Аргонодуговая сварка титана и его сплавов

Обновлено: 17.05.2024

Высокая химическая активность металла при высокой температуре, особенно в расплавленном состоянии. Поэтому необходима надежная защита от воздуха не только сварочной ванны, но и остывающих участков шва и околошовной зоны, пока их температура не снизится до 250-300°С. Требуется защита и обратной стороны шва даже в том случае, если металл не расплавлялся, а только нагревался выше этой температуры.

Склонность титановых сплавов к росту зерна металла в нагретых до высоких температур участках. Это затрудняет выбор режима сварки - такого, при котором нагрев околошовной зоны был бы минимальным.

Высокая температура плавления титана требует применять концентрированные источники нагрева. Низкая теплопроводность титана приводит к снижению эффективности источника нагрева по сравнению со сваркой сталей.

Поры и холодные трещины сварных соединений титана возникают из-за вредных газовых примесей и водорода. Поэтому необходимо обеспечить чистоту основного металла и сварочных материалов, в том числе присадочной проволоки.

Вблизи точки плавления поверхностное натяжение титана в 1,5 раза выше, чем алюминия, что позволяет формировать корень шва на весу. Однако расплавленный металл обладает низкой вязкостью, и при некачественной сборке деталей могут образоваться прожоги.

ГАЗОВАЯ ЗАЩИТА СВАРОЧНОЙ ВАННЫ

Существуют три варианта защиты:

  • струйная с использованием специальных приспособлений
  • местная в герметичных камерах малого объема
  • общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

Местная защита в герметичной камере малого объема

При аргонодуговой сварке титана W-электродом следует применять сварочные горелки с возможно большим газовым соплом, создающим обширную зону защиты. Поток аргона через сопло должен быть ламинарным, что достигается газовыми линзами, установленными внутри сопла. Расход газа в зависимости от режима сварки колеблется от 8 до 20 л/мин. Если сопло горелки не гарантирует надежной защиты, то его дополняют специальной насадкой, коробом или другим приспособлением. Дополнительные защитные устройства изготавливают из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна иметь ширину 40-50 мм и длину от 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

Сварка титана с дополнительной насадкой

1- дополнительная насадка; 2 - газовая линза

Качество защиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует низкое качество шва.

ГАЗОВАЯ ЗАЩИТА НАГРЕТЫХ УЧАСТКОВ

Специальная подкладка для защиты корня шва

Специальная подкладка для защиты корня шва, нагретого до 250-300°С

Защитные приспособления для тавровых и угловых соединений

Защитные приспособления из нержавеющей стали для тавровых и угловых соединений

ЗАЩИТА ШВА ТРУБОПРОВОДА

Защита шва трубопровода изнутри и снаружи

Защита при приварке фланца

Защита при приварке фланца

Защита при сварке секционных отводов

Защита при сварке секционных отводов

Подготовка к сварке

Резку титана и подготовку кромок под сварку выполняют механическим способом. Для толстостенных изделий пригодны и газотермические способы, но с обязательной последующей механической обработкой кромок на глубину не менее 3-5 мм и на ширину 15-20 мм. После этого кромки зачищают металлическими щетками, шабером и т.п. и обезжиривают. Конструкции, которые перед сваркой испытывали нагрев - при вальцовке, ковке, штамповке и т.д. - должны быть подвергнуты дробеструйной или гидропескоструйной очистке и затем химической обработке: рыхлению оксидной пленки, травлению и осветлению.

Режим химической обработки титана и его сплавов

Раствор

Длительность обработки, мин

Назначение

Состав

Рыхление оксидной пленки

Нитрит натрия 150-200 г/л Углекислый натрий 500-700 г/л

Плавиковая кислота 220-300 мл/л Азотная кислота 480-550 мл/л

Азотная кислота 600-750 мл/л Плавиковая кислота 85-100 мл/л

После этого свариваемые кромки промывают бензином на ширину 20 мм и протирают этиловым спиртом или ацетоном.

Сварочную проволоку предварительно подвергают вакуумному отжигу и обезжиривают ацетоном или спиртом. Окисленную часть удаляют кусачками. Поверхности, подготовленные к сварке, нельзя трогать незащищенными руками.

Выбор параметров режима

Сварку титана и его сплавов рекомендуется вести в отдельном помещении. Температура воздуха в нем должна быть не ниже + 15°С, а скорость его движения - не более 0,5 м/с.

Сварку выполняют на постоянном токе прямой полярности непрерывно горящей или импульсной дугой. Используют аргон высшего сорта и гелий высокой чистоты.

Сварочный ток выбирают в зависимости от толщины свариваемого изделия и диаметра W-электрода.

Техника сварки

Основное пространственное положение шва - нижнее. Ручную сварку ведут без колебательных движений горелкой, короткой дугой, "углом вперед" Проволоку подают непрерывно, угол между ней и горелкой поддерживают около 90°.

Как правило, в качестве присадка используют проволоку того же химического состава, что и основной металл (BTl-00св, ВТ20-1св и т.д.). Для большинства сплавов годится проволока марок СПТ-2 и СП-15.

Способы и техника сварки титана аргоном

Хорошим специалистом в области сварки может называть себя только тот мастер, который хотя бы теоретически знает главные нюансы основных ее видов. Вот почему стоит выяснить основные особенности техники сварки титана аргоном. Подобная работа сложнее, чем обыкновенные манипуляции с черными металлами и нержавеющей сталью.



Особенности

Актуальность сварки титана аргоном несомненна. Этот металл не только очень прочен и сравнительно инертен химически, но и относительно легок. Поэтому его используют во многих местах, и вероятность столкнуться с титановыми изделиями велика у любого сварщика.

Главная специфика работы с аргоном обусловлена его тугоплавкостью.



Можно использовать только очень мощное оборудование.

Но высокая температура плавления титана и его основных сплавов не означают абсолютную устойчивость в любых условиях. После сильного нагрева такой металл будет крайне активно вбирать все газы из воздуха. Именно подобное обстоятельство и заставляет применять сварку в среде устойчивых химически газов. Стоит учесть, что у титана есть 2 стабильные фазы. В состоянии «альфа», наблюдающемся при нормальных условиях, характерна мелкозернистая структура.

Состояние «бета» наступает при прогреве до 880 градусов. В этот момент начинается заметный рост размеров зерна. Важно отметить, что титан становится тогда чувствителен к скорости охлаждения. Дополнительные трудности при сварке (кроме аргонодуговой) создают:

его слабая теплопроводность;

опасность самовозгорания в кислородной оболочке при прогреве до 400 градусов;

окисление в присутствии углекислого газа;

вероятность появления хрупких азотистых веществ при 600 градусах и выше;

на 250 градусах — впитывание водорода.



Преимуществами аргоновой сварки титана являются:

возможность сделать добротный шов;

применение сравнительно малых токов;

возможность нарастить толщину шва на проблемных участках;

пригодность для работы с большими и мелкими образцами в равной степени.

Предварительную очистку делают:





Технология

Если толщина металла увеличивается до 1,2 мм, то эти показатели составят соответственно:

6-8 л газа за минуту;



Толстый (3 мм) титан надо сваривать электродами диаметром 2,5-3 мм. Напряжение при этом составит 12-13 В. Сила тока равна 200-220 А. Скорость сварки можно увеличить до 20-22 м/с. Расход газа в горелке составляет от 9 до 12 л за минуту, а по обратной стороне от 3 до 4 л.



Ручная работа с титаном и сплавами на его основе производится только вольфрамовыми электродами. Для этого используют постоянный ток обратной полярности. Обязательно применяют оснастку для изоляции рабочих зон и прогретых областей. Если варят трубопроводы из титана, их наполняют аргоном изнутри.

До начала работы требуется готовить сварные кромки и присадки. Обязательно нужно отполировать (вычистить) все поверхности при помощи стальных щеток. Если таких щеток нет, применяют наждачную бумагу любой фракции. Дополнительно проводится обезжиривание. Для этой цели применяют спирт либо ацетон.



Снять оксидную пленку можно путем травления. Травящая смесь включает фтористоводородную кислоту (в исходной концентрации 2-4%) и азотную кислоту (в исходной концентрации 30-40%). Температура рабочей смеси не может превышать 60 градусов. Предельное время обработки — 30 секунд. Присадочные материалы любого типа не могут выходить за пределы защищенного газом объема; в противном случае они сильно засоряются.

При аргонной сварке титана можно применять подкладки из меди либо стали. В этих подкладках допускается прорезание отверстий для поступления газа. В процессе работы с трубами используют фартуки с различной степенью закругления. Она определяется прежде всего диаметром трубы. Если выполняется соединение встык либо внахлест по металлу не толще 3 мм, присадочная проволока необязательна.

Просто выставляют сопло большего диаметра и наращивают подачу газа. Варят титан строго на короткой электродуге. Присадочные прутки нужно подавать без перерыва. Важно: только метод проб и ошибок позволит сварщикам научиться правильно выполнять свою работу. Промахи на начальной стадии совершенно неизбежны.



Подготовка к сварке непроста. Перед нею требуется на 100% убрать поверхность заготовки. В нем содержатся значительные количества атмосферных газов. Если они оттуда попадут встык, они ухудшат его качество. Толстые детали требуют разделывания кромок. Углы раскрытия должны составлять ровно 60 градусов.

Если намеченные к сварке детали подверглись ранее резке газовым или плазменным резаком, кромки отрезают чисто механически. Расстояние отреза равно как минимум 3-5 мм.



Очень важную роль играет защита корневого шва.

Без нее трудно обойтись даже в ситуациях, когда сварной стык не находится на поверхности с другого края. Ведь бурная реакция с обычным воздухом происходит уже при 300-400 градусах.

Изоляция производится:

плотно подогнанными подкладками из стали либо меди;

подкачкой нейтрализатора в особые проходы внутри подкладок;

закачиванием аргона во внутреннюю часть свариваемой конструкции.

Сваривание толстых конструкций без прикрытия с оборотной стороны выполняется при помощи коротких швов. Их длина не превышает 1,5-2 см. Обязательно делают перерывы для охлаждения. Температура в комнатах, где варят титан, ограничена 15 градусами. Предельный темп перемещения воздуха составляет 0,5 м/с.

Методы

Варить титан в аргоновой среде вручную целесообразно, когда делаются какие-то уникальные вещи. Этот подход применяют и организаторы мелкосерийных производств. В обоих случаях подразумевается, что запрограммировать автомат на те же задачи невозможно, а особого выигрыша при использовании полуавтоматов нет. Если толщина листа не превышает 3 мм, зазор обычно делают 0,5-1,5 мм. Необходимости в добавлении присадки нет.



Работая с электродом, нужно двигать его строго прямо, не отклоняя в стороны. При этом обязателен наклон вперед по направлению шва. Когда используется электрод 1,5 мм сечением и присадочная проволока на 2 мм, можно уверенно обрабатывать даже листы толщиной до 2 мм. Сила тока при этом составляет 100 А. К сведению: при толщине листа 3 или 4 мм нужно поднять силу тока до 140 А.

Когда шов завершен и дуга отключена, подачу защищающего газа сразу останавливать нельзя! Она должна продолжаться еще не менее 1,5-2 минут. Только тогда можно гарантировать охлаждение последнего обрабатывавшегося участка примерно до 400 градусов. В подобном режиме можно уже не опасаться возникновения вредных окислов. Иначе работают при использовании автоматических установок.

В этом случае также берут вольфрамовые электроды. Но подавать на них надо строго постоянный ток.

При использовании неплавящихся инструментов предпочтителен ток прямой полярности.

Сопла газовой защитной горелки должны иметь диаметр от 1,2 до 1,5 см. Разжигать и гасить дугу надо не на самих деталях, а на находящихся рядом планках, в противном случае начальные и конечные рывки напряжения могут проплавить обрабатываемое изделие.

Оборудование и материалы

Аргонная сварка титана позволяет применять почти все сварочные аппараты, отличающиеся жесткой вольт-амперной характеристикой. Нормальная сила тока должна достигать 140 А. Как уже говорилось, предпочтительны электроды из вольфрама. Часто практикуется струйная защита, когда поток газа ориентируют при помощи сопел и отражателей. Альтернативное решение подразумевает использование камер, наполненных газом и отличающихся герметичным устройством.

Для работы в этих камерах применяют промышленные манипуляторы. Разумеется, это сильно усложняет и удорожает сварку. Применять подобный метод за пределами индустриальных цехов практически невозможно. На крупных производствах применяют полностью герметизированные камеры большого размера. Атмосфера внутри них контролируется очень тщательно. Находящиеся внутри сварщики используют специальные защитные костюмы.

Что касается электродов, то теоретически допустимы любые вольфрамовые инструменты. Однако не все из них гарантируют одинаковое качество соединений и приличную стабильность дуги. Больше других подходят лантанированные приспособления с маркировкой ЭВЛ либо WL. Рабочий наконечник электрода требуется заточить под углом строго от 30 до 45 градусов.

Присадочная проволока (пруток) может делаться из титана различных типов. Чтобы шов не насыщался водородом, присутствующим в сварочном прутке, изделие обрабатывают дополнительно, обжигая в вакууме. Такая процедура гарантированно удалит даже небольшие следы водорода.

Важно: присадочную проволоку также очищают от окислов и обезжиривают.

Оценивая потребность в аргоне, стоит учитывать, что толстостенные конструкции можно варить и без защиты задней стороны (но только при поверхностном формировании шва и слабом прогреве всего изделия в целом).

Возможные дефекты

При нормальной работе прочность шва составляет до 80% от крепости необработанного металла. Но при наличии деформаций она может понизиться на 40, на 60% и даже больше. Частыми проблемами являются образование пор и холодное растрескивание. Пористость усиливается в присутствии газовых примесей. Самой опасной из них является водород.

Предотвратить такую проблему помогает обеспечение чистоты сварочного материала и тщательный выбор рабочего режима.

Холодные трещины в основном возникают из-за того же водорода, вернее, из-за провоцируемого им ослабления металла, повышения хрупкости.

Растрескивание может происходить как немедленно после сварочных работ, так и спустя долгое время. Судить надежность газовой защиты помогает окрас шва. В идеале этот шов должен иметь серебристый цвет.

Чуть хуже обстоят дела, когда свариваемая плоскость окрашена в светлый соломенный тон. Это означает, что нарушения защиты допущены, но они не слишком существенны. Недопустимы швы голубого, коричневого, сероватого цвета. Каких-либо других тонкостей в бытовой практике нет. А вот в промышленности могут проводиться исследования неразрушающими методами, выявляющие раковины и другие внутренние деформации.

Видео о сварке титана аргоном для новичка ниже.

Технология сварки титана

Технология сварки титана

В наши дни никого уже не удивишь изготовлением изделий из титана с помощью сварки. Металл получил широкое распространение, и технология сварки титана достаточно хорошо отработана. В своей основе она опирается на удивительные свойства этого материала. Об особенностях этого процесса мы расскажем в нашей статье.

Подготовка титана к сварке

Подготовительные работы с титаном состоят из обработки кромки деталей, очистки присадочного прутка и обеспечения защиты другой стороны детали. Чтобы предотвратить появление холодных трещин и снизить хрупкость металла во время сварки, желательно снять верхний слой металла, так как в нем содержится большое количество кислорода и азота, а частицы этого слоя могут попасть в сварной шов.

Технология сварки титана подразумевает выполнение разделки кромок с углом раскрытия 60°. Хотя если толщина детали меньше 4 мм, то можно этого не делать. В том случае, когда деталь была изготовлена путем газовой или плазменной резки, желательно удалить не менее 5 мм кромки. Также производится тщательная очистка кромки и присадочной проволоки непосредственно перед началом сварочных работ. Очистка выполняется механически напильником, абразивным кругом, а также с помощью химических средств (ацетона или растворителя).

Технология

Согласно технологии сварки титана, следует большое внимание уделить защите обратной стороны деталей и корня шва. Даже если сварочный шов не будет выходить на другую сторону, титан может вступить в реакцию с газами из окружающего воздуха, что возникает даже при температуре +300…+400 °С.

Поддерживайте рабочее место в чистоте. На крупных производствах в сварочном цехе оборудуют специальное место, где выполняются сварочные работы по титану. Здесь не должно быть никаких факторов, которые могут негативно повлиять на качество сварки: сквозняка, пыли, влаги, жира и прочих загрязнений. Все остальные процессы обработки металла (резка, зачистка, краска) должны выполняться в другом месте. Помимо этого, важно контролировать влажность воздуха.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Технология сваривания толстостенных конструкций несколько отличается. Здесь допускается отсутствие защиты детали с другой стороны, если сварочный шов не выходит наружу и деталь сильно не нагревается. Такой результат достигается путем производства коротких швов (по 15–20 мм), между выполнением которых обязательно делается перерыв для охлаждения.

Защита титана при сварке

Титановые сварные соединения выполняются под защитой, которая нужна вплоть до их остывания до температуры +427 °С. Кроме этого, расплавленная сварочная ванна также должна быть под защитой, что не позволит начаться реакции взаимодействия с воздухом. Наиболее распространенными защитными газами являются аргон и гелий. Именно они предусмотрены технологиями сварки титана TIG и MIG.

Защитный газ используется сразу в нескольких направлениях:

  • Первичная защита расплавленной сварочной ванны.
  • Вторичная защита охлаждающегося расплавленного металла и околошовной зоны.
  • Защита обратной стороны сварочного шва.
  1. Первичная защита расплавленной сварочной ванны. Грамотный выбор сварочной горелки позволяет обеспечить качественную первичную защиту. Так, чтобы не нарушать технологию сварки титана аргоном TIG, понадобится горелка, оборудованная газовой линзой и большим керамическим соплом. С помощью газовой линзы инертный газ будет подаваться равномерным потоком, а сопло позволит защитить расплавленную сварочную ванну по всей площади. Аргон дает очень стабильную дугу, поэтому чаще используют именно этот газ. Если необходимо глубже проникнуть в металл или работать при более высоком напряжении, то можно использовать смесь аргона и гелия.

Первичная защита расплавленной сварочной ванны

Разновидности технологии сварки титана

1. Ручная дуговая сварка.

Выше мы уже говорили о том, что технология сварки титана в первую очередь опирается на качественный шов, что обеспечивается грамотно созданной защитой, причем и остывающих участков свариваемых деталей.

Технология соединения элементов с тонкими стенками допускает сварочную процедуру без обработки кромок или использования присадочной проволоки. В таком случае зазор между кромками составляет 0,5–1,5 мм. Состав присадки должен быть аналогичен основному материалу изделия.

Сварочная технология подразумевает несколько режимов сварочных работ. Работа выполняется током силой 90–100 ампер в том случае, если используется электрод 1,5-2 мм из вольфрама и присадочная проволока 2 мм. При этом толщина деталей не должна быть более 2 мм. Ток силой 120–140 ампер применяют для соединения деталей большей толщины (до 4 мм). При этом он должен быть переменным постоянной полярности.

Ручная дуговая сварка

Также сварочная технология требует соблюдения целого ряда дополнительных условий:

  • Ручная процедура предполагает использование короткой дуги, электрод и присадка не должны колебаться. Движение осуществляется точно по шву.
  • Сваривание производится углом вперед. В этом случае электрод ориентирован в противоположную от направления движения сторону.
  • Сваривание титана с применением присадочного материала осуществляется под углом 90° (электрод относительно материала).
  • Важно наладить беспрерывную подачу присадки в сварочную ванну.
  • Защитный газ в зону сварки должен подаваться даже после гашения дуги, поскольку он обеспечивает процесс охлаждения. В течение одной минуты материал охладится до температуры ниже +400 °С.
  • Качество сварного шва во многом зависит от охлаждения материала. Определить его можно по цвету. Светлый желтый или соломенный цвет шва указывает на хорошее качество, а черный, серый и синеватый оттенок указывает на окислительные процессы, что свидетельствует о сниженном качестве.

Технология полуавтоматической и автоматической сварки аналогична ручной. Большое значение имеет размер отверстия в сопле горелки. ГОСТом установлен диаметр 12–15 мм. Желательно использовать специальные планки и подкладки, чтобы зажечь или погасить горелку.

Рекомендуем статьи по металлообработке

2. Электрошлаковая сварка.

Технология сварки титана и его сплавов зависит от состава материала. Для соединения легированных титановых сплавов чаще всего применяют электрошлаковый метод. Так, для создания сплава ВТ5-1, где в составе есть 5 % алюминия и 3 % олова, больше всего подходит метод прессования и прокатки, в результате чего получаются тонкие листы. Толстостенные изделия создаются путем ковки.

Сваривать толстостенные детали гораздо сложнее. Для этого нужна среда защитного газа аргона и флюс марки АН-Т2. С помощью трехфазного трансформатора в зону обработки подается переменный ток.

Характеристики оборудования имеют определяющее значение. Обязательно должно выдерживаться напряжение 14–16 вольт с силой тока 1600–1800 А. Согласно технологии, зазор между деталями должен составлять 26 мм. Защитный газ аргон подается со скоростью 8 л/мин., а флюс засыпается в объеме 130 г. Качество соединения деталей при данной технологии обуславливается диаметром электрода. 12-миллиметровый электрод позволяет добиться идеальных результатов, а электрод 8 мм может стать причиной снижения прочности на 20 %. Желательно отказаться от использования электродов из легированных сплавов, если вы хотите обеспечить достаточную пластичность металла сварного шва.

3. Контактная сварка.

Контактный способ также подходит для соединения деталей из этого металла. Технология сварки титана, предусмотренная ГОСТом, предполагает оптимальную скорость сваривания материала в размере 2-2,5 мм/сек. Нежелательно превышать данный показатель, дабы не понизить прочностные характеристики металла в зазоре. При технологии контактного соединения этот показатель имеет определяющее значение, ведь скорость процесса довольно высокая. В данном случае кромки деталей не зачищают и не фрезеруют.

Контактная сварка

Разработаны разные способы контактного соединения заготовок: линейный, точечный и конденсаторный. Для изделий из титана подходит любой из них. Технология каждого способа опирается на определенную толщину заготовок, диаметр электродов и их давление, размеры сварочной пластины, длительность сжатия и скорость прохождения тока через металл. Сочетания данных параметров помогают установить оптимальный режим для достижения наилучшего результата. Это совсем несложный процесс, если все параметры учтены в соответствии с выбранной технологией.

Особенности технологии сварки титана плазмой

Авиационная и космическая промышленность очень часто используют титан и его сплавы. Для создания несущих конструкций обычно применяют металл толщиной не менее 12 мм.

В таком случае может возникнуть много проблем в процессе сваривания деталей, поскольку этот металл имеет очень специфичные свойства. Технология сварки титана такой толщины максимально эффективна, если опирается на электронно-лучевой метод соединения в вакууме.

В то же время сварочное оборудование для этого метода и сама работа стоят довольно дорого. Альтернативным вариантом соединения деталей из титана с высоким качеством сварных швов, большой производительностью и более низкой стоимостью является плазменная сварка титана проникающей дугой. В данном случае происходит сквозное проплавление. При использовании этой технологии ванна жидкого металла во время создания сварного шва удерживается на весу.

Особенности технологии сварки титана плазмой

Чем толще металлическая заготовка, тем сложнее удерживать жидкую ванну в стабильном состоянии и делать качественный сварной шов. Технология сварки титана толщиной 10–12 мм рассчитана на довольно узкий диапазон сварочных параметров, поскольку очень сложно поддерживать баланс силовых факторов на передней стенке жидкой ванны. В данном случае очень высоки шансы допустить прожог, если гравитационные силы возьмут верх над силами поверхностного напряжения.

Только при низких скоростях сварки можно сформировать сварной шов. Стоит лишь увеличить скорость соединения, как начинается разрушение сварочной ванны и сброс расплавленного металла. Попытки сварки титана большой толщины до сих пор не увенчались успехом.

Если удастся удерживать в стабильном состоянии на весу ванну жидкого металла при сварке титана проникающей дугой, поддерживая соотношение гравитационных и капиллярных сил, то теоретически предельными толщинами для титана могут быть δ=20÷25 мм.

С ростом δ увеличивается вероятность прожога, поскольку нужно снижать поперечные размеры самой жидкой ванны. А это требует повышения концентрации энергии до значений, не достигаемых сжатой дугой.

Если газодинамическое воздействие на переднюю стенку жидкой ванны повышается вследствие увеличения мощности сжатой дуги, то это может привести к неустойчивости силового баланса на передней стенке жидкой ванны, в результате чего появляется прожог.

В ходе практической деятельности доказано, что невозможно увеличить диапазон свариваемых толщин плазмой только через варьирование характеристик сжатой дуги. Важно снизить влияние сжатой дуги на переднюю стенку жидкой ванны, при этом не снижая мощности сжатой дуги. Такое возможно только через подбор оптимального соотношения сжатой дуги и полости кратера.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Технология сварки титана и его сплавов

Резка на заготовки и подготовка кромок под сварку ведутся механическими способами. Разделительная резка и подготовка кромок толстостенных изделий возможна и газотермическими способами, но с обязательной последующей механической обработкой кромок на глубину не менее 3-5 мм.

Кромки на ширину 15-20 мм зачищают металлическими щетками, шабером и т .п. с последующим обезжириванием.

Если до сварки конструкция подверглась термообработке (вальцовке, ковке, штамповке), то перед сваркой ее поверхности необходимо очистить дробеструйным или гидропескоструйным аппаратом, а затем еще подвергнутъ и химической обработке: рыхлению оксидной пленки, травлению и осветлению.

Режимы химической обработки титана и его сплавов

Нитрит натрия 150-200 г
Углекислый натрий 500-700 г

Плавиковая кислота 220-300 мл
Азотная кислота 480-550 мл

Азотная кислота 600-750 мл
Плавиковая кислота 85-100 мл

После химической обработки свариваемые кромки промывают на ширину 20 мм бензином и протирают этиловым спиртом или ацетиленом. Сварочную проволоку предварительно подвергают вакуумному отжигу с последующим обезжириванием.

Сварку ведут в приспособлениях или на прихватках, которые выполняют ручной аргонодуговой сваркой W-электродом.Свариваемые поверхности, подготовленные к сварке, нельзя трогать незащищенными руками.

Сварку осуществляют постоянным током обратной полярности. Режимы выбирают исходя из толщины металла с учетом склонности сплава к росту зерна и термическому циклу. Для уменьшения роста зерна рекомендуются режимы с малой погонной энергией и повышенными скоростями.

Учитывая высокое электрическое сопротивление титана, сварку ведут с малыми вылетами электрода. При сварке на низких токовых режимах возможен непровар корня шва. Во избежание этого корень выполняют ручной аргонодуговой сваркой W-электродом, а остальную разделку - сваркой плавящимся электродом.

Титан и его сплавы с пределом прочности не менее 90 кгс/мм 2

То же более 90 кгс/мм 2

Высокопрочные сплавы типа ВТ14, ВТ22 и др.

Основное пространственное положение - нижнее.

При сварке с глубоким проплавлением на повышенных токовых режимах рекомендуется сварочная смесь гелия и apгона (80%+20%). Для повышения прочности, пластичности и стойкости против образования трещин сварные соединения термически упрочняемых сплавов подвергают последующей термической обработке, режим которой зависит от состава сплава.

Надежная зашита зоны нагрева при механизированной сварке титана плавящимся электродом в инертных газах сопряжена с рядом трудностей. Поэтому сварку этим способом в большинстве случаев ведут в камерах с контролируемой атмосферой.

Целесообразно применять импульсно-дуговой метод, что обеспечивает возможность сварки в монтажных условиях, повышает производительность по сравнению с ручной сваркой неплавящимся электродом при одновременном снижении погонной энергии в 2-2,5 раза.

Ориентировочные режимы сварки титана и его сплавов

150-200
200-220
300-330

В ряде случаев сварка титана и его сплавов выполняется в вакууме. Преимущество этого способа заключается в обеспечении высокой чистоты металла шва. В нем не остается примесей - газов и неметаллических включений.

Техника и режимы сварки должны обеспечивать устойчивое горение дуги с минимальным разбрызгиванием, что достигается при струйном переносе электродного металла Этот процесс осуществляется при определенном соотношении сварочного тока напряжения на дуге, скорости подачи электродной проволоки и вылета электрода.

Газовая защита

Качественное сварное соединение титановых сплавов получается только при надежной газовой защите сварного шва и участков основного металла, нагретых до 250-300°С.

Существуют три варианта защиты:

  1. струйная с использованием специальных приспособлений
  2. местная в герметичных камерах малого объема
  3. общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

Сварка титана в герметичной камере

Дополнительные защитные устройства изготовляют из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна быть шириной 40-50 мм и длиной 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

Насадка для сварки титана

Подкладка для защиты корня шва

Качество зашиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет сварного шва указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует плохое качество шва.

Читайте также: