
  • Углерод: чем больше углерода, тем хуже металл обрабатывается резанием и сложнее деформируется. Эту особенность используют в производстве инструментов;
  • Марганец: относится к природным примесям, универсальный раскислитель, увеличивает стойкость к износу и прокаливаемость;
  • Кремний: повышает кислотостойкость, жаропрочность.

Для придания специальных свойств применяют такие металлы как титан, ванадий, молибден, ниобий, медь, вольфрам, кобальт, алюминий.

Виды нержавеющей стали

Стальные сплавы классифицируют по форме кристаллической решетки. Она может быть аустенитного, мартенситного, ферритного или комбинированного типа. Химическое строение обуславливает основные характеристики структурных типов:

Аустенитные

Гранецентрированная кубическая решетка формируется за счет стабилизирующего действия хрома, никеля и марганца. Общая доля этих элементов достигает 33%. Аустениты являются самым распространенным типом, к ним относятся пищевые стали и материалы специального назначения, стойкие к особо агрессивным средам.

Мартенситные

Тетрагональное строение, при котором ячейки имеют форму параллелепипеда. К этому классу относят наиболее прочные нержавеющие стали, в которых много хрома, при этом никель отсутствует или вводится в минимальном количестве. Из них производят быстрорежущие инструменты, крепежи, жаропрочные детали и нагруженные металлоконструкции. Все полуфабрикаты проходят сложную термическую обработку в ходе которой осуществляется мартенситное превращение.

Ферритные

Объемноцентрированная кристаллическая решетка, характерная для большинства сплавов на основе железа и углерода. Основным легирующим элементом является хром. Ферриты обладают высокой прочностью и пластичностью, магнитны. Эксплуатационные свойства соответствуют аустенитам, но замена дорогостоящего никеля другими металлами делает изделия подверженными межкристаллической коррозии.


Таблица соответствий основных марок нержавеющих сталей и химический состав

Сплавы с комбинированной структурой состоят из нескольких фаз. Они созданы для специализированных областей применения, где важно оптимальное сочетание характеристик разных классов:

  • Ферритно-мартенситные: устойчивость к износу;
  • Аустенитно-мартенситные: для криогенной техники, уксуснокислых сред;
  • Аустенитно-ферритные: разаработаны в качестве альтернативы дорогостоящим аустенитам.

Количество каждой фазы обычно составляет 40-60%. Свойства также зависят от подбора легирующих элементов и их массовой доли в составе.


Расшифровка марок нержавеющих сталей

В мире действует несколько систем обозначений. AISI — это группа стандартов, разработанных Американским институтом стальных сплавов. Каждому наименованию в системе присвоено значение из четырех цифр, но для коррозионно-стойких сталей предусмотрены серии:

  • Серия 200: всего одна марка AISI 201, служит заменой популярной стали AISI 304 с некоторыми ограничениями;
  • Серия 300: аустенитные и комбинированные нержавейки с аустенитной основой;
  • Серия 400: хромистые с мартенситным или ферритным строением.

Для обозначения по стандарту ГОСТ созданы следующие алгоритмы:

  • Первая цифра: содержание углерода в сотых долях процента;
  • Остальные цифры обозначают в процентах содержание элемента, после которого они указаны в маркировке;
  • Округление до 1: если концентрация металла меньше 1% или приближена к нему, численное обозначение опускают, цифра не пишется.

Популярные марки нержавеющей стали

AISI 304 (08Х18Н10)

Пищевая. Наиболее широко применяется в фармацевтической и продовольственной промышленности для изготовления комплектующих и панелей производственных линий, тары, трубопроводов. Используется в дизайне и благоустройстве для монтажа лестничных ограждений и производства мебели;

AISI 316 (10Х17Н13М2)

В отличие от пищевой стали, усилена молибденом и может работать в кислотных средах при высоких температурах, устойчива в морской воде;

AISI 316T (10Х17Н13М2T)

Присадки титана увеличивают термостойкость, противостоят ионам хлора, добавляют прочности. Область применения: изготовление сосудов, работающих с кислотами, теплообменное оборудование, режущий инструмент;

AISI 321 (08Х18Н10T)

Жаростойкий материал для изготовления деталей, работающих в условиях повышенной агрессивности, теплообменников, котлов, трубопроводов и комплектующих для них;

AISI 430 (12Х17Н)

Жаропрочный состав предназначен для производства подвижных деталей (валиков, втулок), работающих в разбавленных растворах кислот и солей. Сталь относится к ферритному классу, изделия не рассчитаны на долгий срок службы;

AISI 201 (12Х15Г9НД)

Недорогая альтернатива AISI 304, содержит меньше никеля и хрома, но легирована медью для защиты от атмосферных воздействий, не может применяться как пищевая, так как имеет меньшую стойкость к агрессивным веществам. Из нее производят барабаны стиральных машин, заграждения и мебель.

ГОСТ 5632-2014 предусмотрено несколько десятков марок коррозионно-стойких сталей, некоторые из них не имеют аналогов в мире. Для обозначения могут использовать собственные стандарты разработчиков, например: ДИ-13, ЭП-33, ЧС-68.

Сферы использования нержавейки

Нержавеющие сплавы используют для изготовления посуды и бытовой техники, сантехнического оборудования. Нержавейка не реагирует на воду, жир, кислоты, поэтому широко используется в пищевой и химической промышленности, производстве медицинского оснащения и инструментов. Специализированные составы применяют в нефтехимической, энергетической отрасли, автомобилестроении и судостроении.

Легированные марки стали: классификация и маркировка

Обозначение легирование происходит от латинского ligare — связывать. Легированными называют стали, в химический состав которых добавлены другие металлы. Но недостаточно просто смешать расплав, все компоненты связываются на молекулярной уровне, формируя новые соединения и типы кристаллических решеток.

Легирование было известно человечеству давно. Некоторые месторождения были богаты железными рудами с включениями молибдена и ванадия. Из них производили дамасские и булатные клинки, самурайские мечи и другое редкое оружие. “Метеоритное железо” ценилось на вес золота и даже выше. Но управлять качествами по собственному желанию люди не могли до конца XIX в.

  • Железо — основа, не менее 45%;
  • Углерод — до 2,14% материал с более высоким содержанием причисляют к чугуну;
  • Полезные примеси: марганец, кремний;
  • Вредные: сера, фосфор.

С изменением взглядов на химию было открыто, что присадки некоторых элементов способны встраиваться в железо-углеродную структуру, изменяя ее химические и физические свойства. Первым удачным опытом легирования было получение сплава с 9% вольфрама и 2,5% марганца Р. Мюшеттом в 1858 г. Впоследствии ученый усовершенствовал разработку и на заводе в Шеффилде началось массовое сталелитейное производство. Из так называемой “самокалки” изготавливали режущий инструмент для обработки дерева и металла.

Первые эксперименты по хромированию произвел Джулиус Баур, затем его опыт расширил французский металлург Анри-Ами Брустляйн, подготовив описание 12 хромистых составов с указанием особенностей. Одновременно с этим Джеймс Райли наладил производство никелевой стали в Англии.

Сталь, усиленную никелем, начали использовать для производства велосипедных цепей и осей карет-автомобилей. Главным толчком к развитию технологии послужил автопром, новые модели на рубеже веков появлялись каждые 2-3 недели и приносили баснословные деньги. Первыми масштабными объектами строительства с применением легирования были мосты: Манхэттенский и Куинсборо. Число разработок кратно возросло с наступлением войны.

Технические характеристики

Углеродная составляющая придает твердость, но вместе с тем сплав малопластичен, легко разрушается от ударных воздействий, плохо переносит холод. Железо — один из самых активных химических элементов, и не встречается в чистом виде. Даже будучи связанным в соединениях, оно вступает в реакции с более агрессивными веществами.

Легирование решает ряд задач:

  • Делает структуру однородной;
  • Препятствует окислению;
  • Предотвращает водородную болезнь;
  • Одновременно увеличивает прочность и ударную вязкость;
  • Придает дополнительные физические и химические характеристики.

Сегодня к материалам предъявляют разные требования, например стойкость к истиранию и критически-низким температурам, способность длительно обеспечивать работу печного оборудования. В пищевой промышленности действует регламент по отсутствию вредных примесей.


С развитием технологий, металлурги получили возможность работать с расплавами при температуре до 20 тыс. градусов. Это дало возможность легирования тугоплавкими металлами.

Основные легирующие элементы:

  • Хром — увеличивает прочность и твердость без потерь пластичности, отвечает за кислотостойкость и жаростойкость;
  • Никель — улучшает ударную вязкость, устойчивость к окалинообразованию, термостойкость в агрессивных средах;
  • Кремний — стабилизирует структуру, повышает пределы прочности и текучести;
  • Марганец — защищает от окисления, увеличивает сопротивление истиранию;
  • Вольфрам — вводится в быстрорежущие и инструментальные марки;
  • Ванадий — карбидообразующий агент, объединяясь с углеродом усиливает стойкость к истиранию, прочность, и способность противостоять напряжениям;
  • Молибден — добавляют в быстрорежущие и жаропрочные материалы.

Процесс легирования начинается с очистки от примесей, обезуглероживания и раскисления, затем вводят присадки. Нередко после изготовления готовой продукции полуфабрикатам требуется дополнительная рекристаллизация.

Легирующие элементы не только встраиваются в структуру, они образуют интерметаллические включения и дисперсные частицы, упрочняющие молекулярное строение. Среди технических характеристик сталей есть такие, как термоупрочнение, упрочнение давлением.

Виды легированных сталей

Содержание углерода влияет на свойства, если оно находится в пределах 0,25-2,14% сталь называют углеродистой. Классификация производится следующим образом:

  • Высокоуглеродистые: 0,6-2%;
  • Среднеуглеродистые: 0,3-0,6%;
  • Низкоуглеродистые: до 0,25%.

Для того, чтобы добавить что-то, нужно удалить часть компонентов, иначе связывания не произойдет. Во время очистки снижаются концентрации вредных примесей и кислорода. Углерод удаляют выжиганием, путем выпадения карбидных соединений и другими способами. Добавлять присадки можно в любую сталь, но это не всегда дает нужный эффект.

В легированной стали углеродная составляющая обозначается в сотых долях процента. Предусмотрена классификация по общей массе присадок:

  • Низколегированные – до 2,5%;
  • Среднелегированные – 2,5-10%;
  • Высоколегированные – от 10%.

Введение присадок влечет за собой рекристаллизацию и образование новой структуры. Для сталей определены классы по форме кристаллической решетки:

  • Ферриты — магнитны, решетка неустойчива и может преобразовываться при нагревании и охлаждении в перлит, сорбит или тростит. К классу принадлежат все низколегированные и углеродистые стали. Устойчивые связи формируются при снижении углерода до 0,15% и легировании хромом.
  • Аустениты — образуются при высокой доле никеля, хрома и марганца. Структурное строение обеспечивает жаростойкость, коррозионную стойкость и пластичность. Класс составляют хромоникелевые нержавейки.
  • Мартенситы — при охлаждении после закалки происходит мартенситовое превращение, формируются кубические ячейки, которые составляют кристаллы игольчатого или реечного типа. Металл приобретает память, частично восстанавливается после деформации. Переход в такое состояние возможен для сталей с добавками хрома, молибдена, ванадия, вольфрама, ниобия и других добавок, отвечающих за жаропрочность.

Металлическая кристаллическая решетка организуется в виде фаз, обычно одновременно присутствуют две фазы. Например, сочетание аустенита и феррита. Нужную фазу увеличивают путем регулирования присадок и термических воздействий.

Название Процент добавок
Низколегированная Около 2,5%. Положительные качества прибавились, но при этом ковкость и прочие характеристики для металлообработки не сильно поменялись.
Среднелегированная От 2,5% до 10%. Используется такое соединение чаще всего.
Высоколегированная От 10% до 50%. Максимальная прочность и дороговизна – отличительные черты таких изделий.

Классификация легированных сталей

При выплавке из руды сначала получают чугун, который затем очищают от газов, оксидов и других включений. Этот процесс называют рафинированием. Удаление кислорода производится с помощью угля, шлака, марганца и других раскислителей, способных образовывать газы или тяжелые оксиды, которые выпадают в осадок.

Обезуглероживание осуществляется водородом и выгоранием карбидов с образованием угарного газа и окалины. Сегодня на некоторых предприятиях действуют передовые методы, например газокислородное рафинирование.

Результат этих процедур определяет качество стали:

  • Обыкновенные (рядовые): наиболее дешевый материал, углерода до 0,6% в толще присутствуют пузырьки воздуха. Самые распространенные: СтО, Ст3сп, Ст5кп.
  • Качественные: в структуре присутствуют кислород, азот, водород. качественными считаются спокойные, полуспокойные и кипящие марки. В кипящих концентрация газов максимальна. Сплавы могут быть углеродистыми и легированными: Ст08кп, Ст10пс, Ст20, 7ХФ, 8ХФ.
  • Высококачественные: выплавка преимущественно осуществляется в электропечах без использования угля. Концентрации серы и фосфора снижены до 0,03%. Примеры: 6ХВ2С, 6Х3ФС;
  • Особовысококачественная: расплавы подвергаются глубокой очистке от оксидов, сульфидов, неметаллических включений, содержат не более 0,01% серы и 0,025% фосфора. Например: 30ХГС3-Ш.

Действует классификация легированных сталей по назначению:

  • Конструкционные — для изготовления строительных конструкций и нагруженных механизмов;
  • Инструментальные (режущие и штамповые) — присадки повышают прочность и сохраняют однородность, обычно металл подвергают термообработке;
  • С особыми свойствами ( нержавеющие, жаропрочные, износостойкие и др.) — большая группа с разными характеристиками.

Предусмотрено обозначение отдельных групп:

  • Шарикоподшипниковые;
  • Пружинно-рессорные;
  • Автоматные;
  • Быстрорежущие;
  • Жаростойкие/жаропрочные;
  • Криогенные;
  • Авиационные и др.

Современные сплавы — это комплексно-легированные составы, с уникальными характеристиками. Например 15Х2НМФА способна в течение 100 лет обеспечивать радиационный ресурс реакторной установки, 17ХНГТ используют для пружин специального назначения.

Маркировка легированных сталей

Согласно стандарту ГОСТ для обозначения марок действует буквенно-цифровая система. Она распространена только на территории стран СНГ, свои маркировки есть в США, азиатских и европейских странах.

Рассмотрим построение маркировки у легированных сталей на примере 25Х2МФА:

  • 25 — округленное значение углерода в сотых долях процента, его содержание колеблется от 0,22 до 0,29%;
  • Х2 — хром от 2,5 до 3%, так как концентрация не всегда достигает верхнего предела, обозначают двойку;
  • М — марганец 0,3-0,6%, массовая доля менее 1%, цифру не указывают;
  • Ф — ванадий 0,25-035%;
  • А в конце — указывает на высокое качество, глубокую очистку от примесей.
  • Без цифры — когда массовая доля вещества не достигает 2%, единицу не пишут;
  • Буквы в конце: К- качественные нелегированные, А — высокое качество, Ш — особо высокое, Л — литейные;
  • Буква в конце через пробел: С — строительные, Т — термоупрочняемые, К -коррозионно-стойкие, Д- повышенное содержание меди.

Иногда маркировка указывает на предприятие, имеющее патент на выпуск определенного металлопроката, например ЭИ417, ЭП767, ЗИ8. Необычные названия, после освоения металлургическими заводами приобретают стандартные маркировки по ГОСТ.

Сварка сплавов

Легированные стали работают в широком диапазоне температур, но крайне чувствительны к термообработке. Каждый элемент имеет свои свойства, температуру плавления и рекристаллизации. Сварные соединения может выполнять только профессионал. Выбор методов сварки осуществляют после изучения технической документации, рекомендаций производителя.

При нагреве наблюдается выгорание карбидов, перераспределение присадок в толще сварного шва и одновременное окисление. Для предотвращения образования дефектов используют защитные среды и специальные терморежимы. Легирование снижает теплопроводность, без должного отвода тепла легко получить перегрев и распад некоторых химических связей.

Определение особенностей по основным легирующим добавкам:

  • Хромистые: содержание углерода 0,1-0,4%, для защиты от выгорания применяют покрытия или инертные газы, подбирают хромистые электроды. Предусматривается предварительный нагрев свариваемого участка током и последующая термообработка.
  • Марганцевые: необходимо предотвратить образование трещин, для этого сокращают время нагрева и сразу же охлаждают поверхность. Электроды с марганцем или марганцево-никелевые.
  • Хромоникелевые: это могут быть аустенитные или мартенситные сплавы. Производят анализ состава и назначения сварной конструкции.

Особенности сварки по количеству присадок:

  • Низколегированные: изделия часто закаливают, свариваемость хорошая, но швы чувствительны к концентраторам напряжений. Производят предварительный подогрев и медленное охлаждение, важно предотвратить образование холодных трещин.
  • Среднелегированные: в качестве добавок используют молибден, ванадий, вольфрам. Для сохранения надежности подбирают электроды с теми же элементами, но в меньших концентрациях. Требуется защита от водородной болезни, окисления, перегрева.
  • Высоколегированные: составы с высоким содержанием никеля и хрома и большим числом других легирующих агентов. Требования к свойствам сварных соединений определяют, учитывая назначение изделий.

Таблица основных легирующих добавок

Элемент Влияние
Хром Значительно защищает от коррозии, способствует повышению твердости, а также ударопрочности. Показательно то, что много хрома добавляют в нержавейку.
Никель С добавлением данного вещества сплав становится более вязкий и пластичный, уменьшается его хрупкость, что очень важно, например, перед обработкой давлением прессованием или штамповкой.
Титан Снижает зернистость, делает структуру более однородной, а значит, менее подверженной появлению трещин и расколов. Дополнительно улучшается восприимчивость к металлообработке и устойчивость к ржавлению.
Ванадий Как и после внедрения титана, можно заметить менее зернистую форму. Также характерно увеличение текучести и порога прочности на разрыв.
Молибден После него намного эффективнее процесс закалки, а также снижается хрупкость, появляется большая выносливость к ржавлению.
Вольфрам Кроме повышения твердости, он еще и помогает при термообработке зернистость не увеличивается при нагреве, а при отпуске не сильно страдает ломкость.
Кремний Его задача одновременное увеличение прочности и сохранение уровня вязкости. Но если его будет более 15%, то можно наблюдать за повышением магнитной проницаемости и сопротивляемости электричеству. однако нужно быть осторожным, поскольку сталь становится более хрупкой.
Кобальт Хорошо защищает от быстрого разрушения под воздействием высоких температур; делает выше ударопрочность
Алюминий Добавляет окалиностойкость, то есть при большом жаре не происходит быстрого окисления.

Изучение технических и проектных документов дает представление о возможных способах сварки. Например срок службы стальных деталей ступеней ракет носителей составляет всего несколько секунд, но даже краткий временной интервал в сложных условиях достигается непросто. На Земле нормативный эксплуатации конструкций превышает десятки лет.

Как расшифровать марку стали

Сталь, чугун и сплавы цветных металлов подлежат обязательной маркировке. В мире существует более 1,5 тысяч различных видов сталей и сплавов из них.

Легированные стали, в отличие от нелегированных, имеют несколько иное обозначение, поскольку в них присутствуют элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств. К примеру:

  • хром (Cr) повышает твёрдость и прочность
  • никель (Ni) обеспечивает коррозионную стойкость и увеличивает прокаливаемость
  • кобальт (Co) повышает жаропрочность и увеличивает сопротивление удару
  • ниобий (Nb) помогает улучшить кислостойкость и уменьшает коррозию в сварных конструкциях.

Именно поэтому в названия легированных сталей принято включать химические элементы, присутствующие в составе, и их содержание в процентах. Химические элементы в таких марках сталей обозначаются русскими буквами, приведёнными в таблице.

Также существует маркировка Ч , сообщающая нам, что в составе сплава имеются редкоземельные металлы, такие как: церий, лантан, неодим и прочие. Церий (Ce) влияет на прочность и пластичность стали, а н еодим (Nd) и лантан (La) уменьшают пористость и содержание серы в стали, измельчают зерно.

Пример расшифровки марки стали 12Х18Н10Т

12Х18Н10Т - это популярная сталь аустенитного класса, которая применяется в сварных аппаратах, работающи х в разбавленных растворах кислот, в растворах щелочей и солей, а также в деталях, работающих под большим давлением и в широком диапазоне температур. Итак, что же означают эти загадочные символы, стоящие в названии, и как их правильно объединить?

Две цифры, стоящие в самом начале марки легированной стали, — это среднее содержание углерода в сотых долях процента. В нашем случае, содержание углерода 0,12% . Иногда вместо двух цифр стоит всего одна: она показывает, сколько углерода (C) содержится в десятых долях процента. Если же цифр в начале марки стали вовсе нет, это означает, что углерода в ней довольно приличное число — от 1% и выше.

Буква Х и следующая за ней цифра 18 говорят о том, что в данной марке содержится 18% хрома . Обратите внимание: соотношение элемента в долях процента выражает только первое число, стоящее в начале марки, и это относится только к углероду! Все остальные числа, присутствующие в названии, выражают количество конкретных элементов в процентах.

Далее следует комбинация Н10. Как Вы уже догадались, это 10% никеля .

В самом конце стоит буква Т без каких-либо цифр. Это значит, что содержание элемента слишком мало, чтобы уделять этому внимание. Как правило, около 1% (иногда — до 1,5%). Получается, в данной марке легированной стали количество титана не превышает 1,5% . Если вдруг в самом конце марки Вы обнаружите скромно стоящую букву А, помните, что она играет очень важную роль: таким образом обозначается высококачественная сталь, содержание фосфора и серы в которой сведено к минимуму. Две буквы А в самом конце (АА) говорят о том, что данная марка стали особо чистая, т. е. серы и фосфора здесь практически нет.

В ходе несложного анализа сочетаний букв и цифр мы выяснили, что марка стали 12Х18Н10Т (конструкционная криогенная, аустенитного класса) сообщает о себе следующие сведения: 0,12% углерода, 18% хрома (Х), 10% никеля (Н) и небольшое содержание титана (Т), не превышающее 1,5%.

В начале марки легированных сталей могут также присутствовать дополнительные обозначения:

Р — быстрорежущая;

Ш — шарикоподшипниковая;

А — автоматная (не путайте с буквой А в конце названия, говорящей о чистоте стали!);

Э — электротехническая.

Также стоит отметить некоторые особенности таких подвидов легированных сталей:

  1. в шарикоподшипниковых сталях содержание хрома указывается в десятых долях процента (например, сталь ШХ4 содержит 0,4% хрома);
  2. в марках быстрорежущей стали после буквы Р сразу ставится число, указывающее содержание вольфрама в процентах. Также все быстрорежущие стали содержат 4% хрома (Х).

Чтобы показать способ раскисления стали, существуют особые буквенные обозначения:

  • сп — спокойная сталь;
  • пс — полуспокойная сталь;
  • кп — кипящая сталь.

Теперь подробно рассмотрим, как расшифровать марку нелегированной стали , которая подразделяется на обыкновенную и качественную.

Обыкновенная нелегированная сталь(Ст3 , Ст3кп) имеет в самом начале буквы Ст. Далее следуют цифры, указывающие содержание углерода в стали в десятых долях процента. В конце могут стоять специальные индексы: например, сталь Ст3кп относится к категории кипящей , о чём говорят буквы кп в самом конце. Отсутствие индекса означает, что эта сталь спокойная . Когда нужно отразить в маркировке гарантию свариваемости , в конце добавляют строчные буквы св . К примеру: Ст3св.

Качественная нелегированная сталь (Ст10, Ст30, Ст20, Ст45) содержит в маркировке двузначное число, указывающее среднее содержание углерода в стали в сотых долях процента. Таким образом, марка стали Ст10 содержит 0,1% углерода; Ст30 имеет 0,3% углерода; Ст20 — 0,2%; Ст45 содержит 0,45% углерода.

Конструкционная низколегированная сталь 09Г2С содержит следующие химические элементы: 0,09% углерода, 2% марганца и небольшое количество кремния (приблизительно 1%).

Стали 10ХСНД и 15ХСНД отличаются только разным содержанием углерода: 0,1% и 0,15% соответственно. Хрома (Х), кремния (С), никеля (Н) и меди (Д) здесь очень мало (до 1-1,5%), поэтому цифры за буквой не ставятся.

Качественные стали применяют для производства паровых котлов и сосудов высокого давления. В их маркировке имеется буква К на конце: 20К, 30К, 22К.

Если сталь является литейной конструкционной , то в конце маркировки ставят букву Л. Например: 40ХЛ, 35ХМЛ.

Инструментальные нелегированные стали обозначаются буквой У. Далее следует цифра, выражающая среднее содержание углерода в стали: У10, У7, У8. Если сталь ещё и высококачественная, это также отмечают в маркировке: У8А, У10А, У12А. Если необходимо подчеркнуть увеличенное содержание марганца, применяют дополнительную букву Г. К примеру, существуют стали У8ГА и У10ГА.

Инструментальные легированные стали имеют такое же обозначение, как и конструкционные легированные. Например, марка ХВГ указывает на присутствие трёх главных легирующих элементов: хрома (Х), вольфрама (В) и марганца (Г). Содержание углерода здесь примерно 1%, а потому цифра в начале марки не пишется. Другой вид стали 9ХВГ имеет пониженное содержание углерода в сравнении с ХВГ: здесь углерода 0,9%.

Стали быстрорежущие маркируются буквой Р, после которой ставится содержание вольфрама в %. Разберём в качестве примера сталь Р6М5Ф3 . Она является быстрорежущей (Р), содержит 6% вольфрама, 5% молибдена (М) и 3% ванадия (Ф).

Сталь электротехническая нелегированная (АРМКО) имеет очень малое удельное электрическое сопротивление. Это достигается благодаря минимальному количеству углерода в составе (менее 0,04%). Такую сталь ещё принято называть технически чистым железом . Маркировка электротехнических нелегированных сталей состоит только из цифр. Например: 10880, 21880 и т. д. В каждой цифре заложена важная информация. Самая первая цифра показывает вид обработки: 1 — кованный или горячекатаный; 2 — калиброванный. Вторая цифра сообщает наличие/отсутствие нормируемого коэффициента старения: 0 — без коэффициента; 1 — с коэффициентом. Третья цифра — это группа по основной нормируемой характеристике. Две последние связаны со значениями основной нормируемой характеристики.

Строительная сталь отмечается буквой С, после которой указывается минимальный предел текучести стали. Также применяются дополнительные обозначения: К — повышенная коррозионная стойкость (С390К, С375К); Т — термоупрочнённый прокат (С345Т, С390Т); Д — повышенное содержание меди (С345Д, С375Д).

Алюминиевые сплавы литейные обозначаются буквами АЛ в начале маркировки. Вот некоторые примеры: АЛ4, АЛ19, АЛ27.

Алюминиевые сплавы для ковки и штамповки содержат буквы АК, а далее — условный номер данного сплава: АК6, АК5.

Также существуют деформированные сплавы с содержанием алюминия . Сплав авиаль: АВ, алюминиево-магниевый сплав: АМг; алюминиево-марганцовый сплав: АМц.

Теперь Вы узнали, как расшифровать марку стали с содержанием различных химических элементов. Данная маркировка сталей была разработана ещё в СССР и действует по настоящее время не только на территории Российской Федерации, но и в странах СНГ.

Европейская маркировка сталей подчиняется стандарту EN 100 27. В Японии и Соединённых Штатах имеются свои стандарты. Единой мировой классификации сталей в настоящее время не существует.

Понимая общие правила обозначения марок нелегированных и легированных сталей, а также при грамотной расшифровке марок сталей, можно без труда определить, из какой именно стали изготовлена конкретная деталь. Грамотные сотрудники завода «УралТеплоМонтаж» помогут Вам определить необходимую марку стали, способную выдержать требуемое давление и заданные температурные условия. У нас всегда имеются в наличии (либо под заказ) стальные фитинги для трубопроводов, отводы гнутые и другая трубопроводная арматура из различных марок сталей.

Расшифровка и классификация марок сталей

Железо химически-активно и встречается в природе только в виде соединений, руды состоят из гидратов, закисей солей и оксидов. Богатая руда содержит не более 57% чистого металла, а изделия быстро корродируют. С развитием металлургии было изобретено множество сплавов на железной основе, которые превосходят его по прочности и имеют надежную молекулярную структуру. Стали классифицируют по способу раскисления, назначению и содержанию элементов. Обозначения марок сформированы разными системами стандартизации.

Для точной расшифровки марки стали воспользуйтесь нашим марочником стали


Классификация по химическому составу

В естественной среде железо реагирует с окислителями, галогенами, фосфором и серой. Для очищения сырья и преобразования оксидных соединений в роли восстановителя сначала применяли каменный уголь. Так при горении в недостатке кислорода, выплавляли чугун, из которого уже частично удалены оксиды и примеси, а доля углерода составляет не менее 2,14%. Для выплавления стали из полученной массы необходимо уменьшить его концентрацию до 2%.

Углеродистые

По составу отличаются от чугуна только концентрациями. При обработке снижается количество углерода и вредных включений. Соотношение кремния и марганца – может корректироваться для придания дополнительной прочности и стойкости к коррозии. По количеству углеродных соединений различают следующие группы:

  • Высокоуглеродистая (0,6-2%);
  • Среднеуглеродистая (0,25-0,55%);
  • Низкоуглеродистая (до 0,25%).

Углеродная составляющая участвует в формировании карбидов и укрепляет структуру на молекулярном уровне. Чем выше содержание, тем больше стойкость к механическим нагрузкам, особенно ударным. Понижение придает пластичность и возможность выпускать изделия повышенной точности. Из этих сплавов получают инструменты (топоры, валы), детали, испытывающие большое напряжение (оси, арматура) и малонагруженные (зубчатые колеса, пружины). Расшифровка характеристик стали производится по буквам:

  • Ст – сталь;
  • Цифра – номер, согласно регламенту, ГОСТ 380-2005;
  • Г – марганец выше 0,8%;
  • КП, ПС или СП – метод раскисления.

Группу объединяет название «конструкционные», их обозначают маркировками: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп.

Отдельно выделяют группу с названием «инструментальные», они содержат 0,7% углерода и дополнительно очищаются от вредных составляющих. Расшифровка букв в обозначении согласно ГОСТ 1435-99:

  • У – углеродистая;
  • Цифры: углеродная концентрация в десятых долях процента;
  • Г – марганец выше 0,33%;
  • А – повышенное качество, серы не более 0,03%, фосфора – до 0,035%.

Инструментальные нелегированные стали обозначают следующими маркировками: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.

Легированные

Для придания специальных свойств в расплав добавляют различные присадки. Процесс называют легированием. По соотношению легирующих элементов марки разделяют на низколегированные (до 2,5%), среднелегированные (до 10%) и высоколегированные (до 50%).

В таблице приведены металлы, включения примесей и их обозначения в маркировке:

Марганец – Mn Г
Хром – Cr Х
Никель – Ni Н
Титан – Ti Т
Молибден – Mo М
Бериллий – Be Л
Медь – Cu Д
Азот – N А
Ванадий – V Ф
Ниобий – Nb Б
Алюминий –Al Ю (от ювенал)
Селен – Se E
Кобальт – Co К
Бор – B P
Фосфор – P П
Кремний –Si С (от силициум)
Цирконий –Zr Ц

Например, 08Х18Н10 расшифровывается как 0,08% углерода (С), 18 % хрома (Cr), 10% никеля (Ni). Обозначаются не все составляющие, а только говорящие об основных свойствах. Легирование применяется во всех случаях, когда неприемлемо использование углеродистых сплавов. Технический процесс сложнее и дороже, но присадки помогают продлить срок службы в сложных условиях или создать материал со специальными возможностями.

Также в начале маркировки могут присутствовать такие обозначения:

Р — быстрорежущая;
Ш — шарикоподшипниковая;
А — автоматная;
Э — электротехническая.

У этих марок есть ряд особенностей:

Классификация по назначению

Часто для группы со сходными химическими формулами и эксплуатационными ресурсами применяют термины, указывающие на условия применения. Как правило, такая продукция подвергается испытаниям на соответствие по нескольким одинаковым параметрам: на устойчивость к ударным нагрузкам, кислотам, экстремальным температурным режимам. Специальные обозначения в маркировке есть у нелегированных групп: строительные (С), подшипниковые (Ш), конструкционные (Сп), инструментальные (У). Отдельно выделяют режущие легированные сплавы (Р).


Классификация сталей по назначению

Конструкционные

Категория объединяет марки способные выдерживать разнонаправленные механические нагрузки: изгибающие, ударные, растягивающие. Отличительной особенностью является стойкость к усталости, они не трескаются и не истираются при сочетании различных негативных факторов. По составу могут быть углеродистыми и легированными. Применяются для изготовления конструкций и деталей повышенной прочности.

Если сталь является литейной конструкционной, то в конце маркировки ставят букву Л. Например: 40ХЛ, 35ХМЛ.

Инструментальные

Стальные изделия без легирования очень прочны, но в некоторых областях их качеств недостаточно, поэтому применяют присадки. Например, марганец участвует в формировании особо-прочной молекулярной структуры (аустенит) и увеличивает стойкость к механическим деформациям. Алмазная сталь ХВ5 долго сохраняет заточку, может резать очень твердые материалы, при этом требует ухода и легко ломается. Ее прародителями были булатные и дамасские клинки, плохо переносящие сырость и хрупкие ближе к острию.

Инструментальные нелегированные стали обозначаются буквой У. Затем ставится цифра, которая обозначает среднее содержание углерода в стали: У11; У12; У13;. Высококачественные стали дополнительно обозначают буквой А на конце — У11А; У12А; У13А.

Особого назначения

Способность выдерживать определенные физические или химические воздействия определяет область применения. К особенным свойствам относится: немагнитность, кислотостойкость, жаростойкость, жаропрочность. Появляются узкоспециальные названия: авиационные (нагрузка свыше 1300Мпа), судостроительные (стойкость в щелочной среде), криогенные (отсутствует хрупкость при –196 С о и ниже).

Классификация по способу раскисления

При плавлении руды необходимо удалить кислород, иначе готовый прокат быстро заржавеет. Так как кислород находится в несвободном состоянии, требуется разрушить оксидные и гидратные соединения. В реакции раскисления участвуют активные вещества: ферромарганец, силикомарганец, расплав алюминия и другие. Некоторые реагенты действуют только в вакуумной среде.

Для обозначения способа раскисления используют такие обозначения:

Уже более 100 лет разрабатываются методы прямого получения металла, минуя переплавку в чугун и использование кокса, загрязняющего расплав продуктами горения. В результате применения газообразных и твердых восстановителей, обработки в электропечах, реакторах, реторах, получается раствор, насыщенная газами в разной степени. Разделение не относится к легированным продуктам, так как добавление присадок требует регламентированной чистоты.

Кипящая

Для получения используют минимальное количество реагентов, поэтому остается много кислорода и углекислого газа. Слитки имеют неоднородное строение, в одной части оседают вредные примеси, поэтому до 5% готового слитка удаляется. Материал с низкими характеристиками, хрупкий. Воздух концентрируется в сердцевине, но наружная корка может иметь достаточную прочность. Возможно изготовление крепежных деталей котлов и конструкций, контактирующих с взрывоопасными средами. Главный недостаток: быстрая коррозия.

Спокойная

Благодаря сложным технологическим процессам присутствие газов и неметаллических включений минимально, а структура однородна. Из слитков изготовляют металлоконструкции, детали или используют для создания дорогостоящих сплавов.

Полуспокойная

Промежуточное состояние. Упрощенные технические циклы удешевляют производство, а свойства достаточны для выпуска несущих элементов сварных и клепаных конструкций. Из Ст5пс изготовляют болты, гайки, упоры, которые можно использовать в плюсовых температурах и низкой влажности воздуха.

Классификация по качеству

Чем меньше осталось вредных включений, тем выше качественные характеристики, но иногда это не оправдано экономически. Система стандартизации предусматривает три класса.

Качественная

К категории относят углеродистые продукты. В них больше всего фосфора, серы и газов, они недостаточно однородны. Качества удовлетворительны для производства конструкций и деталей.

Нелегированные качественные стали обозначают буквой К. Например, 20К

Высококачественная

Низкое содержание вредных примесей и неметаллических включений обозначается в маркировке буквой А в конце. Из марок У8 и У8А вторая будет обладать лучшими характеристиками, изделия получатся точнее и качественнее.

Букву А в начале пишут в марках конструкционных сталей высокой обрабатываемости (А12­–автоматная, А30, А40), но в таком случае она не отображает соответствие стандарту чистоты.

Особо качественные

Сплавы с минимально-возможным количеством примесей обозначаются по способу получения в конце маркировки:

  • ВД – вакуумно-дуговая переплавка;
  • Ш – электрошлаковый переплав;
  • ВИ – вакуумно-индукционный;
  • ПД – плазменно-дуговой.

Особое качество достигается легированием, так как основу, полученную из чугунного расплава, невозможно привести к таким показателям. Содержание серы снижено до 0,1%, фосфора – до 0,025%. Примеры: 30ХГСН2МА – ВД. Здесь пропущены цифры, так как концентрации присадок составляют от 0,8 до 1,2%, поэтому их доля округляется до 1.

Классификация по структуре

Легирующие элементы формируют собственные соединения и создают молекулярную решетку. Строение металлов по своей природе зернистое, подвергается изменениям при термообработке и давлении. Геометрия химических связей определяет отношение к классу: ферриты, аустениты, перлиты и мартенситы. В обозначениях эта информация не отображается, но принадлежность всегда учитывается для применения в той или иной области.


Аустенит

Атомы углерода находятся внутри ячеек кристаллической решетки металла. Легирующие элементы способны замещать атомы железа и вставать на их место. Аустениты отличаются прочностью и однородностью, не магнитны, относятся к коррозийно-стойким и жаропрочным материалам, применяются для транспортировки агрессивных веществ, работы в особо сложных условиях.

Феррит

Ферритная решетка похожа на куб правильной формы. Поликристаллическое строение делает ферриты мягкими, при переохлаждении зерна становятся крупными, увеличивается хрупкость. Представители класса являются сильными магнетиками, поэтому используются в радиотехнике и электронике для поглощения электромагнитных волн, выпуска антенн и сердечников.

Мартенсит

При закаливании и охлаждении формируется игольчатое строение, при этом атомы железа смещаются на вершины ячеек, а углеродные концентрируются в центре. Это создает внутренние напряжения. Интересно, что мартенситовое превращение происходит в определенных температурных промежутках, при котором достигается предельная твердость. Явление сопровождается возникновением «памяти метала». Сталь, находящаяся в таком состоянии способна вернуть форму после механической деформации.

Мартенсит получают различными методами термообработки и легирования, присадки помогают стабилизации решетки. Степень зависит от назначения, иногда необходимо полное прокаливание, а если этого не требуется, то воздействуют лишь на поверхностные слои. Применение осложняется дополнительными требованиями к обработке, особенно сварке. Уникальные свойства пока не изучены до конца.

Перлит

На этой стадии облегчается механическая обработка. Перлит – явление распада при охлаждении после нагрева. Зерна измельчаются или расслаиваются на пластинки. Состояние создают искусственно для пластической деформации.

Цементит

Особо устойчивое состояние. Решетка FeC3 имеет ромбическую форму, физически цементит очень тверд и хрупок. Формируется при кристаллизации расплава чугуна. В сталях образуется при охлаждении аустенита и нагревании мартенсита (разупрочняющий отжиг).

В металлургии термообработка производится для получения лучших эксплуатационных характеристик конкретного состава и состоит из многочисленных процедур нагревов и охлаждений в разной температуре: сфероидизация, гомогенизация, изотермический отжиг, разупрочнение, стабилизация.

Классификация по способу производства

Многое зависит от применяемого оборудования. Доменные печи давно заменены на более экологичные и эффективные варианты. За прошедшее столетие появилось несколько новых технологий:

  • Конверторная или бессемеровская. В процессе выплавки в конвертер поступает сжатый, обогащенный кислородом воздух, углеродная составляющая выжигается. Дополнительное топливо не требуется, так во время реакции высвобождается дополнительная энергия и масса нагревается самостоятельно. До изобретения технологии невозможно было получить температуру плавления 1600 С о , поэтому производили только чугун при 1400 С о . В усовершенствованном виде способ применяется и сегодня.
  • Мартеновская. Ученый предложил использовать полученное тепло повторно: выходящий воздух нагревает входящий. Для этого печь была оснащена регенератором, не только восстанавливающим тепло, но улавливающим копоть и конденсат. В установках действуют термические режимы, не превышающие 2000 С о . Изобретение позволило переплавлять лом, регенераторы используются в современных установках, особенно стеклодувных и плазменных.
  • Электросталь – оборудование нового поколения, использующее индукцию и дуговую выплавку. В современных установках получают наиболее чистые от загрязнений продукты, затраты электричества снижаются, так как поддерживается точная температура. В плазменно-дуговых печах создают жаропрочные и тугоплавкие материалы. Появилась возможность получать стали прямым методом, без плавления чугунной основы.

Предельное повышение температуры до 20000 С о позволило получить железо, усиленное молибденом и титаном. Вместе с технологией плавления одновременно разрабатываются методы металлообработки: резки, гибки, проката.

Таблица маркировки сталей


В таблице приведено содержание элементов в распространенных марках стали.

Быстрорежущие инструментальные стали: марки, характеристики, маркировка

Такой материал, как быстрорежущие стали, отличается уникальными свойствами, что дает возможность использовать его для изготовления инструментов, обладающих повышенной прочностью. Характеристики сталей, относящихся к категории быстрорежущих, позволяют производить из них инструменты самого различного назначения.

Фрезы, метчики, развертки – типичные изделия, производимые из высококачественной быстрорежущей стали

Фрезы, метчики, развертки – типичные изделия, производимые из высококачественной быстрорежущей стали

Характеристики быстрорежущих сталей

К категории быстрорежущие стали относят сплавы, химический состав которых дополнен рядом легирующих добавок. Благодаря таким добавкам сталям придаются свойства, позволяющие использовать их для изготовления режущего инструмента, способного эффективно работать на высоких скоростях. Быстрорежущие инструментальные стали от обычных углеродистых сплавов как раз и отличает то, что инструмент, который из них изготовлен, может с успехом применяться для обработки твердых материалов на повышенных скоростях.

Фрезеровка детали на профессиональном гравировальном станке

Фрезеровка детали на профессиональном гравировальном станке

К наиболее примечательным характеристикам, которыми отличаются быстрорежущие стали различных марок, нужно отнести следующие.

  • Твердость, сохраняемая в горячем состоянии (горячая твердость). Как известно, любой инструмент, используемый для выполнения обработки резанием, в процессе такой обработки интенсивно нагревается. В результате нагрева обычные инструментальные стали подвергаются отпуску, что в итоге приводит к снижению твердости инструмента. Такого не происходит, если для изготовления была использована быстрорежущая сталь, которая способна сохранять свою твердость даже при нагреве инструмента до 6000. Что характерно, стали быстрорежущих марок, которые часто называют быстрорезы, обладают даже меньшей твердостью по сравнению с обычными углеродистыми, если температура резания находится в нормальных пределах: до 2000.
  • Повышенная красностойкость. Данный параметр любого металла характеризует период времени, в течение которого инструмент, изготовленный из него, способен выдерживать высокую температуру, не теряя своих первоначальных характеристик. Быстрорежущие стали в качестве материала для изготовления режущего инструмента не имеют себе равных по данному параметру.
  • Сопротивление разрушению. Режущий инструмент, кроме способности переносить воздействие повышенных температур, должен отличаться и улучшенными механическими характеристиками, что в полной мере демонстрируют стали быстрорежущих марок. Инструмент, изготовленный из таких сталей, обладающий высокой прочностью, может успешно работать на большой глубине резания (сверла) и на высоких скоростях подач (резцы, сверла и др.).

Характеристики и назначение быстрорежущих сталей

Характеристики и назначение быстрорежущих сталей

Расшифровка обозначения марок сталей

Изначально быстрорежущая сталь как материал для изготовления режущих инструментов была изобретена британскими специалистами. С учетом того, что инструмент из такой стали может использоваться для высокоскоростной обработки металлов, этот материал назвали «rapidsteel» (слово «рапид» здесь как раз и означает высокую скорость). Такое свойство данных сталей и придуманное им в свое время английское название послужили причиной того, что обозначения всех марок данного материала начинаются с буквы «Р».

Правила маркировки сталей, относящихся к категории быстрорежущих, строго регламентированы соответствующим ГОСТ, что значительно упрощает процесс их расшифровки.

Первая цифра, стоящая после буквы Р в обозначении стали, указывает на процентное содержание в ней такого элемента как вольфрам, который во многом и определяет основные свойства данного материала. Кроме вольфрама быстрорежущая сталь содержит в своем составе ванадий, молибден и кобальт, которые в маркировке обозначаются, соответственно буквами Ф, М и К. После каждой из такой буквы в маркировке стоит цифра, указывающая на процентное содержание соответствующего элемента в химическом составе стали.

Пример расшифровки марки быстрорежущей стали

Пример расшифровки марки быстрорежущей стали

В зависимости от содержания в составе стали тех или иных элементов, а также от их количества, все подобные сплавы делятся на три основных категории. Определить, к какой из категорий относится сталь, достаточно легко, расшифровав ее маркировку.

Итак, стали быстрорежущих марок принято разделять на следующие категории:

  • сплавы, в которых кобальта содержится до 10%, а вольфрама до 22%; к таким сталям относятся сплавы марок Р6М5Ф2К8, Р10М4Ф3К10 и др.;
  • стали с содержанием не более 5% кобальта и до 18% вольфрама; такими сталями являются сплавы марок Р9К5, Р18Ф2К5, Р10Ф5К5 и др.;
  • сплавы, в которых как кобальта, так и вольфрама содержится не более 16%; к таким сплавам относится сталь Р9, Р18, Р12, Р6М5 и др.

Определение разновидности стали по искре

Определение разновидности стали по искре

Как уже говорилось выше, характеристики сталей, относящихся к категории быстрорежущих, преимущественно определяются содержанием в них такого элемента как вольфрам. Следует иметь в виду, что если в быстрорежущем сплаве содержится слишком большое количество вольфрама, кобальта и ванадия, то по причине формирования карбидной неоднородности такой стали режущая кромка инструмента, который из нее изготовлен, может выкрашиваться под воздействием механических нагрузок. Таких недостатков лишены инструменты, изготовленные из сталей, содержащих в своем составе молибден. Режущая кромка подобных инструментов не только не выкрашивается, но и отличается тем, что имеет одинаковые показатели твердости по всей своей длине.

Маркой стали для изготовления инструментов, к которым предъявляются повышенные требования по их технологическим характеристикам, является Р18. Обладая мелкозернистой внутренней структурой, такая сталь демонстрирует отличную износостойкость. Преимуществом использования стали данной марки является еще и то, что при выполнении закалки изделий из нее они не перегреваются, чего не скажешь о быстрорежущих сплавах других марок. По причине достаточно высокой стоимости инструментов, изготовленных из стали этой марки, ее часто заменяют на более дешевый сплав Р9.

Технические характеристики стали марки Р18

Достаточно невысокая стоимость стали марки Р9, как и ее разновидности — Р9К5, которая по своим характеристикам во многом схожа с быстрорежущим сплавом Р18, объясняется рядом недостатков данного материала. Наиболее значимым из них является то, что в отожженном состоянии такой металл легко поддается пластической деформации. Между тем сталь марки Р18 также не лишена недостатков. Так, из данной стали не изготавливают высокоточный инструмент, что объясняется тем, что изделия из нее плохо поддаются шлифовке. Хорошие показатели прочности и пластичности, в том числе и в нагретом состоянии, демонстрируют инструменты, изготовленные из стали марки Р12, которая по своим характеристикам также схожа со сталью Р18.

Свойства стали марки Р9К5

Свойства стали марки Р9К5

Методы производства и обработки

Для производства инструментов, изготавливаемых из быстрорежущих сплавов, используются две основные технологии:

  • классический метод, который предполагает разливку расплавленного металла в слитки, в дальнейшем подвергающиеся проковке;
  • метод порошковой металлургии, при котором расплавленный металл распыляется при помощи струи азота.

Классическая технология, предполагающая проковку изделия из быстрорежущего сплава, которое предварительно было отлито в специальную форму, позволяет наделить такое изделие более высокими качественными характеристиками.

Подобная технология помогает избежать формирования карбидных ликваций в готовом изделии, а также дает возможность подвергнуть его предварительному отжигу и дальнейшей закалке. Кроме того, данная технология изготовления позволяет избежать такого явления, как «нафталиновый излом», которое приводит к значительному повышению хрупкости готового изделия, изготовленного из быстрорежущего сплава.

Закалка готовых инструментов, выполненных из быстрорежущего сплава, осуществляется при температурах, которые способствуют лучшему растворению в них легирующих добавок, но в то же время не приводят к росту зерна их внутренней структуры. После выполнения закалки быстрорежущие сплавы имеют в своей структуре до 30% аустенита, что не самым лучшим образом сказывается на теплопроводности материала и его твердости. Для того чтобы уменьшить количество аустенита в структуре сплава до минимальных значений, используются две технологии:

  • проводят несколько циклов нагрева изделия, выдержки при определенной температуре и охлаждение: многократный отпуск;
  • перед выполнением отпуска, изделие подвергается охлаждению до достаточно низкой температуры: до –800.

Улучшение характеристики изделий

Чтобы инструменты, изготовленные из быстрорежущих сплавов, обладали высокой твердостью, износостойкостью и коррозионной устойчивостью, их поверхность необходимо подвергнуть обработке, к методам выполнения которой относятся следующие.

  • Насыщение поверхностного слоя изделия азотом — азотирование. Проводиться такая обработка может в газовой среде, состоящей из азота (80%) и аммиака (20%), либо полностью в аммиачной среде. Время выполнения подобной технологической операции — 10–40 минут, температура, при которой она осуществляется — 550–6600. Использование газовой среды, содержащей азот и аммиак, позволяет сформировать менее хрупкий поверхностный слой.
  • Насыщение поверхностного слоя изделия углеродом и азотом — цианирование, которое осуществляется в расплаве цианида натрия или других солей с этим же анионом. В зависимости от назначения детали цианирование может быть высоко-, средне- и низкотемпературным. Чем выше температура и время выдержки детали в расплаве, тем больше толщина получаемого слоя.
  • Сульфидирование, которое выполняется в жидких расплавах сульфидов, куда добавляются соединения серы. Проводится такая процедура на протяжении 45–180 минут, при этом температура расплава должна составлять 450–5600.

Инструменты, изготовленные из быстрорежущих сплавов, также подвергают обработке паром, что позволяет улучшить характеристики их поверхностного слоя. Следует иметь в виду, что все вышеперечисленные операции выполняются с инструментом, режущая часть которого уже заточена, отшлифована и подвергнута термической обработке.

Читайте также: