30хгса электроды для сварки

Обновлено: 16.05.2024

Существует мнение, что при сварке в защитном газе для каждого состава электродной проволоки и свариваемой марки стали имеются свои диапазоны оптимальных режимов сварки, в интервале которых обеспечивается лучшая стабильность процесса и минимальное разбрызгивание. Однако в большинстве случаев процесс сварки низколегированных сталей мало отличается от процесса сварки малоуглеродистых сталей. Поэтому исходной базой для подбора режимов сварки низколегированных сталей могут служить режимы сварки малоуглеродистых сталей, приведенные в статье Сварка малоуглеродистой стали. Все низколегированные стали являются качественными, хорошо раскисленными (спокойными) сталями, имеющими по сравнению с малоуглеродистыми сталями меньшее содержание и более равномерное распределение вредных примесей и газов. Благодаря этому, вероятность образования пор при сварке этих сталей значительно меньше, чем при сварке малоуглеродистых сталей.

Как правило, процесс сварки низколегированных сталей сопровождается устойчивым горением дуги и сравнительно небольшим разбрызгиванием жидкого металла. Вид швов, выполненных на этих сталях, лучше, чем швов, выполненных на малоуглеродистых сталях.

В будущем для сварки этих сталей представляется целесообразным разработать ряд специальных электродных проволок, обеспечивающих получение металла швов с различными прочностными свойствами. Ниже приведены результаты; сварки в углекислом газе некоторых низколегированных сталей.

Низколегированные стали хромансиль (содержание около 1 % хрома, марганца и кремния) широко применяются в промышленности. Из этой группы сталей наиболее распространенной является сталь 30ХГСА.


Для сварки сталей типа хромансиль в среде углекислого газа можно использовать электродные проволоки Св-10ГС, Св-18ХМА, Св-18ХГСА и Св-30ХГСА, а также проволоку Св-08ГС. Ввиду высокого содержания элементов раскислителей в основном металле, швы, выполненные на сталях хромансиль, как правило, не имеют пор (за исключением многослойной сварки проволокой Св-18ХМА, содержащей недостаточное количество кремния). Внешний вид и формирование швов хорошее.

Структура швов, выполненных в углекислом газе на стали 30ХГСА, подобна структуре швов, выполненных на этой стали под флюсом (сварка производилась электродом диаметром 2 мм на токе 230-265 а).

Макроснимок поперечного сечения трехслойного шва, выполненного на пластине толщиной 12 мм, приведен на рисунке справа.

Использование для сварки стали 30ХГСА в углекислом газе стандартных электродных проволок обеспечивает более низкую концентрацию легирующих элементов в металле шва по сравнению с их концентрацией в основном металле (таблица ниже).

Состав металла швов, выполненных в углекислом газе различными проволоками на стали 30ХГСА


Вследствие этого, прочностные свойства швов, выполненных этими проволоками в углекислом газе, выше, а пластические свойства ниже тех же свойств основного металла и швов, выполненных под флюсом (табл. ниже). Снижение прочностных свойств металла швов, выполненных в углекислом газе, наиболее сильно проявляется при сварке многослойных швов на больших токах.

Механические свойства сварных соединений, выполненных в углекислом газе на стали 30ХГСА толщиной 3 мм, практически не отличаются от свойств соединений, выполненных в аргоне с добавкой 3-5% кислорода (табл. ниже).


Как правило, вибрационная (усталостная) прочность сварных соединений, выполненных в углекислом газе, выше прочности соединений, выполненных в аргоне.

Сварка других низколегированных сталей. Кроме сталей хромансиль, различными заводами и организациями проводилось опробование сварки в углекислом газе низколегированных сталей марок НЛ2, СХЛ, KM, 12Х5М и др. Во всех случаях была показана принципиальная возможность сварки этих сталей в углекислом газе с удовлетворительными результатами. Опробование сварки стали НЛ2 проводилось в ГПИ Стальконструкции. Пластины из этой стали толщиной 12-14 мм сваривались встык на переоборудованном полуавтомате ПШ-5, на токе 400-410 а, электродной проволокой Св-10ГС. Химический состав основного металла, электродной проволоки и металла шва приведен в табл. ниже.

Состав металла шва при сварке стали HЛ2 в углекислом газе:


Швы, выполненные на стали HJI2 в углекислом газе, обладают удовлетворительными свойствами (табл. ниже).

Механические свойства швов, выполненных на стали HЛ2:


Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Технология сварки стали 30ХГСА.

Думаю в теме нада расписать более четкие указания по технологии тем более, что литература по вопросу есть. Давайте ближе к делу решать вопрос.

samodelkin

Я люблю этот Форум!

Пока ждал что народ скажет, перечитывал буржуйскую книгу по сварке ферм. Они раньше варили из 1025, это примерно наша ст20.
Так вот пишут что с переходом на 4130 появилась возможность существенно экономить вес. Если к примеру из 1025 труба была диаметром 7\8 и толщиной 0.49 из 4130 стало можно использовать 3\4 и толщиной 0.35
Может кто скажет что это не существенно, но наши еропланы не тонны весят и лишние килограммы возить с собой ни к чему!
Единственное достоинство ст20 это толстая стенка трубы, особенно для неопытного сварщика.
Сейчас некоторые свои мысли напишу по этому поводу.

Помаленьку начнем.
Собственно почему 30хгса? Для фермы нам требуется определенный ассортимент труб, который еще можно найти. И надо сказать не так много сталей выпускается в нужном нам ассортименте. При этом чем крепче сталь тем тоньше трубу мы можем использовать. Не наша вина что у нас молибдена нет.

Так вот , что такое 30хгса. Это сталь которая способна очень сильно закаливатся. Как известно, почти все стали в закаленном состоянии становятся хрупкими, и чем больше в стали углерода тем она крепче и соответственно более хрупкая. Сответственно в такой стали возможно образование трещин. НО
Для того чтобы трещины образовались, нужна сила которая заставит их образоватся. Я с большой уверенностью могу сказать, что если просто закалить кусок 30хгса и положить ее, то трещин не будет! Им неоткуда будет взятся.
Довольно долго описывать все процессы, но давайте хотя бы коротко рассмотрим что происходит со сталью при сварке.

Если взять сварочный шов, то в самом шве, там где металл плавится, он будет в состоянии глубокого отжига. Если двигатся в сторону от шва, то можно наблюдать много разных зон, в зависимости от нагрева металла при сварке. И чем больше нагрев, тем шире эти зоны. Так можно дойти до зоны, где металл нагрелся до температуры закалки.И вот здесь кроется маленький казус, который нам очень сильно мешает. Дело в том что остальная часть металла играя роль радиатора, заставляет шов быстро охлаждатся, и появляется полоса закаленного металла в зоне между швом и радиатором. Приведу небольшой пример. Если взять кусок трубы длинной в метр и нагреть ее конец до температуры закалки,то не обязательно ее опускать в воду, остальная часть трубы играя роль радиатора, будет интенсивно охлаждать нагретую зону, и в итоге появится неболшая полоса закаленного метала. Закалка ведь как известно это , быстрое охлаждение. При этом мы можем свободно держатся рукой за остальную часть трубы.
Теперь давайте посмотрим что происходит при сварке фермы.
Вот если бы нам пришлось варить небольшие детали из 30хгса, то этой проблемы могло и не быть.В этом случае мощности дуги хватило бы для разогрева всей детали, а отсутствие радиатора не даст детали быстро охладится , в итоге получится деталь в отоженном состоянии. Совсем по другому происходит при сварке фермы. Так как ферма сама по себе радиатор очень хороший, ее сварка требует особого подхода. Так как 30хгса имеет свойство очень сильно закаливатся, а в ферме при сварке, при неравномерном нагреве, возникают напряжения, мы в итоге получаем трещины. При этом они возникают ни где попало, а в зоне где металл закалился вдоль сварочного шва и возникают они под действием напряжений, от неравномерного нагрева, которые возникают в ферме.
Так вот, как этого избежать.
Я в первую очередь хочу сказать, что практически все стали лопаются вдоль сварочного шва, просто одни меньше к этому склонны а другие больше. И зацикливатся на этом не стоит.
Так что мы должны сделать чтобы избежать трещин.
Самый простой ответ приходящий на ум, это не дать ей закалится, т.е быстро остыть. Почему и ведут сварку с подогревом.
Или не дать ей нагрется, т.е по возможности вести сварку очень быстро чтобы сузить зону нагрева. Тут важно вспомнить, когда варили стальные фермы, какие виды сварок применяли?
При газовой сварке зона нагрева ну просто очень большая, и деформация должна быть очень сильной.
Я пока вижу три пути по которым нужно идти для сварки фермы из 30хгса.
1.Не дать быстро остыть
2.Сварку вести по возможности быстро, и теми видами сварки, которые исключают сильный нагрев широкой зоны металла.
По возможности, пошаговым методом.
3. Исключить большие напряжения в ферме, возникающие из за неравномерного нагрева.

Ну и по технологии сварки, т.е как нам это сделать.
1.Чтобы не дать быстро остыть, можно и подручного с горелкой использовать. А как быть если варишь один? Мне одно время не давала покоя мысль, что можно использовать обыкновенный раскаленный песок. Если на протвень насыпать песок и поставить снизу горелку а серху положить деталь, а после сварки засыпать этим самым песком? Геморой конечно, так что варианты принимаются.
2. Здесь легче.Сварка в среде аргона вольфрамовым электродом, позволяет варить быстро и качественно. При этом шов будет иметь минимальную толщину.А газ к тому же охлаждает зону сварки, еще сужая зону нагрева.
3.Те кто варит сам, знают как метал играет при нагреве. Так вот в случае со сваркой хромансиля, думается нужно сначала будет делать небольшие прихватки по всей длинне шва, чтобы исключить большие напряжения. И сварку трубы вести шагами т.е небольшими участками с противоположной стороны трубы, с перерывами для остывания.

На сегодня пока все.

КБ Альбатрос

РП15,РП25,РП2OO

Андрюх,да ты писатель,почти Л.Толстой! Вон сколько наструячил. Это ты нас уговариваешь,или себя успокаиваешь? На серъёзных заводах,типа нашего,есть отдел Главного сварщика и работают там старые спецы всех собак в этом деле переевшие.Они разрабатывали техпроцессы многих видов сварочных изделий,вплоть до сварки взрывом и сложных роботизированых сварочных комплексов. Естественно,в связи с общим упадком ВПК,многое упростилось и удешевилось,но основной научный и технологический опыт,всё-таки ещё не забыт и успешно применятся в производстве. Это я к чему. Может тебе всё-таки стоит почитать элементарный вузовский учебник по материаловедению,разобраться в эвтектических состояниях металлов,в их кристаллических структурах,ну и с божьей помощью поймёшь диаграмму"Железо-Углерод". ну а потом уже,плавно перейдёшь к спец.сталям,их свариваемости и режимности сварок. Получив некоторые знания из глубин металлургической науки,может быть,у тебя поубавиться желания изобретать в любительских условиях непростые авиационные технологии.А вернёшся ты к святой простоте,к Ст.20.

Электроды для сварки легированных сталей

Группа марок электродов для сварки легированных сталей значительно менее многочисленна по сравнению с группой электродов для сварки углеродистых и низколегированных сталей. Это объясняется главным образом тем, что из всех видов покрытий для легированных электродов применяются только покрытия основного вида или, в редких случаях, рутилово-основного вида. Кроме того, разработка легированного электрода, обеспечивающего комплекс эксплуатационных и сварочно-технологических свойств, почти всегда является сложной инженерной задачей, решение которой требует больших материальных и временных затрат.

Важнейшие характеристики группы электродов для сварки легированных сталей: химический состав наплавленного металла; прочностные и вязкопластические свойства металла шва, а также специальные свойства металла сварного шва или соединения. Этими показателями следует пользоваться при выборе марки электродов для сварки определенного объекта из легированной стали.

В группу электродов для сварки легированных сталей объединены стандартизованные ГОСТ 9467—75 пять типов электродов для сварки конструкционных сталей повышенной и высокой прочности: Э70, Э85, Э100, Э125, Э150; девять типов электродов для сварки легированных теплоустойчивых сталей: Э-09М, Э-09МХ, Э-09Х1М, Э-05Х2М, Э-09Х2М1, Э-09Х1МФ, Э-10Х1М1НФБ, Э-10ХЗМ1БФ, Э-10Х5МФ; ряд марок электродов, содержащихся в ОСТ 108.948.01—86; электроды по отдельным ТУ.

Химический состав металла швов, выполненных электродами типов Э70 . Э150, не нормируется ГОСТ 9467—75 и может не приводиться в нормативно-технической документации на электроды, за исключением серы и фосфора, содержание которых не должно быть более 0,030 и 0,035% соответственно. Однако в технической документации на электроды, соответствующие указанным типам, всегда содержатся данные по химическому составу наплавленного металла, которые чаще всего являются приемосдаточной характеристикой электродов. Если же такие данные отсутствуют в числе приемосдаточных характеристик, а приведены в качестве справочных (типичный химический состав наплавленного металла), их необходимо учитывать при выборе марки электрода для сварки того или иного объекта из легированной стали.

Сварные швы объектов атомной энергетики должны обладать повышенной надежностью. Поэтому для этих целей могут быть использованы только некоторые марки электродов, выдержавших специальные аттестационные испытания. В соответствии с документом «Основные положения по сварке и наплавке узлов и конструкций атомных электростанций, опытных и исследовательских ядерных реакторов и установок» ОП 1513-72 для сварки легированных сталей разрешается использовать электроды следующих марок: ЦУ-2ХМ, ЦЛ-20, ЦЛ-21, ЦЛ-38, ЦЛ-45, ЦЛ-48, ПТ-30, РТ-45А, РТ-45АА.

Электродные покрытия основного вида обеспечивают наивысшие вязкопластические свойства за счет наименьшего содержания в наплавленном металле водорода, сульфидных и оксидных включений по сравнению с покрытиями других видов. Это является первой из главных причин, по которой покрытия основного вида используют для электродов, предназначенных для сварки легированных сталей.

Второй причиной использования низководородистых покрытий основного вида при сварке склонных к образованию холодных трещин легированных сталей является отрицательное влияние водорода в околошовной зоне свариваемых изделий. Атомарный водород диффундирует из металла шва в околошовную зону, где выделяется в имеющиеся в основном металле микропустоты и поры, образовавшиеся от слияния дислокаций, которые перемещаются под воздействием сварочных напряжений. При выделении в пустоты атомарный водород превращается в молекулярный, вследствие чего развивается давление порядка 10 5 МПа, и в окружающих объемах металла возникают растягивающие напряжения второго рода. Возможна также адсорбция водорода на поверхности или в вершине образовавшейся микротрещины. В результате развития этих явлений снижается прочность металла и возрастает вероятность возникновения холодных трещин в околошовной зоне основного металла.

Электроды типа Э70. Электроды АНП-2 предназначены для сварки сталей 14Х2ГМР, 14Х2ГМ-СШ, 14ХМНДФР, 14ХГНМД; наплавленный металл легирован никелем, хромом, молибденом. Электроды ВСФ-75У предназначены для сварки труб и других ответственных конструкций из легированных сталей с временным сопротивлением 640—690 МПа. Наплавленный металл легирован молибденом и ванадием. Электроды К-5НМХ предназначены для сварки легированных сталей с пределом текучести 590—790 МПа, например 14Х2ГМР. Наплавленный металл легирован никелем, хромом и молибденом. Электроды ЛКЗ-70 предназначены для сварки углеродистых и легированных сталей повышенной прочности (до 690 МПа). Наплавленный металл легирован хромом. Сварку можно выполнять только в нижнем положении. Электроды ВСФ-85 предназначены для сварки неповоротных стыков термически упрочненных труб из легированных конструкционных сталей с временным сопротивлением 690—710 МПа. Металл легирован никелем, хромом и молибденом.

Электроды НИАТ-3М предназначены для сварки сталей марок 30ХГСА, 30ХГСНА, 25ХГСА, 20ХГСА, 12Х2НВФА и др. Наплавленный металл легирован хромом и молибденом. Электроды УОНИ-13/85 предназначены для сварки легированных сталей с временным сопротивлением 690—980 МПа. Наплавленный металл легирован молибденом. Электроды УОНИ-13/85У предназначены для сварки сталей 35ГС, 25Г2С, 30ХГ2С и др. Сварку производят как на постоянном, так и на переменном токе; наплавленный металл легирован молибденом.

Электроды Н-20/Св-12Х2НМА-ВИ предназначены для сварки сталей ВНЛ-3М, 30ХГСА и их сочетаний между собой в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом и молибденом. Электроды ОЗШ-1 предназначены для сварки легированных сталей с временным сопротивлением до 1080 МПа. Электроды Н-17/ЭП331, Н-17/ЭП331У предназначены для сварки литейных сталей 27ХГСНМЛ, 35ХГСЛ и их сочетаний со сталями 30ХГСНА, 35ХГА в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом, молибденом и вольфрамом. Электроды Н-17/ЭП331-ВИ, Н-17/ЭПЗЗ1У-ВИ предназначены цля сварки литейных сталей 27ХГСНМЛ, 35ХГСЛ и их сочетаний с деформируемыми сталями 30ХГСНА и 30ХГСА в нижнем и вертикальном положениях. Наплавленный металл легирован никелем, хромом, молибденом и вольфрамом.

Электроды ОЗС-11 предназначены для сварки сталей 12МХ, 15ХМ, 12ХМФ, 15Х1М1Ф и им подобных, работающих при температурах до 510 °С, как на постоянном, так и на переменном токе. Наплавленный металл легирован хромом и молибденом. Электроды ТМЛ-1У предназначены для сварки паропроводов из сталей 12МХ, 15ХМ, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, работающих при температурах до 540 °С, и элементов поверхностей нагрева из сталей марок 12Х1МФ, 12Х2МФСР и 12Х2МФБ. Наплавленный металл легирован хромом и молибденом. Электроды ТМЛ-4В предназначены для исправления дефектов в литых корпусных деталях турбин и паровой арматуры из сталей 20ХМЛ, 20ХМФЛ, 15Х1М1ФЛ, 12МХЛ, работающих при температурах до 565 °С без последующей термообработки отремонтированных участков. Наплавленный металл легирован хромом и молибденом. Электроды ЦУ-2ХМ предназначены для сварки энергооборудования из сталей 15ХМ, 20ХМ, 20ХМЛ, эксплуатирующихся при температуре не выше 540 °С. Наплавленный металл легирован хромом и молибденом.

Электроды ТМЛ-ЗУ предназначены для сварки паропроводов из сталей 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ, работающих при температуре не выше 570 °С, и элементов поверхностей нагрева из сталей марок 12Х1МФ, 12Х2МФБ и 12Х2МФСР, а также для заварки дефектов в элементах из тех же сталей. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-20 предназначены для сварки сталей 12Х1М1Ф, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ и аналогичных, эксплуатирующихся при температуре не выше 565 °С, а также для заварки дефектов отливок. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-17 предназначены для сварки сталей марок 15Х5М, 12Х5МА и 15Х5МФА, работающих в агрессивных средах при температуре не выше 450 °С. Наплавленный металл легирован хромом, молибденом и ванадием.

Электроды ПТ-30 предназначены для сварки энергооборудования из стали 10ГН2МФАА, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован марганцем, никелем и молибденом. Электроды РТ-45А и РТ-45АА предназначены для сварки энергетического оборудования из сталей 15Х2НМФА и 15Х2НМФАА, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован марганцем, хромом, никелем и молибденом. Электроды ЦЛ-21 предназначены для сварки энергооборудования из сталей марки 16ГНМА и аналогичных, эксплуатирующегося при температуре не выше 400 °С. Наплавленный металл легирован марганцем, никелем и молибденом. Электроды ЦЛ-38 предназначены для сварки энергооборудования из сталей 12ХМ, 12МХ, 15ХМ, 12Х1МФ, эксплуатирующегося при температуре не выше 585 °С. Наплавленный металл легирован хромом и молибденом.

Электроды ЦЛ-45 предназначены для сварки энергооборудования из сталей 12Х1МФ, 15Х1МФ и аналогичных, эксплуатирующегося при температуре не выше 565 °С. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-48 предназначены для сварки энергетического оборудования из стали 16ГНМА и других марганцово-никель-молибденовых сталей, эксплуатирующегося при температуре не выше 400 °С. Наплавленный металл легирован никелем, молибденом и ванадием.

Электроды ЦЛ-57 предназначены для сварки энергетического оборудования из стали 10Х9МФБ и ей аналогичных, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован хромом, молибденом и ванадием. Электроды ЦЛ-59 предназначены для сварки энергетического оборудования из стали марки 10ГН2МФА, подвергающегося нормализации или закалке с отпуском, эксплуатирующегося при температуре не выше 350 °С. Наплавленный металл легирован никелем и молибденом.

Сталь марки 30ХГСА

Состав и свойства стали марки 30ХГСА и среднелегированных сталей: среднелегированные стали комплексно легируют кремнием, марганцем, хромом, молибденом, никелем, ванадием, вольфрамом в различных сочетаниях и количествах при суммарном их содержании 2,5-10%. В сварных конструкциях используют среднелегированные конструкционные и теплоустойчивые стали, поставляемые по ГОСТ 4543-71 и специальным техническим условиям.

Среднелегированные конструкционные стали (30ХГСА, 30ХГСНА) содержат повышенное количество углерода (до 0,35 - 0,5%) и легированы обычно такими элементами, как кремний, марганец, хром в количестве до 1,2%, часто в сочетании с никелем (1,5-3%). Для теплоустойчивых сталей (20ХНМФ, 25ХЗНМФ и др.) характерно более низкое содержание углерода (как правило, до 0,28%) и обязательное легирование повышенными количествами хрома (до 2-5%) для обеспечения жаропрочности. Дополнительно такие стали обычно легируют молибденом, а также ванадием или вольфрамом и ниобием.

Высокие прочностные свойства среднелегированных сталей (σв=600-2000 МН/м 2 ) достигаются за счет повышенных содержаний углерода и легирующих элементов, увеличивающих прокаливаемость стали и прочность феррита, а также применения термообработки - нормализации или закалки с последующим низким или высоким отпуском. Большинство среднелегированных сталей для сварных конструкций относится к перлитному классу. Применяют и высокопрочные стали с временным сопротивлением до 1700 МН/м 2 (170 кгс/мм 2 ), подвергаемые закалке на мартенсит с последующим низким отпуском при 423-573 К (150-300° С), например . Высокая прочность среднелегированных сталей сочетается с повышенными специальными свойствами при достаточном уровне пластичности и стойкости против хрупкого разрушения. Это сочетание свойств среднелегированных конструкционных и теплоустойчивых сталей обусловливает применение их в конструкциях особо ответственного назначения, работающих в тяжелых условиях в энергомашиностроении, тяжелом и химическом машиностроении, самолетостроении, судостроении и других отраслях промышленности.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

Читайте также: