Жаропрочная и жаростойкая сталь отличие

Обновлено: 24.04.2024

В современном мире критически важным стало наличие материалов с особыми свойствами. Это объясняется тем, что эксплуатация оборудования самого разного назначения происходит в условиях экстремальных нагрузок, высоких температур и воздействия агрессивных веществ. Широкое применение практически во всех сферах промышленности нашли множество видов и марок нержавеющих жаропрочных и жаростойких сталей.

Основные характеристики

При покупке стали нужно четко представлять себе, какие свойства требуются от нее в данном конкретном случае применения. Рынок металла предлагает варианты, удовлетворяющие практически любым запросам. Но для грамотного выбора нужно ориентироваться в свойствах и технических характеристиках материала. Жаростойкие и жаропрочные стали и сплавы ценят за целый набор их практичных качеств:

  • стойкость к воздействию экстремально высоких температур;
  • высокая прочность при нагреве;
  • минимальная ползучесть;
  • стойкость к коррозии;
  • возможность их применения для работы в агрессивных средах.

Жаропрочная и жаростойкая сталь: отличие

Неопытный покупатель может совершить ошибку в интерпретации различных характеристик. В данном случае речь идет о жаропрочности и жаростойкости. Вопреки распространенному мнению, это не одно и то же.

Разница в понятиях:

  1. Жаростойкие стали – сплавы железа с углеродом и добавлением различных присадок. Данные материалы способны находиться, не разрушаясь и без существенной остаточной деформации, в сложнонапряженном состоянии при высоких температурах (от 30% от температуры плавления) в течение определенного времени.
  2. Жаростойкие (окалиностойкие) стали сопротивляются окислению в ненагруженном или слабонагруженном состоянии при нахождении в условиях высоких температур (свыше 550 0 C) в газовых средах. При этом окисление в начальной стадии – это чисто химическое явление, но в дальнейшем – это уже сложный процесс, совмещающий соединение кислорода и железа, с диффузией атомов этих веществ через многофазовый окисленный слой с образованием окалины. Окалина – это продукт окисления, образующийся при высокой температуре на поверхности некоторых сплавов при прямом воздействии кислорода.

Виды и марки

  1. Длительного нагрева, выдерживающие длительное нахождение под нагрузкой в условиях высоких (но не критических) температур.
  2. Краткосрочного нагрева, стойкие к кратковременному скачку сверхвысоких температур.

Следует учитывать, что существует множество комбинаций характеристик стали:

  • степень жаропрочности и жаростойкости;
  • уровни ползучести и длительной прочности;
  • прочность в обычных условиях;
  • пластичность и упругость;
  • преимущественные виды нагрузок, на которые они рассчитаны: нагрузки под высокой температурой могут быть статические, динамические переменные, изгибающие, сжимающие, растягивающие скручивающие, нагрузки разной частоты и амплитуды, динамическое воздействие скоростных газовых потоков и т.д.

Поэтому не существует универсального материала, пригодного для использования в любых сферах промышленности. Именно по этой причине созданы десятки марок стали, каждая из которых является лучшим вариантом в конкретных условиях эксплуатации с конкретными требованиями по набору специфических свойств. Для улучшения технических характеристик при производстве стали к железу добавляют различные добавки (легирующие присадки). Для жаропрочных и жаростойких сталей это чаще всего хром, марганец, кремний, алюминий, никель, титан, молибден и множество других, в том числе редкоземельных элементов. Именно количеством, типом и процентным соотношением присадок, а также условиями закалки, и определяются уникальные особенности той или иной марки стали.

Все разнообразие марок жаропрочных окалиностойких сталей объединяется в несколько основных типов:

  • Перлитные: 15ХМ1МФ. Х10С2М, Х13Н7С2, 12Х1МФ
  • Ферритные: 1Х12СЮ, 0Х17Т, Х23Н13, Х20Н14С2
  • Мартенситные:. 15Х11МФ, 40Х9С2, 20Х12ВНМФ.
  • Аустенитные: 09Х14Н16Б, Х25Н16Г7АР, Х12Н20Т3Р.

Существуют еще комбинированные или дуплексные типы:

  • Мартенситно-ферритные: Х6СЮ, 2Х12ВМБФР, 1Х12ВНМФ.
  • Аустенитно-ферритные: 03Х23Н6, 03Х22Н6М2, 08Х18Г8Н2Т.

Применение

Жаростойкие марки стали используют в основном при изготовлении слабонагружаемых конструкций, эксплуатируемых в условиях постоянного воздействия высоких температур и газовых окислительных сред.

Жаропрочные стали применяют в производстве и эксплуатации оборудования и деталей, которые обязаны выдерживать работу под значительной разноплановой нагрузкой при больших и сверхбольших температурах без деформации и потери физических свойств.

Вообще, сфера применения жаропрочных и жаростойких сталей огромна. Можно смело сказать, что практически любая отрасль современной промышленности нуждается в этих материалах. Например:

Жаропрочная сталь: марка, подробное описание

Жаропрочная сталь, марки и виды которой рассмотрим далее, предназначена для длительного использования с учетом воздействия высоких термических и электрических нагрузок. Способ изготовления данного материала предусматривает последующую его эксплуатацию в течение длительного периода без деформаций. Особенности этого вида стали: высокая прочность и ползучесть. Рассматриваемые металлы преимущественно используются для постройки конструкций ненагруженного типа, эксплуатируемых под воздействием газовой окислительной среды и температур в диапазоне от 500 до 2000 градусов по Цельсию.

жаропрочная сталь марка

Характерные особенности

Марки жаропрочных и жаростойких сталей отличаются длительной прочностью. Этот показатель подразумевает возможность противостояния материала отрицательным внешним факторам на протяжении длительного времени. Высокая ползучесть – это влияние на непрекращающуюся деформацию стали в условиях повышенной трудности в плане эксплуатации и обслуживания.

От указанных факторов зависит возможность использования материала в той или иной сфере. Ползучесть характеризует предельный процент деформации, который в рассматриваемом случае составляет от 5 процентов на 100 часов до 1 % на 100 тысяч часов. По ГОСТУ 5632-72 любая марка жаропрочной стали не должна включать в себя добавки сурьмы, свинца, олова, мышьяка и висмута. Это обусловлено тем, что указанные материалы имеют малую температуру плавления, а это негативно сказывается на характеристиках конечного продукта. Некоторые элементы при нагревании выделяют негативные для здоровья человека испарения, что также сказывается на их непригодности для включения в подобного рода стали. В результате оптимальным составом для изготовления материала является железная основа с примесью хрома, никеля и прочих металлов, устойчивых к высоким температурам и окислительным процессам различного рода.

сталь нержавеющая жаропрочная марка

Жаропрочная сталь: марки

Ниже приведены основные марки рассматриваемого материала:

  • Марка P-193 содержит не более одного процента углерода, 0,6 % марганца и кремния, а также порядка 30 % никеля и хрома, 2 % титана.
  • Тинидур: углерод – до 0,13 %, марганец и кремний – не выше 1 %, хром – 16 %, алюминий – до 0,2 %, никель – 30-31 %.
  • Жаропрочная сталь марки А-286 включает в себя в процентном соотношении 0,05 % углерода, 1,35 % марганца, 25 % никеля, 0,55 % кремния, 1,25 % молибдена, 2 % титана.
  • Тип DVL42: 0,1 % углерода, не более одного процента марганца, 33 % никеля, 23 % кобальта, до 1 % кремния, 5 % молибдена, 1,7 % титана.
  • DVL52 имеет похожий состав с указанной выше маркой, только вместо титана в состав входит до 4,5 процента тантала.
  • Хромадур: 0,11 % углерода, 0,6 % кремния, 1,18 % марганца, 0,65 % ванадия, 0,75 % молибдена.

Все указанные разновидности жаропрочной стали производятся по схожей технологии, отличается только состав. Оставшаяся часть приходится на железо. Оно является основой для любых типов рассматриваемого материала.

Производство

Марки жаропрочных сталей для печей, как и их аналоги, требуют соблюдения определенных условий при выплавке. В отличие от производства обычных сталей, в состав сплава должно интегрироваться минимальное включение углерода, что направлено на обеспечение требуемой степени прочности. В связи с этим кокс не подходит для топки печей. Вместо него используется кислород газообразного типа. Он дает возможность достигать быстрой температуры плавления металла за короткий срок.

марки жаропрочных и жаростойких сталей

Как правило, рассматриваемый материал производят преимущественно из вторичного сырья. Хром и сталь помещают одновременно в печь, а сжигаемый кислород разогревает металл до степени плавления. В процессе происходит окисление выделяемого углерода, который по технологии нужно убрать из состава сплава. Кремний в небольших количествах дает возможность защитить хром от окисления, также в начале плавления добавляется никель. Остальные присадки смешиваются с основным сырьем в конце процесса. Температура проведения процедуры составляет порядка 1800 градусов по Цельсию.

Обработка

Обработка любой марки нержавеющей жаропрочной стали осуществляется при помощи подготовленных твердых резцов. Они изготавливаются из металлов, вмещающих кобальтовые и вольфрамовые сплавы. Остальной технологический процесс практически идентичен обработке стандартных марок. Она проводится на штатных винторезных токарных станках с использованием стандартных смазочных и охлаждающих жидкостей. Техника безопасности также не отличается.

Сварочные работы по рассматриваемому материалу выполняются дуговым либо аргонным методом. До начала сваривания обе соединяемые детали должны пройти закаливание, заключающееся в нагревании элемента до 1000 градусов и последующем мгновенном охлаждении. Подобный способ дает возможность избежать появления трещин в процессе сварки. Важно при этом сохранить степень качества шва на уровне основного материала, иначе могут появиться серьезные неполадки во время эксплуатации.

назначьте марку жаропрочной стали сильхром для клапанов

Рассматриваемый материал используется в условиях, когда подразумевается постоянная тепловая нагрузка на деталь. Например, назначьте марку жаропрочной стали сильхром для клапанов либо похожих изделий, и убедитесь в ее эффективности. Также данный состав используется часто для специальных печей с высокой температурой нагрева. Особенности стали позволяют выдержать до нескольких десятков тысяч рабочих циклов, что существенно снижает себестоимость продукции.

Аустенитные марки применяются в производстве роторов, турбинных лопастей и клапанов двигателей. Они имеют отличную сопротивляемость высоким температурам и усиленную устойчивость к вибрационным и механическим воздействиям. Черная марка жаропрочной стали с повышенной сопротивляемостью коррозии используется преимущественно для производства конструкций, применение которых выполняется на открытом воздухе либо в условиях повышенной влажности. К особенностям этого вида можно отнести высокое включение в составе хрома, который дает возможность повысить эффективность противостояния окислению и прочим разрушительным процессам.

Литые жаропрочные стали: марки для звеньев цепи, трубопроводов и клапанов

Среди данной категории сталей мартенситного класса, наиболее известными являются следующие марки:

  • Х-5. Из этой стали производят трубопроводы, ориентированные на работу при температуре не выше 650 градусов.
  • 1Х8ВФ, Х5ВФ, Х5М – используются для выпуска труб и оборудования, рассчитанного на эксплуатацию при температуре 500-600 градусов. При этом период работы ограничен (от одной до ста тысяч часов).
  • 4Х9С2, 3Х13Н7С2 – выдерживают термическую нагрузку до 950 градусов по Цельсию, служат для изготовления клапанов моторов транспортных средств.
  • 1Х8ВФ – марка подходит для производства паровых турбин, выдерживает нагрузку в 500 градусов с ресурсом работы не менее 10 тысяч часов.

марки жаропрочных сталей для печей

Структурные нюансы

Марки жаропрочной стали для котлов с мартенситной структурой в своей основе имеют перлит. Он меняет свое состояние, в зависимости от содержания хрома. Для получения изделий с внутренним показателем высокотвердого сорбита, материал сначала закаливают при температуре не менее 950 градусов, после чего подвергают отпуску. К таким маркам относятся: Х10С2М, Х6С, Х7СМ, Х9С2. Перлитные виды относятся к хромомолибденовым и хромокремнистым категориям.

Стальные сплавы, которые содержат в составе до 33 процентов хрома, относятся к жаростойким материалам с ферритной внутренней конфигурацией. Изделия из этого материала подвергаются отжигу, что позволяет сформировать мелкозернистую структуру. При нагреве таких сталей выше 850 градусов, зернистость становится выше, что приводит к увеличению хрупкости материала. Марки этой категории: Х17, 1Х12СЮ, Х25Т, Х28, 0Х17Т.

марка черной жаропрочной стали

Тугоплавкие стали

Для эксплуатации изделий, выдерживающих до двух тысяч градусов, используются тугоплавкие металлы. Ниже приведены элементы, которые используются в таких составах, и их температура плавления в градусах по Цельсию:

  • Ванадий – 1900.
  • Тантал – 3000.
  • Вольфрам – 3400.
  • Ниобий – 2415.
  • Молибден – 2600.
  • Рений – 3180.
  • Цирконий – 1855.
  • Гафний – 2000.

Конфигурация этих металлов меняется при нагреве, поскольку высокая температура позволяет перевести их в хрупкое состояние. Волокнистая структура элементов достигается путем рекристаллизации тугоплавких сталей. Повышение жаропрочности материала выполняется посредством добавления специальных смесей. Подобным образом составы защищаются и от окисления.

В заключение

Другое название жаропрочной марки стали (нержавейки) – окалиноустойчивая. Подобные материалы наделяются таким качеством в процессе производства. В результате они способны функционировать длительный период в условиях высоких термических воздействий без деформаций, проявляя при этом противостояние газовой коррозии. Проще говоря, посредством сплавов различных элементов добиваются оптимальных качеств жаростойких материалов, в зависимости от предполагаемых условий эксплуатации.

жаропрочная сталь для котлов марка

Жаропрочные стали, представленные на современном рынке большим разнообразием марок, как и жаростойкие сплавы различных категорий, признаются большинством специалистов лучшим материалом для изготовления деталей и частей конструкций и оборудования, эксплуатация которого проводится в постоянном контакте с высокими температурами, агрессивной средой либо другими сложными воздействиями.

Жаростойкость и жаропрочность - это важные характеристики сталей


Жаростойкость и жаропрочность являются очень важными характеристиками. Некоторые изделия машиностроения работают в очень сложных условиях при повышенных температурах. Обычные конструкционные стали при нагреве скачкообразно меняют свои механические и физические свойства, начинают активно окисляться и образовывать окалину, что совершенно неприемлемо и создает угрозу выхода из строя всего узла, а возможно, и серьезной аварии. Для работы при повышенных температурах инженеры-материаловеды при помощи металлургов создали ряд специальных сталей и сплавов. В данной статье дается их краткая характеристика.

Исследование свойств жаропрочности

Жаропрочные стали

Многие люди отождествляют понятие жаростойкости с таким понятием, как жаропрочность. Этого делать ни в коем случае нельзя. Жаропрочность еще называют красноломкостью. И под этим понятием подразумевают способность металла (либо сплава) сохранять высокие механические свойства при работе в условиях повышенных температур. То есть такой металл, даже будучи нагретым до красного свечения (оно характерно для температур выше 550 °С), не поползет и сохранит достаточную жесткость.

Говоря простым языком, жаропрочность – это способность материала сохранять работоспособность при нагреве до высоких температур. Обычные конструкционные стали даже при незначительном нагреве становятся пластичными, что исключает возможность их применения для изготовления изделий, работающих при высоких температурах.

Разные марки металлов и сплавов обладают различной жаропрочностью. Этот показатель зависит от химического состава материала. Испытания на жаропрочность могут проводиться на протяжении длительного времени. Но чаще всего образцы, нагретые в печи до определенной температуры, испытывают на растяжение в течение короткого отрезка времени.

Бесшовные трубы из жаропрочной и жаростойкой стали

Жаростойкие стали

Жаростойкость, в отличие от жаропрочности, – это способность материалов противостоять развитию коррозионных процессов при работе в условиях высоких температур. Обычные стали, если их подвергнуть нагреву (за исключением термической обработки в защитной атмосфере или в вакууме), начинают окисляться. Кроме того, при длительном нагреве углерод на поверхности изделия начинает выгорать. В результате поверхность обедняется углеродом, что приводит к резкому изменению механических свойств (прежде всего, твердости) на поверхности. Износостойкость падает. Получает развитие такое негативное явление, как задиры. Данная группа сталей может работать при температурах около 550 °С.

С целью увеличить жаростойкость стали, ее расплав легируют кремнием, алюминием и хромом. Иногда достаточно повысить жаростойкость поверхности детали. В таком случае прибегают к силицированию или алитированию (насыщению поверхностного слоя соответственно атомами кремния или алюминия) в порошковой среде.

Прокат из жаростойкой стали

Материалы с высокой температурой плавления

При эксплуатации в условиях особенно высоких температур рассмотренные материалы не могут использоваться, так как при температуре в районе 2000 °С начинает протекать оплавление (выделяется жидкая фаза). Для этих целей используют тугоплавкие металлы: вольфрам, ниобий, ванадий, цирконий и так далее. Эти материалы довольно дорогие, но инженеры еще не нашли для них достойной альтернативы.

Производство проката

Характеристика сплавов на основе хрома и никеля

Сплавы, обладающие большой жаропрочностью, очень востребованы в энергетическом машиностроении (лопатки паровых турбин, части двигателей летательных аппаратов и так далее). Причем потребность в подобных материалах постоянно растет. Более того, производство требует от ученых получения все более и более совершенных материалов, способных сохранять свою работоспособность при очень высоких температурах. Поэтому постоянно ведутся работы по увеличению показателей жаропрочности. Никель, точнее легирование этим элементом стали, способствует этому.

Все жаростойкие стали легируются никелем (не менее 65 %). В обязательном порядке имеется и хром. Содержание этого элемента не должно быть менее 14 %. В противном случае поверхность металла будет интенсивно окисляться.

Стали, дополнительно легируются алюминием, ванадием и другими тугоплавкими элементами. Алюминий, например, даже при комнатной температуре покрывается тонкой окисной пленкой, которая препятствует проникновению коррозии вглубь металла. То есть не образуется окалина.

Жаростойкие стали: состав и марки жаропрочных сплавов

Жаропрочная сталь, представленная на современном рынке большим разнообразием марок, как и сплавы жаростойкой категории, признается большинством специалистов лучшим материалом для изготовления элементов конструкций и оборудования, которые эксплуатируются в постоянном контакте с агрессивными средами и в других сложных условиях.

Типичные изделия из жаропрочной стали – печи, камины, котлы и металлические дымоходы

Типичные изделия из жаропрочной стали – печи, камины, котлы и металлические дымоходы

Жаропрочность и жаростойкость металла

Жаростойкость, которой обладают стали и другие металлические сплавы отдельной категории, имеет еще одно название – «окалиностойкость». Это свойство, которым отдельные металлы наделяют в процессе производства, заключается в их способности длительное время в условиях повышенных температур активно противостоять такому негативному явлению, как газовая коррозия. В отличие от жаростойких, жаропрочные стали и металлы другого типа обладают способностью не разрушаться и не деформироваться под длительным воздействием высоких температур.

Металлы, которые отличаются жаростойкостью, применяют преимущественно для изготовления ненагруженных конструкций, эксплуатируемых в условиях постоянного воздействия на них газовой окислительной среды и температуры, не превышающей 550°. К таким конструкциям, в частности, относятся элементы нагревательных печей.

Сплавы, выполненные на основе железа, даже если их отличает жаростойкость, при таких условиях эксплуатации и при воздействии температуры, превышающей 550°, начинают активно окисляться, что приводит к появлению на их поверхности пленки, состоящей из оксида железа. Формирующееся на поверхности такого металла химическое соединение железа и кислорода – это, по сути, окалина хрупкого типа. Ее характеризует элементарная кристаллическая решетка, содержащая недостаточное количество атомов второго вещества.

Свойства оксидов элементов, увеличивающих жаростойкость железа

Свойства оксидов элементов, увеличивающих жаростойкость железа

Чтобы улучшить такое свойство стали, как жаростойкость, в ее химический состав вводят хром, алюминий и кремний. Соединяясь с кислородом, эти элементы способствуют формированию в структуре металла плотных и надежных кристаллических структур, что и улучшает его способность безболезненно переносить воздействие повышенных температур.

Количество и тип легирующих добавок, вводимых в химический состав сплава, выполненного на основе железа, зависит от температурных условий эксплуатации изделий, которые будут из него изготовлены.

Лучшую жаростойкость демонстрируют стали, легирование которых выполнено на основе такого металла, как хром. К наиболее известным маркам таких сталей, которые называют сильхромами, относятся:

  • 08Х17Т;
  • 15Х25Т;
  • 15Х6СЮ;
  • 36Х18Н25С2.

Химический состав жаропрочных сталей марок 13Х11Н2В2МФ, 15Х11МФ, 20Х13, 20Х12ВНМФ

Химический состав жаропрочных сталей марок 13Х11Н2В2МФ, 15Х11МФ, 20Х13, 20Х12ВНМФ

Что характерно, жаростойкость стали повышается с увеличением в ее химическом составе количества хрома. Используя данный металл в качестве легирующего элемента, можно создавать марки сталей, изделия из которых не будут утрачивать своих первоначальных характеристик даже при длительном воздействии на них температуры, превышающей 1000 градусов.

Особенности материалов с жаропрочными свойствами

Жаропрочные стали и сплавы, как уже говорилось выше, способны успешно эксплуатироваться в условиях постоянного воздействия высоких температур, при этом не проявляя склонности к ползучести. Суть этого негативного процесса, которому подвержены стали обычных марок и другие металлы, заключается в том, что материал, на который воздействуют неизменная температура и постоянная нагрузка, начинает медленно деформироваться, или ползти.

Ползучесть, которой и стараются избежать, создавая жаропрочные стали и металлы другого типа, бывает двух видов:

Для определения ползучести сплавов в иследовательских центрах используют комплекс испытательных машин

Для определения ползучести сплавов в иследовательских центрах используют комплекс испытательных машин

Чтобы определить параметры кратковременной ползучести, материалы подвергают специальным испытаниям, для чего их помещают в печь, нагретую до определенной температуры, и прикладывают к ним растягивающую нагрузку. Такое испытание проводится в течение ограниченного промежутка времени.

Проверить материал на его склонность к длительной ползучести и определить такой важный параметр, как предел ползучести, за короткий промежуток времени не получится. Для этого испытуемое изделие, помещенное в печь, необходимо подвергать длительной нагрузке. Важность такого показателя, как предел ползучести материала, заключается в том, что он характеризует наибольшее напряжение, которое приводит к разрушению разогретого изделия после воздействия в течение определенного промежутка времени.

Марки жаропрочных и жаростойких сталей

Стали, отличающиеся жаропрочностью и жаростойкостью, по состоянию внутренней структуры подразделяются на несколько категорий:

  • аустенитные;
  • мартенситные;
  • перлитные;
  • мартенситно-ферритные.

При этом стали, относящиеся к категории жаростойких, могут быть представлены еще двумя типами:

  • ферритные;
  • аустенитно-ферритные или мартенситные.

Основные свойства некоторых жароупорных сталей

Основные свойства некоторых жароупорных сталей (нажмите для увеличения)

Если рассматривать стали с мартенситной внутренней структурой, то их наиболее известными марками являются:

  • Х5 (из такой жаропрочной стали производят трубы, которые предполагается эксплуатировать при температурах, не превышающих 650°);
  • Х5М, Х5ВФ, Х6СМ, 1Х8ВФ, 1Х12Н2ВМФ (используются для производства изделий, эксплуатируемых при 500–600° на протяжении определенного периода времени (1000–10000 часов));
  • 3Х13Н7С2 и 4Х9С2 (изделия из данных марок могут успешно эксплуатироваться при 850–950°, поэтому из таких сталей производят клапаны двигателей транспортных средств);
  • 1Х8ВФ (изделия из жаропрочной стали этой марки могут успешно эксплуатироваться при температурах, не превышающих 500°, на протяжении 10000 часов и даже дольше; из данного материала, в частности, производят конструктивные элементы паровых турбин).

Листовая жаропрочная сталь используется там, где требуется хорошая стойкость к высокой температуре и к агрессивной среде

Листовая жаропрочная сталь используется там, где требуется хорошая стойкость к высокой температуре и к агрессивной среде

Основой мартенситной структуры стали является перлит, который меняет свое состояние в том случае, если в составе материала увеличить количественное содержание хрома. Перлитными являются следующие марки жаропрочных и жаростойких сталей, относящихся к хромомолибденовым и хромокремнистым: Х6С, Х6СМ, Х7СМ, Х9С2, Х10С2М и Х13Н7С2. Чтобы получить из этих сталей материал с внутренней структурой сорбита, который отличается высокой твердостью (не менее 25 единиц по шкале HRC), их сначала закаливают при 950–1100°, а затем подвергают отпуску.

Стальные сплавы с ферритной внутренней структурой, относящиеся к категории жаростойких материалов, содержат в своем химическом составе от 25 до 33% хрома, который и определяет их характеристики. Чтобы придать таким сталям мелкозернистую структуру, изделия из них подвергают отжигу. К сталям данной категории относят марки 1Х12СЮ, Х17, 0Х17Т, Х18СЮ, Х25Т и Х28. Следует иметь в виду, что при нагревании этих сталей до 850° и выше, зерно в их внутренней структуре начинает укрупняться, что приводит к увеличению их хрупкости.

Жаропрочная нержавеющая сталь применяется при производстве тонколистового проката, бесшовных труб и различных агрегатов пищевой и химической промышленности

Жаропрочная нержавеющая сталь применяется при производстве тонколистового проката, бесшовных труб и различных агрегатов пищевой и химической промышленности

Стали, основу структуры которых составляют мартенсит и феррит, активно применяются для производства изделий различного назначения, используемых в машиностроительной отрасли. Изделия, для изготовления которых применяют такие жаропрочные сплавы, даже на протяжении достаточно длительного времени могут успешно эксплуатироваться при температуре, находящейся в пределах 600°. Наиболее распространенными марками данных жаропрочных сталей являются Х6СЮ, 1Х13, 1Х11МФ, 1Х12В2МФ, 1Х12ВНМФ, 2Х12ВМБФР. Такие жаропрочные сплавы отличаются тем, что хром в их химическом составе содержится в пределах 10–14%, а легирующими добавками, при помощи которых улучшают их химический состав, являются вольфрам, молибден и ванадий.

Аустенитные и аустенитно-ферритные стальные сплавы

Наиболее значимые особенности аустенитных сталей заключаются в том, что их внутренняя структура формируется за счет наличия в их составе никеля, а такое свойство, как жаростойкость, связано с присутствием хрома. В сплавах подобной категории, отличающихся незначительным содержанием углерода в своем химическом составе, в некоторых случаях могут присутствовать такие легирующие элементы, как ниобий и титан. Стали, основу внутренней структуры которых составляет аустенит, относятся к категории нержавеющих, а при длительном воздействии высоких температур (до 1000 градусов) успешно противостоят формированию слоя окалины.

Аустенитные сплавы марок Х17Н13М2 и Х17Н13М3 оптимально подходят для конструкций, работающих под воздействием кислот

Аустенитные сплавы марок Х17Н13М2 и Х17Н13М3 оптимально подходят для конструкций, работающих под воздействием кислот

К наиболее распространенным на сегодняшний день сталям с аустенитной внутренней структурой относятся сплавы дисперсионно-твердеющей категории. Для улучшения качественных характеристик в их состав добавляют интерметаллические или карбидные упрочнители, в зависимости от чего такие материалы и относят к определенной категории.

Наиболее популярными марками жаропрочных сталей, основу внутренней структуры которых составляет аустенит, являются:

  • дисперсионно-твердеющие Х12Н20Т3Р, 4Х12Н8Г8МФБ, 0Х14Н28В3Т3ЮР, 4Х14Н14В2М (из этих жаропрочных сталей, относящихся к категории нержавеющих, изготавливают конструктивные элементы турбин и клапаны двигателей транспортных средств);
  • гомогенные 1Х14Н16Б, 1Х14Н18В2Б, Х18Н12Т, Х18Н10Т, Х23Н18, Х25Н20С2, Х25Н16Г7АР (из материалов данных марок преимущественно производят арматуру и трубы, эксплуатируемые под воздействием значительных нагрузок, агрегаты сверхвысокого давления, элементы выхлопных систем).

Труба жаропрочная из стали марки 20Х23Н18 (она же Х23Н18 или ЭИ417) используется для изготовления печного оборудования, поковок и бандажей

Труба жаропрочная из стали марки 20Х23Н18 (она же Х23Н18 или ЭИ417) используется для изготовления печного оборудования, поковок и бандажей

Стальные сплавы, основу внутренней структуры которых составляет смесь аустенита и феррита, отличает исключительная жаропрочность, превышающая по своим показателям аналогичный параметр даже высокохромистых материалов. Такие характеристики жаропрочности достигаются за счет высочайшей стабильности внутренней структуры сталей данной категории. Изделия из них могут успешно эксплуатироваться даже при температурах, доходящих до 1150°.

Между тем для жаропрочных сталей с аустенитно-мартенситной внутренней структурой характерна повышенная хрупкость, поэтому их нельзя использовать для производства изделий, эксплуатируемых под высокой нагрузкой.

Из жаропрочных сталей данной категории производят изделия следующего назначения:

  • пирометрические трубки (Х23Н13);
  • конвейеры для печей, жаропрочные трубы, емкости для осуществления процедуры цементации (Х20Н14С2 и 0Х20Н14С2).

Стали и металлы, отличающиеся тугоплавкостью

Стальные сплавы, основу которых составляют тугоплавкие металлы, используют для производства изделий, эксплуатируемых при 1000–2000°.

Тугоплавкие металлы, входящие в химический состав таких сталей, характеризуются следующими температурами плавления (см. таблицу).

Температура плавления тугоплавких металлов

Температура плавления тугоплавких металлов

За счет того, что тугоплавкие стали данной категории характеризуются высокой температурой перехода в хрупкое состояние, при значительном нагреве они деформируются. Чтобы повысить жаропрочность таких сталей, в их химический состав водятся специальные добавки, а для увеличения жаростойкости их легируют такими элементами, как титан, молибден, тантал и др.

Наиболее распространенными соотношениями химических элементов в составе тугоплавких сплавов являются:

  • основа – вольфрам и 30% рения;
  • 60% ванадия и 40% ниобия;
  • основа – 48% железа, 15% ниобия, 5% молибдена и 1% циркония;
  • 10% вольфрама и тантал.

Сплавы на основе никеля и смеси никеля с железом

Сплавы на никелевой основе (55% никеля) или выполненные на базе смеси никеля с железом (65%) являются жаропрочными и обладают достойными жаростойкими качествами. Базовым легирующим элементом для любых сталей данной категории является хром, которого в них может содержаться от 14 до 23%.

Если говорить о стойкости и прочности, высокие показатели которых сохраняются при повышенных температурах, то такими качествами обладают стальные сплавы, выполненные на основе никеля. К наиболее популярным из них относятся ХН60В, ХН67ВМТЮ, ХН70, ХН70МВТЮБ, ХН77ТЮ, ХН78Т, ХН78Т, ХН78МТЮ. Часть сталей данных марок являются жаропрочными, а остальные – жаростойкими. При нагреве на поверхности изделий из сплавов данных марок появляется оксидная пленка на основе хрома и алюминия, а в твердых растворах структуры таких металлов формируются соединения алюминия с никелем или титана с никелем, что и обеспечивает устойчивость таких материалов к воздействию высоких температур. Более подробно с характеристиками жаропрочных сплавов никелевой группы можно познакомиться, изучив специальные справочники.

Жаропрочные и жаростойкие что это за стали — 5 основных типов

Сталь, классифицирующая как жаропрочная, рекомендуется для изготовления конструкций не только находящихся под влиянием высоких температур, но и работающих в иных агрессивных условиях.

Рассмотрим, что же из себя представляют жаропрочные стали, на какие классы и марки подразделяются, и как выбрать оптимальный вариант для собственных нужд.

Zharoprochnye 1

Жаростойкие стали обладают таким ценным свойством как жаростойкость или если говорить простым языком, то они сохраняют свои свойства при высоких температурах. Второе название данного свойства – «Окалиностойкость». Основная ценность такой стали заключается в том, что она способна длительное время сохранять структуру своей кристаллической решетки в условиях воздействия высоких температур.

Стандартные жаропрочные стали имеют верхний температурный предел от 500 до 550 градусов и способны эффективно сопротивляться температуре только до этого предела. Далее на поверхности металла начинает образовываться оксидная пленка (окалина), что становится первым шагом к разрушению металла.

Не рекомендуется применять простые жаропрочные стали для изготовления конструкций, находящихся под сильной динамической нагрузкой.

Понятие жаропрочности

Жаропрочные стали изготавливаются методом химического взаимодействия основного состава с оксидами хрома, кремния или алюминия. Структура кристаллической решетки, полученная путем взаимодействия атомов двух элементов, сохраняет свою плотность даже в условиях воздействия открытого огня.

Количественные показатели и процентное соотношение добавок в сталях рассчитывается по формуле исходя из предполагаемых условий эксплуатации изделия. На производстве предпочтение отдается металлу, изготовленному из сплава главным компонентом, которого является хром.

Чем большее количество хрома в составе соединения, тем более жаропрочным получается сплав. Удается добиваться показателей, при которых металл переносит температуру более 1000 градусов и не теряет своих свойств.

Основные типы

Все жаропрочные и жаростойкие стали разделены на три условных группы. Группы отличаются химическим составом, способностью противостоять температуре и методикой производственного процесса.

  1. К первой группе относятся все сплавы, выполненные с добавлением хрома, марганца, молибдена, титана или вольфрама. Так же к первой группе относится сталь с добавлением бора, ванадия или ниобия. Такие сплавы тоже имеют жаропрочные свойства, но из-за дороговизны производства используются редко.
  2. Ко второй группе относятся сплавы на основе кальция, серия и еще ряда химических элементов сходных по структуре. Комплексное количество присадок в таких металлах может достигать 50%.
  3. Третья группа характеризуется введением в консистенцию углерода, молибдена и кобальта.

Аустенитный класс

Аустенитные сплавы пользуются популярностью благодаря своим свойствам. Помимо способности эффективного сопротивления температуре вплоть до 1000 градусов, полученный жаропрочный сплав обладает ярко выраженными антикоррозийными свойствами.

Структура металла поддерживается путем добавления в сплав 10-15 процентов никеля, который удерживает атомы кристаллической решетки и не дает металлу понизить прочностные качества.

Хром придает устойчивость к температуре и не разрушает структуру, незначительные добавки стабилизирующих элементов – углерода, титана или ниобия успешно работают на поддержание антикоррозийных свойств.

Zharoprochnye 2

Структура аустенитов

Жаропрочные аустенитные сплавы в зависимости от типа химической структуры бывают двух видов:

  • гомогенный. Материалы данного типа не предназначены для высоких температур и слабо переносят длительное воздействие жара. Максимальный предел температуры – 500 градусов. Тип материалов обусловлен отказом от термообработки и малым количеством углеродных включений;
  • гетерогенный. Данный тип материалов проходит две фазы термической обработки, что повышает его жаростойкость до 700 градусов. Карбидные фазы работают на сохранение устойчивости к деформациям и большим нагрузкам в период нагревания. Максимальная температура гетерогенного ряда – 1700 градусов, такой предел возможен при добавлении в сплав более 50% молибдена.

Zharoprochnye 3

Аустенитно ферритный класс

Сплав полученный на основе смеси фаз аустенитов и ферритов является высоколегированным и стабилизированным сплавом. Чрезвычайно трудно обрабатываемый металл. Применяется для построения дымоотводных каналов, выхлопных труб автомобилей и конструкций, работающих с сильным температурным воздействием.

При производстве критически важных изделий на основе подобных сталей, используются сплавы, матрица которых усиливается дисперсионным твердением и добавлением таких элементов как карбид и его образующие. Метал подобных изделий не образует хрупкой окалины и устойчив к динамическим нагрузкам и деформации.

Мартенситный класс

Мартенситный класс жаропрочной стали характеризуется особым процессом изготовления и обработки. Суть его в том, что вначале металл закаливают высокой температурой, после которой «отпускают» в специальной камере. Итогом такого процесса является значительное повышение способности к сопротивлению температуре, но падение упругости.

На первом этапе сплав нагревают до 1200 градусов и стабилизируют его в течение 5 часов с последующим постепенным остыванием в примерно такой же временной интервал

На втором этапе процесс повторяется с тем отличием что стабилизация и «отпуск» проходит под воздействием температуры в 1000 градусов.

Zharoprochnye 4

Перлитный класс

Перлитные стали относятся к категории низколегированных термостойких сплавов. В первую очередь они нацелены на сохранение структуры и свойств самого металла, а уже потом на его жаропрочные свойства.

Из стали перлитного класса изготавливаются детали и изделия промышленного назначения по условиям эксплуатации, не допущенные к работе при температуре свыше 400 — 500 градусов. Незначительного повышения жаростойкости можно добиться путем добавления в металл хрома и ванадия, в этом случае температурный предел поднимается до 600 – 650 градусов.

Если совместно с легированием применить технологию нормализации, то можно значительно улучшить прочность металла и его механические свойства.

Zharoprochnye 5

Ферритный класс

Ферритные сплавы или металлы ферритного класса характеризуются высоким содержанием в своем составе хрома. Как правило, в ферритных сплавах его процентное соотношение достигает 35%.

Металлы данного класса подвергаются особому виду термической обработки – «обжигу». Такой вид подготовки позволяет получить зернистую структуру металла и значительно увеличить температурный предел работы металла.

Металлы ферритного класса способны эффективно переносить длительное нахождение под воздействием высокой (до 800 градусов) температуры. Дальнейшее повышение жаропрочности методом присадок и легирования не рекомендуется в связи с тем, что температурный предел повышается незначительно, а хрупкость изделий возрастает в несколько раз.

Zharoprochnye 6

Мартенситно ферритный класс

Жаропрочный металл производимый из сплавов мартенситно-ферритного класса имеет среднюю устойчивость и содержит целый пакет дополнительных присадок – хром, вольфрам и ванадий.

Из него изготавливаются такие детали как лопасти паровых турбин, центрифуг, теплообменных сетей и активного оборудования ТЭЦ.

Металл хорошо подходит для изделий любого типа спланированных к эксплуатации в условиях непрерывного воздействия температур в диапазоне от 500 до 600 градусов и умеренных механических нагрузок.

В отдельных случаях, для повышения антиокислительных свойств в металл могут добавлять никель. Он способствует образованию на поверхности готовых изделий непроницаемой пленки и препятствует губительному воздействию кислорода.

Zharoprochnye 7

Сплавы на основе никеля

Несмотря на то, что сплав легирован никелем, основным компонентом металла является все равно хром. Именно он придает смеси свойства жаропрочности и жаростойкости. В зависимости от количества базовых присадок сплавы на основе никеля могут быть как жаропрочными, так и жаростойкими.

Их устойчивость к перегреву обусловлена химическому процессу образования на поверхности металла оксидной пленки. Оксидная пленка состоит из фракций алюминия и хрома или алюминия и никеля.

Как правило такой металл применяют при изготовлении систем газовых турбин, трубопроводов и нагревательных элементов, деталей конструкции компрессоров и нагнетателей.

Химический состав

Однозначной формулой сложно описать всю суть протекающего химического процесса. Все дело в том, что формула учитывает исключительно основной состав металла и легирующие его добавки.

В действительности же, жаростойкие сплавы имеют в своем составе не только то что добавляется в процессе производства, но и не учитываемые продукты протекающих внутри химических реакций, отложения и выпадающие осадки. Получающиеся в процессе контролируемой химической реакции примеси в значительной мере ухудшают свойства металла.

В особенности большой вред наносят отложения серы. Всего лишь 0,003% серы в составе сплава способны полностью свести на нет все полезные свойства.

Структура и свойства

Не столько и не только химический состав консистенции влияет на жаростойкость полученного металла. Важную роль играет и форма, и агрегатное состояние в котором находятся легирующие примести до их включения в состав.

Химическая чистота присадок влияет на результат так же, как и ее количество. Никель и хром придают металлу жаропрочные свойства только при условии их полной очистки. Включение небольшого количества серы снижает температуру плавления металла, но и снижает его ползучесть.

«Ползучесть» — выведенный формат определения качественного состояния жаропрочности металла. Простыми словами ползучестью называется способность к разрушению структуры под действием температуры. И чем ползучесть ниже, тем качественнее считается металл.

Что влияет на жаропрочность

При стандартном производстве получить жаропрочный сплав можно только при соблюдении трех основных условий.

  1. Термическая закалка, производимая в один или два этапа. Подразумевает постепенный нагрев до определенной температуры, удержание (стабилизация) в несколько часов и постепенное охлаждение. Правильное охлаждение выполняется в водяной бане или на открытом воздухе под контролем падения температуры.
  2. Добавление в состав металла присадок, сохраняющих структуру металла и не допускающий возникновения интеркристаллической коррозии. Чаще всего в качестве таких присадок применяются ниобий или титан.
  3. Точный расчет основного компонента. Основным компонентом является хром, от его количества зависит жаростойкость и способность к сопротивляемости окислению. В большинстве случаев хром составляет от 10 до 13% от всей массы металла.

Сферы применения

В связи с большим количеством жаропрочных сплавов, представленных на рынке, их эксплуатация и применение во многом определяется по составу входящих в сплавы присадок и дополнительных легирующих компонентов.

Рассмотрим основные сферы применения жаростойких металлов в зависимости от состава химических элементов:

  • AISI-314. Основная сфера применения – стенки и корпусные элементы печных конструкций. Достоинство сплава – высокая степень тугоплавкости;
  • AISI-310. Используется для производства двигателей внутреннего сгорания, нагруженных элементов моторов и турбин;
  • AISI-310S. Чаще всего востребована на производстве газоотводных трубопроводов, участков системы выхлопных труб и транспортных труб инертных газов;
  • AISI-309. Универсальный сплав, хорошо подходит как для изготовления печей, так и для производства других элементов, работающих в условиях повышенных температур.

Марки нержавеющей стали для изготовления дымоходов

При изготовлении или приобретении дымохода необходимо точно знать материал. Часто в свободной продаже можно встретить дымоход по цене в два, а то и три раза ниже рыночной. Стоит учитывать, что вероятнее всего такое изделие изготовлено из стали марки AISI 201 которая относительно недорогая, но при этом не отвечает всем требованиям для дымоходов.

Лучше всего для этой цели подойдет жаропрочная сталь марки AISI-309. Основное ее отличие от более дешевой 201-й версии в том, что у нее практически отсутствует риск деформации и возникновения термических трещин и разрывов.

Оба варианта стали немагнитны и неотличимы визуальным методом. Для их идентификации нужно проверять сопроводительные документы или же проводить сложный химический анализ.

Нержавеющие стали для пищевой индустрии

Жаропрочная нержавеющая сталь, имеющая свойства сопротивления коррозии, имеет массу преимуществ в изготовлении посуды и принадлежностей, контактирующих с пищей.

Разберем основные из них:

  • внешний вид. Хорошо отполированная сталь имеет привлекательный внешний вид и красиво смотрится в качестве готовых изделий;
  • прочность. Нержавеющая сталь трудно обрабатывается, но и трудно деформируется. Благодаря заложенной прочности можно изготавливать тонки элементы посуди и сервировки способные выдерживать большую нагрузку;
  • соответствие установленным нормам гигиены и СанПиН(а). Сталь имеет настолько плотную структуру, что при должной обработке и шлифовке практически не остается раковин где может задержаться грязь;
  • отсутствие эффекта коррозии. Основное преимущество нержавейки. Изготовленная из нее посуда не поддается окислению даже при длительном контакте с водой.

Основные марки стали применяемые в пищевой индустрии представлены в таблице.

Zharoprochnye 9

Какая марка стали лучше для банной печки

Жаропрочная и коррозионностойкая сталь для печи должно не просто сопротивляться воздействия высокой температуры, но и выдерживать длительное воздействие открытого огня. Наиболее часто встречающаяся неисправность банной печи – прогорание стенок.

Для устранения проблемы можно конечно просто использовать толстостенную сталь, не вникая в ее свойства и химический состав. В принципе, это будет вполне рабочий способ, но не лишенный недостатков:

  • во-первых – такая сталь все равно будет окисляться и на ее поверхности будет появляться все увеличивающийся слой окалины, что помимо неприглядного внешнего вида рано или поздно приведет к прогоранию;
  • во-вторых – печь из толстого металла будет очень долго протапливаться и требовать в разы больше топлива для набора необходимой температуры.

Как показывает практика, лучше всего для банной печи подходит легированная сталь марки AISI-430, которая обладает всеми необходимыми качествами и долгим сроком службы.

Zharoprochnye 10

Расшифровка марок

Маркировка жаропрочной стали, в том числе и металлов для печей имеет буквенно-цифровой вид. Каждый символ маркировки несет информацию о содержании в сплаве определенного химического элемента.

Двузначный числовой показатель как правило ставится в начале маркировки и дает информацию о процентном соотношении углерода. Буквенные символы указывают на находящийся в сплаве химический элемент и его процент (указан цифрами сразу после буквы).

Zharoprochnye 11

Расшифровка буквенного обозначения представлена на таблице.

Оптимальная толщина металла для печи в баню

Для определения какую толщину металлического листа выбрать для изготовления банной печи, стоит обратить внимание на два фактора.

  1. Теплопроводность стали. Чем толще сталь, тем больше энергии необходимо затратить для ее нагрева и поддержания температурного режима. Исходя из практического опыта считается, что использование для печи стальных листов толще 8 миллиметров экономически не целесообразно.
  2. Огнеупорность. Если планируется эксплуатировать печь более 3 лет, то не стоит применять сталь в 4 мм. Такая печь будет очень быстро нагреваться, но прогорит менее чем через год интенсивного использования.

Исходя из вышеуказанного, специалисты понимают, что применять для печи лучше сталь марки AISI-430 с толщиной стенки 5-6 мм.

Какими электродами надо варить банную печь

Если стоит вопрос о самостоятельном изготовлении банной печи, то нельзя упускать из внимания и вопросы сварки. Нержавеющая, жаропрочная сталь варится особым видом электродов марки ЦЛ11 или аналогом – Д4.

Zharoprochnye 12

Обязательным условием работы является химическая протравка сварного шва. Если упустить данный момент, то в местах сварки возможно появление коррозии и как следствие преждевременное разрушение конструкции.

Читайте также: