Автоматическая сварка под флюсом труб

Обновлено: 04.10.2024

При сооружении магистральных трубопроводов и листовых конструкций часто применяют переносные сварочные установки для механизированной сварки под флюсом. Сварку стыков магистральных трубопроводов выполняют обычно специализированными сварочными головками, а для сварки листовых конструкций применяют стационарные установки и передвижные универсальные (например, сварочные тракторы). Установка для механизированной сварки состоит из источника питания сварочной дуги, шкафа управления, в котором расположены источники питания электродвигателей автомата, устройство для замыкания и размыкания сварочной и вспомогательных цепей; устройства (сварочная головка) для зажигания дуги; подачи проволоки в зону сварки; устройства (каретка) для перемещения сварочной головки вдоль стыка с кассетой со сварочной проволокой, пультом управления и бункером для флюса. При поворотной сварке стыков трубопроводов устройство для перемещения сварочной головки отсутствует и эту роль выполняет вращатель, который синхронно работает с подающим механизмом.

Сварочные головки

Сварочные головки переносного типа СГФ и полустационарные ГДФ (табл. 17) используют для выполнения поворотных стыков под слоем флюса в полевых условиях.


Сварочная головка ГДФ-1001-УЗ (рис. 97) используется в полевых автосварочных установках ПАУ-1001 и ПАУ-1001В для сварки труб диаметром 529-1420 мм. Головка ГДФ 1001-УЗ относится к автоматам подвесного типа, которая на подвеске укрепляется на колонне. Головка имеет механизированный привод опускания на стык и подъем. На поверхность трубы головка опирается роликами, которые копируют трубу в процессе сварки. Головка оснащена специальным аппаратом, позволяющим после сварки удалять флюс со стыка в бункер. Все регулировочные перемещения фиксируют указателями. Головка комплектуется выпрямителем ВДУ-1001-УЗ.

Головку СГФ-1004 (рис. 98) используют в полевых автосварочных установках ПАУ-601 и ПАУ-602 для автоматической сварки трубопроводов под слоем флюса. Эта усовершенствованная головка позволяет вести сварку поворотных стыков труб диаметром 325-1420 мм по предварительно подваренному первому слою шва. Сварочная головка СГФ-1004 смонтирована на четырехколесной тележке и имеет электродвигатель с редуктором, подающий механизм, токоподвод, бункер с флюсом, кронштейн с кассетой и пульт управления.


Головка имеет корректор, который позволяет сместить электрод относительно зенита труб на 20-120 мм. Для надежного подвода тока к электродной проволоке головка комплектуется токоподводами двух типов: пружинным и трубчатым. Пружинный токоподвод используют для сварки труб диаметром 720-1420 мм проволокой диаметром 2-3 мм. Токоподвод имеет мундштук, на нижнем конце которого крепится токосъемник, состоящий из двух бронзовых накладок, одна из которых с помощью пружины давит на проволоку, обеспечивая надежный контакт. Трубчатый токоподвод применяют для сварки трубопроводов диаметром 720- 1420 мм. В этом случае мундштук имеет наконечник, который рассчитан на электродную проволоку диаметром 3 мм. Если устанавливают наконечник для проволоки диаметром 2 мм, то такой токоподвод используют при сварке труб диаметром 325- 720 мм.

Для подачи флюса в зону сварки головку комплектуют флюсоподводами двух типов: раздельным и охватывающим. Раздельный флюсоподвод применяют при сварке труб диаметром 720-1420 мм, а охватывающий - для труб диаметром 325 - 720 мм. Каждый флюсоподвод жестко закреплен с токоподводом и корректором копирует их совместное перемещение при работе.

Головку СГФ-601 используют на полевых автосварочных установках ПАУ-601 и ПАУ-602 для сварки труб диаметром до 1220 мм. Расположение узлов и конструкция сварочной головки СГФ-601 соответствуют СГФ-1004, отличие - в регулировании напряжения на дуге, их мощности по току и габаритах. Сварочные головки типа СГФ, ГДФ и ПАУ разработаны Киевским филиалом СКБ «Газстроймашина».

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сварка под флюсом

Сварка под флюсом

Сварка под флюсом является технологией соединения металлических деталей/заготовок. Существуют различные способы сваривания: ручной, полуавтоматический, автоматический. Соответственно, используется различное оборудование, подбираются определенные режимы.

Благодаря своим неоспоримым преимуществам: точность, скорость, защита шва от коррозии, сварка под флюсом используется практически во всех сферах металлообработки: от машиностроения до изготовления труб большого диаметра и использования на мелких промышленных предприятиях. Как все происходит по технологии и какие проблемы часто возникают в ходе работы, подробно расписано в статье ниже.

Преимущества и недостатки сварки под флюсом

Сварщики знают о негативном воздействии кислорода при сварке и его воздействии на долговечность изделия и качество сварного соединения. Окислительные процессы являются причиной появления трещин на металлических сварных соединениях. Соблюдение технологичности процесса помогает избежать таких негативных моментов. Одной из них является сварка под флюсом. Это один из самых эффективных способов сварки металлов, обеспечивающий прочное и ровное сварное соединение. Но чтобы выполнить такой шов, необходимо наличие специального оборудования и соответствующий уровень квалификации сварщика.

Преимущества и недостатки сварки под флюсом

Соединить детали из нержавейки, алюминия и меди зачастую просто невозможно без использования автоматической дуговой сварки под слоем флюса, который выполняет функцию защиты от воздействия кислорода. То же самое касается и классического метода с использованием ручной или полуавтоматической сварки. Плавление металла и соединение заготовок может происходить только при достижении высокой температуры электрической дуги.

Дуговая сварка зачастую сопровождается искрами и брызгами, а также повышенной задымленностью и интенсивным ультрафиолетовым излучением. При использовании технологии сварки под слоем флюса такие факторы исключаются, так как вся расплавленная ванна полностью находится под его толстым слоем, что делает этот процесс безопасным.

Помимо этого, нейтрализация дыма и излучения делает сварку под флюсом более безопасной относительно других способов сварных соединений. Операторам, осуществляющим контроль сварки, не нужно надевать защитную одежду, для этого подойдет и стандартная рабочая униформа.

нейтрализация дыма

Так как при дуговой сварке под флюсом используется электричество, то ее не нужно наносить под давлением. Помимо этого, повышенный уровень тепла, выделяемый в процессе сварки, позволяет соединять толстостенные заготовки.

Особенностью сварки под флюсом является ее высокая скорость осаждения металла. Именно это свойство может обеспечить глубокую сварную ванну. Сварка с применением порошковой проволоки под флюсом может ускорить осаждение по сравнению с использованием сплошной проволоки.

Помимо этого, большая концентрация тепла способствует ускорению сварки, скорость может достигать 5 м/мин. В результате структура выполненного шва становится более вязкой, долговечной, однородной и приобретает повышенную коррозионную стойкость. Кроме этого, сварное соединение выглядит более сглаженным и аккуратным.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Самой сложной задачей при сварочных работах является избежание деформаций сварного шва. Причиной служит расширение и сжатие металла, а также неоднородных цветных металлов. Так как при сварке под слоем флюса применяется ускоренное сваривание с повышенной тепловой концентрацией, то это позволяет избежать таких нарушений.

Такая технология сварки выполняется не только в помещении, но и на открытом пространстве. Даже при небольшом ветре дуговую сварку под флюсом можно выполнить без нарушений требований, предъявляемых к таким видам работ.

Имеется и ряд недостатков:

  • Повышенная сложность настройки оборудования.
  • Невозможность проведения сварочных работ в потолочном и вертикальном положениях.
  • Неровные края поверхностей свариваемых деталей, которые не позволяют выполнять качественное сварное соединение.

Кроме того, проконтролировать качество сварки сложно, так как сварное соединение находится под слоем флюса.

Сферы применения сварки под флюсом

Однако такая технология в промышленных масштабах оправдывает себя, так как обеспечивает повышение производительности труда, улучшает качество сварного соединения и надежность металлоконструкции в целом.

Сферы применения сварки под флюсом

Сварка под слоем флюса нашла широкое применение в следующих промышленных отраслях:

  • Судостроение. Корпус судна состоит из предварительно сваренных секций, изготовленных с помощью автоматической или полуавтоматической сварки. С помощью технологии секционной сборки значительно сокращаются сроки изготовления. В промышленном масштабе проведение сварочных работ при соблюдении технологии обеспечивает высокое качество сварного соединения.
  • Нефтедобывающая отрасль. Методика позволяет производить сборку резервуаров из заготовок на месте при помощи сваривания стальных листов в полотнища рулонного типа.
  • Изготовление труб большого диаметра для водных коммуникаций, нефтяной и газовой отрасли.
  • В машиностроительной индустрии при массовом производстве металлоконструкций: вагонеток, вагонов, автомобильных колес и подобных изделий.

Существуют технологии сваривания цветных металлов, алюминия, титана и его сплавов, что дает возможность использовать сварку под флюсом при производстве высоконадежных конструкций, летательных аппаратов, бытовой и промышленной аппаратуры.

Необходимое оборудование для сварки под флюсом

Для выполнения автоматической дуговой сварки под слоем флюса необходимо обеспечить рабочее место:

  • Сварочной плитой. Ее следует устанавливать на бетонную платформу, потому что она изготавливается из материалов, которые устойчивы не только к высоким температурам, но к резким температурным перепадам.
  • Наплавной проволокой. Ее толщина обычно составляет от 0,3 до 12 мм, состоит из такого же материала, что и свариваемое изделие.
  • Неплавящимся электродом, который включает металлический сердечник и керамическую оболочку.
  • Системой, выполняющей подачу флюсовых частиц, состоящую из шланга необходимого диаметра и резервуара.
  • Системой контроля. У автоматических установок она более модернизирована, чем у полуавтоматических.

При крупносерийных масштабах производства обычно используют специальный сборочный автоматический стенд, который позволяет не только сваривать любые конструкции, но и обеспечивает надежную фиксацию заготовок в том положении, в котором они должны остаться в готовом изделии. Такое оборудование обеспечивает повышенную надежность закрепления заготовок и позволяет исключить любые отклонения формы и соединения всей конструкции, несмотря на то, что сварщик при работе не видит шов.

Необходимое оборудование для сварки под флюсом

Такая технология является идеальной при нанесении угловых и стыковых сварных соединений, процесс происходит быстро, с обеспечением требуемых параметров качества и надежности соединения. Управление конструкцией происходит в автоматическом режиме, поэтому стоит довольно дорого. В некоторых случаях, в качестве альтернативного варианта, стенд может быть оснащен мобильными головками.

Цена на полуавтомат намного ниже, однако такое оборудование требует намного большего участия сварщика в процессе. Оператор должен постоянно следить за вылетом электрода и направлением проволоки, несмотря на то, что последняя подается в автоматическом режиме. Мастер самостоятельно подбирает угол наклона электрода, варьирует скорость при нанесении шва и мощность напряжения согласно специфике обрабатываемого изделия.

Ручным оборудованием чаще всего пользуются любители-сварщики в частных мастерских, хотя бывают и особые случаи применения, если оно наиболее удобно из всех вариантов для сварки изделий. Ручную сварку можно применять из любых положений и даже в неудобных труднодоступных местах.

Виды флюсов для сварки

По методу изготовления флюсы могут быть:

  • плавлеными;
  • неплавлеными (керамическими).

Первый тип флюсов (плавленые) изготавливается из смеси кварцевого песка и шлакообразующих марганцевых руд. Сначала их размалывают, перемешивают, а затем расплавляют и гранулируют. Такой вид флюсов является относительно экономичным и в основном применяется для сваривания заготовок из низколегированных сталей.

Первый тип флюсов (плавленые)

В состав неплавленого вида флюса входят соли амфотерных металлов и окислителей, которые сначала измельчаются, перемешиваются с жидким стеклом до образования однородной массы, а затем гранулируются и прокаливаются.

Керамический вид обладает мелкодисперсной порошкообразной структурой, используется для сварки под флюсом высоколегированных сталей и сплавов на их основе, причем для конкретной марки свариваемой стали подбирается определенный состав флюса.

По химическому составу флюсы подразделяют на:

  • оксидные;
  • солевые;
  • смешанные.

В состав оксидных флюсов, используемых для сваривания низкоуглеродистых сталей, входят кремний и оксиды активных металлов. Солевой тип флюсов содержит соли хлоридов и фторидов, используется для электросварки стали, легированной хромом и никелем, а также титана. В смешанных флюсах, предназначенных для сварки деталей из разных металлов или многокомпонентных сплавов, используются различные пропорции сочетания солей и оксидов металлов.

Технология сварки под флюсом

При автоматической сварке под слоем флюса скорость перемещения и траектория электрода, как и подача проволоки, регулируется управляющим процессором, функция оператора заключается в отслеживании состояния контроллеров процесса на случай необходимости экстренного отключения сварочного оборудования.

Технология сварки под флюсом<

При полуавтоматической сварке под слоем флюса происходит автоматическое регулирование силы тока сварки, угла наклона электрода относительно линии сварки и скорости подачи проволоки, а ведение дуги выполняет сам сварщик вручную при помощи дистанционного управления или рукоятки. При использовании сварочного полуавтомата появляется возможность изменять некоторые параметры тока вручную непосредственно во время выполнения сварного соединения.

Метод ручной сварки под слоем флюса используют при наличии небольших сварочных установок, в которых система подачи флюса встроена в неплавящийся электрод. На сварщика возлагается обязанность регулировать в ручном режиме при помощи специальных кнопок скорость движения электрода и угол его наклона, подачу флюса и силу сварочного тока, а также следить за правильной траекторией движения.

Существует общая последовательность операций при сварке под флюсом:

  1. Удаление с поверхности заготовок оксидной пленки.
  2. Закрепление детали на сварочной плите.
  3. Выбор режимов настройки сварочного оборудования.
  4. Заполнение резервуара флюсом.
  5. Установка бухты с наплавной проволокой, присоединение свободного конца к электроду.
  6. Непосредственно сваривание деталей.
  7. Сбор неизрасходованного флюса после остывания заготовок и зачистка сварочного шва от шлака.

Во избежание холостой работы электрода и повреждения деталей следует особенно обращать внимание на расход флюса и проволоки.

Выбор подходящего режима сварки под флюсом

Выбор режимов сварки под слоем флюса зависит от таких показателей, как выбор способа удерживания сварочной ванны, планируемое количество проходов при нанесении будущего шва, толщина кромочных поверхностей и метод их разделки. Помимо этого, выбор технологии сварки зависит от вылета электрода и положения самого изделия, скорости сварки, диаметра сечения проволоки, напряжения и силы тока. При расчете перед обработкой для каждой детали используются индивидуальные параметры.

К примеру, если толщина заготовки не больше 30 мм, то для сварки под слоем флюса стыкового шва, что бывает чаще всего, будет достаточно одного одностороннего прохода. При большей толщине шов следует проварить с обеих сторон и желательно ввести дополнительные проходы.

Смысл одностороннего сваривания может быть лишь в том случае, если используется материал, который не боится перегревания и на швах не образуются сварочные трещины.

Для каждого конкретного задания можно выделить несколько параметров, которые следует всегда учитывать при подборе режимов сварки под слоем флюса:

Толщина металла, ммДиаметр проволоки, ммСварочный ток, АНапряжение, ВСкорость сварки, м/ч
3 2 250–500 28–30 48–50
5 2 400–450 28–30 38–40
10 5 700–750 34–38 28–30
20 5 750–800 38–42 22–24
30 5 950–1000 40–44 16–18

Рекомендуемые табличные значения можно использовать для сварки под флюсом сталей с высоким, средним и низким содержанием углерода.

При сваривании тонколистового металла (до 6 мм) разделка кромочных поверхностей при подготовке изделия к обработке не производится. Для этого перед работой необходимо разместить свариваемые поверхности с минимальным зазором. При толщине стенки свариваемых деталей от 10 до 12 мм следует, наоборот, оставить зазор, благодаря этому сварное соединение будет более качественным, а также приведет к уменьшению лишнего объема расплавленного металла. В обоих случаях используются особые способы закрепления заготовок – или при помощи подкладки, или с добавлением подварочного шва либо методом предварительной сборки «в замок».

Для сваривания металлических листов толщиной до 10 мм лучше использовать подкладку. Обычно она представляет собой стальную пластину толщиной от 3 до 6 мм и шириной от 3 до 5 см.

Метод сварки «в замок» применяется для соединения ответственных конструкций, при которых прожог материала считается недопустимым. Также он является лучшим способом соединения тяжелых и объемных конструкций. Необходимо сказать, что подварочный шов редко используется при сварке, его применяют, только когда перекантовку изделия осуществить невозможно.

Проблемы, возникающие в процессе сварки под флюсом

Новичок-сварщик, неукоснительно соблюдающий инструкции, все равно может столкнуться с такими проблемами, которые ему непонятны. Самый образный пример – поры на сварном шве, которые говорят о том, что под слоем флюсом оказался газ. Чаще всего пористость появляется из-за наличия углекислого газа или водорода, в редких случаях из-за азота, поры которого появляются только при обработке микролегированных сталей, если такие материалы обладают нитридным упрочнением.

С такой же проблемой можно столкнуться, если металл разрезался плазменным резаком. Если сварочная ванна имеет малое процентное содержание раскислителей, то углекислый газ может проникать под слой флюса. Чтобы исключить образование пор, жидкую ванну обогащают как минимум 0,2 % кремния. Кроме того, раскисление может произойти при понижении температуры и, наоборот, концентрация углекислого газа будет расти с ее повышением.

Самой частой причиной появления пор при сварке под слоем флюса является наличие водорода, который появляется из-за недостаточной зачистки кромочных поверхностей от ржавчины и других загрязнений, а также из-за влажного флюса.

Рекомендуем статьи

Напоследок стоит сказать, что плавкий материал, который используется при сварке под слоем флюса, находится в твердом гранулированном состоянии в течение всего сварочного процесса, что позволяет на 50–90 % повторно его использовать при последующей сварке.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Особенности автоматической сварки под флюсом

Особенности автоматической сварки под флюсом

Автоматическая сварка под флюсом рассматривается как процесс жесткого соединения двух металлических поверхностей при помощи электрической дуги между проволокой и швом под расплавленным слоем флюса. Данный метод применяют в стационарных условиях (заводской цех, верфь) для работы со сталью и разнородными металлами в диапазоне 1,5-150 мм толщины.

Технология процессов

Автоматическую дуговую сварку под флюсом на промышленные рельсы во время 2-й Мировой войны поставил академик Е. О. Патон в киевском институте, который сегодня носит его имя. Но сама идея данного метода принадлежит Н. Г. Славянову: в качестве флюса он использовал мелкодробленое стекло.

Как это работает

Схема дуговой сварки под флюсом выглядит так, как это показано на фото вверху, но все эти процессы лучше рассмотреть более подробно. В результате плавки/испарения флюса с металлом образуется газовое облако, которое окутывает сварочную дугу или газовый факел. В процессе гашения непрерывного электрического разряда в сварочной ванне образуется корка шлака, которая легко отслаивается.

Преимущество работы с автоматом перед ручной сваркой в данном случае заключается в том, что резко сокращаются потери на угар и разбрызгивание металла, хотя принцип процесса в любом случае остается неизменным.

В промышленности в качестве электродов чаще всего применяется сварочная проволока разного диаметра. Но также есть потребность в ленточных электродах толщиной до 2 мм и шириной до 40 мм или в комбинации проволока-лента.

В среднем насыпной флюс весит 1,5 г/см2 и его давление на расплавленный металл составляет 7-9 г/см2. Такого прижима вполне достаточно для исключения механических воздействий электрической дуги на сварочную ванну: даже при очень больших токах шов формируется правильно.

Важно! Дуговая сварка без флюса при силе тока выше 500 A практически невозможна. Происходит разбрызгивание металла, не сдерживаемого газовым облаком, тогда как под флюсом можно применять токи до 3000-4000 A без ущерба для ударопрочности, вязкости и эстетичности шва.

Примечание. Для погружной дуговой сварке под флюсом существует английская аббревиатура SAW (Submerged Arc Welding).

Роль флюса при сварке

Суть соединения металлов или, что такое дуговая сварка под флюсом, станет понятнее, если разобраться в принципах действия этих самых флюсов. По предназначению он выполняет функции, соответствующие покрытию или обмазке электродов для обычной дуговой сварки. В самом процессе производства всегда присутствуют высокие температуры, плавящие этот состав, что почти полностью перекрывает доступ воздуха, а точнее, O2 в область шва и растворяющие оксиды по кромке соединения. Совокупность таких процессов максимально оптимизирует условия для создания дуги.

Классификация подбора

В зависимости от металла, меняются физические параметры процесса, следовательно, для повышения качества используются разные флюсы. Для компоновки того или иного состава применяются различные фториды, оксиды и подобные им элементы.

При подборке особое внимание уделяется химическому составу, который можно классифицировать как:

  • алюминатно-основные (по маркировке AB);
  • алюминатно-рутиловые (по маркировке AR);
  • кальций-силикатные (по маркировке CS);
  • марганец-силикатные (по маркировке MS);
  • флюоритно-основные (по маркировке FB);
  • и др (по маркировке W).

Основа различия флюсов заключается в их активности при взаимодействии основного металла детали с присадочным материалом. Например, пассивные флюсы содействуют образованию газового облака, которое никак не отражается на химическом составе соединяемых материалов. Слаболегирующие категории легируют сварочный шов небольшим количеством кремния (Si), марганца (Mn) и др., придавая ему ударную вязкость.


Виды по назначению

Что нужно учитывать при выборе сварочных флюсов:

  • Низкоуглеродистые стали. Здесь возможны два варианта: это флюсы с повышенным содержанием кремния (Si) и марганца (Mn) либо сварочный пруток с легирущими добавками, но с малым содержанием и даже полным отсутствием Mn.
  • Низколегированные стали. Химическая инертность флюса однозначно должна быть более высокой, чем в первом рассмотренном случае. Здесь элементы Si и Mn не используются либо присутствуют в малых дозах – их заменяет флюорит (CaF2), также известный, как плавиковый шпат. Это способствует образованию легкоплавких шлаков, которые с лёгкостью отделяются от шва. Такие флюсы зачастую делают с содержанием оксида алюминия (Al2O3) и негашеной известью (CaO).
  • Активные металлы (титан - Ti). Применяются фторидные/хлоридные соли щелочных металлов. Примеси O2 в данном случае исключены – они резко понижают пластичность швов.

Таблица с примерами назначений сварочных флюсов:

Для газосварки

Технология сварки под флюсом также включает в себя газосварку цветметов, чугуна, инструментальных сталей (содержание C от 0,7%) с использованием защитного газового слоя. Для этого применяются пастообразные и порошковые флюсы, которые наносятся на:

  • кромку стыкуемых деталей;
  • присадочный пруток;
  • непосредственно в сварную ванну.

Подача флюса в рабочую сварочную зону осуществляется разными путями и это зависит от физических характеристик материала. Например, порошковые композиты склонны сдуваться газовым факелом, поэтому необходимо следить за равномерным поступлением флюса в расплав.

Существующие нормативы

Согласно РД 34.15.132-96 дуговая сварка под слоем флюса производится по следующим параметрам, указанным в таблице ниже.

Технология автоматической сварки под флюсом подразумевает дозированную ручную или автоматическую присыпку порошка из бункера. У данного метода есть один существенный недостаток: он не позволяет проводить работы в нижнем положении. Тем не менее, для сварки трубопроводов решение нашлось: прокручиваются сами трубы, в то время как головка горелки вместе с подающим устройством остаются неподвижными. Огромным преимуществом в этом вопросе обладает сварочная порошковая проволока – работы с ней могут проводиться в любой плоскости (сверху, сбоку, снизу).

Важно! Качество всех сварочных флюсов регулируется в соответствии с ГОСТ 9087-81. Там указаны порядка 50 марок таких композитных материалов и требования, распространяющиеся на них.

Преимущества автоматизированной сварки

Безусловно, у автоматической сварки под флюсом есть ряд преимуществ относительно трудовых затрат. Человеку остается лишь отладить оборудование для соответствующего режима и пассивно контролировать процесс.

  • К месту стыковки деталей флюс подается в автоматическом режиме. Высота (h) слоя регулируется в соответствии с толщиной металла, а забор порошка проводится из специального бункера.
  • Сварная проволока подается из кассетного механизма без участия человека.
  • Скорость процесса регулируется автоматически, с учетом толщины металла, чтобы создать качественную сварочную ванну.

Но бывают ситуации, когда приходится работать без каких-либо инструкций, например, нужно сделать всего один сварочный шов на трубопроводе. В таких случаях лучше придерживаться следующих правил:

  • Дуга должна быть стабильной - только так можно добиться высокого качества. Параметры можно отрегулировать по силе тока и толщине металла, как это указано в таблице раздела «Существующие нормативы».
  • Скорость сваривания будет зависеть от интенсивности подачи проволоки.
  • Скорость. Это определяется подачей сварочной проволоки (количество м/час). Использование флюса разгоняет этот процесс примерно в 10 раз.
  • Равномерность. За счёт подачи проволоки с определённой скоростью существенно повышается ударопрочность, вязкость и эстетика шва.
  • Мощность. Закрытая дуга несет в себе высокую мощность, что позволяет расплавлять металл на нужную глубину. Если используется открытая дуга, то мощность падает, а это требует предварительного раздела кромок и качество стыка снижается.
  • Автономность. После отладки оборудования присутствие оператора при процессе не является обязательным.
  • Экономия. От электрода при сварке остается всего лишь 2%, которые невозможно использовать.
  • Структура. Благодаря стабильности дуги создается красивая мелкочешуйчатая структура шва.
  • Простота. Для работы сварщика в данной сфере не нужно длительное обучение – достаточно приобретения общих навыков.


Оборудование для автоматической сварки под флюсом

Для создания рабочего места, в первую очередь потребуется источник переменного или постоянного тока. Обычно в целях экономии используют переменную сеть, снабженную достаточно мощным трансформатором, который не допускает перепадов напряжения. Но иногда (в основном, это касается сельской местности) мощности ТП недостаточно и тогда приходится подключать оборудование через стабилизатор.

На сегодняшний день чаще всего используют трансформаторы марки ТСД-500-1, ТСД-1000-4 и ТСД-2000. При больших объемах производства или повышенных требованиях к качеству можно задействовать сварочный трактор Jasic MK-1, как на фото вверху или АДС-1000-2, TC-17М-У, TC-35, АДФ-500 и др. Также сейчас выпускают преобразователи ПС-500, ПСО-500, ПС-100 и сварочные выпрямители BC-500, BC-1000-2, ВДУ-504, ВДУ-1001, ВДУ-1601.

Вернемся к трактору Jasic MK-1 и рассмотрим его более подробно. С помощью этого агрегата осуществляется автоматическая дуговая сварка длинных прямолинейных и/или кольцевых швов в любой плоскости. Минимальная сила тока, выдаваемого этим аппаратом, составляет 100 A, а максимальная 1000-1250 A в зависимости от модификации.

Трактор Jasic MK-1 позволяет использовать для сварочных работ все виды проволоки Ø 2-6 мм. При необходимости поперечную балку и сварочную головку можно перемещать по горизонтали и по вертикали или вращать. Качественную центровку шва обеспечивает стабильная подача проволоки кассетой с четырьмя роликами (возможный сбой скорости составляет от 0,3 до 3 мм/мин).

Тележка аппарата приводится в движение электрическим двигателем постоянного тока с регулировкой скорости – диапазон составляет от 0,1 до 1,5 м/мин. На каретке находится ручка для смены режимов движения. Так, режим AUTO позволяет не вмешиваться в процесс, а MANUAL требует ручного управления – эта функция позволяет позиционировать режим в соответствии с техническими характеристиками свариваемых деталей.

Существует много другого аналогичного оборудования для выполнения сварочных работ под флюсом. Рассмотреть даже половину моделей, не говоря уже об их модификациях, в рамках одной статьи просто технически невозможно, но это и не является нашей целью.

Плазменная наплавка

В настоящее время вопрос плазменной наплавки стоит перед специалистами достаточно остро, так как такая технология сварки под слоем флюса значительно увеличивает эксплуатационный ресурс композиций. По сути, высокая потребность метода сводится к меркантильным интересам: в машиностроении это означает выпуск конкурентоспособной продукции и более высокие доходы от продаж. Конечно, этот метод не является каким-то ноу-хау, но его преимущества не вызывают сомнений.


Общий статус

В данном случае под плазмой подразумевается ионизированный газ и для получения которого используются разные методы (механический, электрический). Некоторые источники высказывают мнение, что плазма, это та же классика или четвёртое агрегатное состояние вещества после твёрдого, жидкого и газообразного, но, соглашаться с этим или нет – право каждого человека. Как бы там ни было, ионизированный газ, обладая рядом полезных качеств, широко используется в научных и технических отраслях.

Работа с плазменно-дуговыми наплавками

В первую очередь сварочным оператором настраивается оборудование. Нужно выставить верный угол сопла газовой горелки по отношению к рабочей плоскости, выверить зазор между ним и деталью (обычно, это 5-8 мм) и вставить сварочную проволоку. В случае, когда требуются колебания сопла, головка выставляется точно по центральной продольной линии шва. Средина определяется очень просто: амплитуда колебаний делится на два.

Несмотря на простоту процесса наплавки, оператором может работать только достаточно опытный сварщик – это требует максимальной концентрации внимания. Если не придерживаться таких требований, то вероятность порчи заготовки возрастёт до максимума.

Газ ионизируется при помощи постоянного электрического разряда или дуги: на атомном уровне происходит отрыв отрицательно заряженных частиц (механический способ). Это возможно благодаря мощному тепловому воздействию разряда на поток газовой смеси. Аналогичного результата можно добиться при воздействии мощного электрического поля, но придётся соблюсти ряд дополнительных условий (электрический способ).

Для ионизации полаётся струя газа под давлением 20-25 атм, которую прошивает электрическая дуга с напряжением 120-160 V и силой тока до 500 A (для сравнения: в потребительской электросети 220-230 V и 50 A). Положительно заряженные ионы при помощи магнитного вихря летят к катоду с огромной скоростью, которой достаточно, чтобы при столкновении с металлом резко поднимают его температуру до 10000-18000°C.скорость движения ионов в таком процессе достигает 15000 м/сек!


Заключение

В заключении следует отметить, что дуговая сварка под флюсом регламентируется требованиями ГОСТ 9087-81, но нормы межгосударственных стандартов между странами СНГ были подписаны только в 1992 году. Тем не менее, вышеупомянутый норматив от 1981 года остался неизменным для России, Украины и Беларуси.

Способы выполнения сварных соединений труб под флюсом

При автоматической сварке под флюсом стыковые швы трубопроводов и листовых конструкций выполняют односторонними и двусторонними. Сварку стыков можно выполнять как с разделкой кромок, так и без нее. Разделку кромок можно заменить необходимым зазором в стыке. Односторонние и двусторонние швы выполняют однопроходными и многопроходными. Для обеспечения нормального провара и предохранения от протекания жидкого металла через зазор стыковые швы выполняют на флюсовой подушке, на медной или флюсомедной подкладке, на остающейся или временной монтажной подкладке, с подваркой корня шва, а также на весу.

Односторонняя многопроходная сварка трубопроводов

Одностороннюю многопроходную сварку с ручной подваркой корня шва применяют при сооружении магистральных трубопроводов. Корневой слой шва выполняют на месте центровки и сборки труб - трубосварочной линии или сборочном кондукторе. Стыки собирают с зазором, который для электродов с основным покрытием составляет 2-3,5 мм, а для электродов с целлюлозным покрытием - 1,5-2,5 мм. Сварку первого слоя выполняют чаще снаружи трубы в поворотном или неповоротном положении. Первый слой шва, во избежание получения прожогов при автоматической сварке под флюсом, должен иметь толщину не менее 4 мм, а в местах с увеличенным зазором (более 3 мм) и при смещении кромок стыка - не менее 5 мм. При сооружении магистральных трубопроводов из низколегированных сталей с пределом прочности до 530 МПа для сварки первого (корневого) слоя шва применяют электроды с целлюлозным покрытием марки ВСЦ-4 диаметром 4 мм или электроды с основным покрытием марки УОНИ-13/55 диаметром 3-3,25 мм. При сварке труб из сталей σв>530 МПа первый слой выполняют электродами марки ВСЦ-4А. Трубы из сталей повышенной и высокой прочности перед сваркой корневого слоя шва предварительно подогревают. Первый заполняющий слой накладывают при помощи автоматической сварки под флюсом по корневому слою. Толщину заполняющего слоя выбирают с учетом толщины корневого слоя, так как при сварке на повышенном режиме корневой слой можно прожечь мощной дугой. Глубину проплавления Н определяют в соответствии с формулой (25). Число слоев автоматической сварки устанавливают в зависимости от толщины стенки трубы. Для стенки толщиной 12,5 мм автоматическую сварку выполняют в два слоя, при большей толщине стенки - не менее чем в три слоя.

Сварку труб диаметром 1020-1420 мм с толщиной стенки до 20 мм, изготовленных из низколегированных высокопрочных сталей, выполняют с гарантированным проваром корня шва. Для этого выполняют внутреннюю подварку корня шва как электродами, так и автоматической сваркой под слоем флюса. При ручной подварке стык собирают с указанным зазором и подварку выполняют тотчас после завершения сварки корня шва. Если автоматическую подварку выполняют тотчас после сварки корня шва, то стык собирают без зазора и сваривают корневой шов без обязательного провара. После этого автоматом под слоем флюса подваривают корень шва внутри трубы. В этом случае разделку кромок труб выполняют с меньшими углами, что требует меньшего количества присадочного металла и исключается прожог при сварке заполняющих слоев. Подварку корня шва выполняют и как завершающую операцию после полной сварки стыка. Такая подварка гарантирует полный провар корня шва и устраняет дефекты несплавления первого слоя с корневым.

На выбор оптимального режима сварки заполняющих слоев шва оказывают значительное влияние толщина корневого слоя, род тока и его полярность, свойства сварочных материалов, особенно марка флюса в сочетании со сварочной проволокой и т. п.

Сварку под флюсом АН-22 применяют в сочетании с марганцовистыми проволоками Св-08ГА, Св-10ГА для северной климатической зоны, особенно для надземной прокладки трубопроводов, для обеспечения гарантированных значений ударной вязкости металла шва в области отрицательных температур.

При автоматической сварке стыков трубопроводов из низколегированных сталей повышенной прочности (σв>550 МПа) целесообразно применять флюс АН-22 в сочетании с малоуглеродистыми и низколегированными молибденсодержащими сварочными проволоками Св-08ХМ и Св-08МХ, что обеспечивает весьма высокую прочность металла шва σв>700 МПа и гарантирует ударную вязкость ак = 0,4÷0,6 МДж/м 2 при температуре -60 °С. Оптимальные прочностные свойства сварных соединений обеспечиваются при qп = 36÷40 кДж/см.

Сварку под флюсом АН-47 в сочетании с проволоками Св-08ГА, Св-08ХМ, Св-08МХ применяют во всех климатических зонах для сталей с пределом прочности σв>550 МПа. Применение флюса АН-47 с проволокой Св-08ХМ обеспечивает высокие механические свойства наплавленного металла (σа= = 725 МПа, ак = 0,6÷0,8 МДж/м 2 при температуре - 60°С.)

Сварка под флюсом АН-60 отличается той особенностью, что позволяет вести процесс на повышенных скоростях с одновременным увеличением погонной энергии. Этот флюс используют для сварки трубопроводов из малоуглеродистых и низколегированных сталей (σв

При сварке проволокой диаметром 3 мм на форсированных режимах производительность сварочного процесса повышается на 15%. Использование флюса АН-60 с проволокой Св-08ГА позволяет обеспечить предел прочности наплавленного металла σв = 540÷570 МПа и ударную вязкость aк=0,6 МДж/м 2 при температуре - 20 °С.

Сварку под керамическим флюсом КВС-19 применяют для монтажа трубопроводов, изготовленных из малоуглеродистых и низколегированных сталей (σв = 550 МПа), которые укладывают под землей в средних и южных климатических зонах. Флюс КВС-19 используют в сочетании с проволоками Св-08А, Св-08АА и Св-08ГА. Сварные соединения, выполненные проволокой Св-08ГА, имеют σв = 480÷500 МПа, ак = 0,55 ÷ 0,75 МДж/м 2 при температуре -40 °С.

Сварка под керамическим флюсом ВСКФ-60 малоуглеродистыми проволоками Св-08А, Св-08АА позволяет обеспечить предел прочности шва σв = 660 МПа и ак = 0,72÷0,85 при температуре - 60° С благодаря обеспечению в металле шва легирующих добавок (примерно 0,4% молибдена, 1,2-1,4% марганца и 0,25-0,4% кремния). Флюс ВСКФ-60 применяют для сварки труб из низколегированных сталей с пределом прочности σв>550 МПа в северных районах.

Односторонняя многопроходная сварка с автоматической и полуавтоматической подваркой корня шва в среде углекислого газа производится на сварочной базе в различных климатиче

ских зонах. Корневой слой шва поворотных и неповоротных стыков трубопроводов (σв>550 МПа) выполняют на специальном промежуточном сварочном стенде. Сварку ведут проволокой Св-08Г2С, обеспечивая предел прочности наплавленного металла σв = 738 МПа, aк = 0,63 МДж/м 2 при температуре -60 °С.

Первый слой шва, во избежание получения прожогов при автоматической сварке под флюсом, должен иметь толщину не менее 4 мм. Последующие заполняющие слои шва выполняют также автоматической сваркой под флюсом.

Автоматическая сварка труб под флюсом с принудительным формированием шва

Автоматическую сварку под флюсом широко применяют при строительстве магистральных трубопроводов, сферических и цилиндрических резервуаров и других подобных конструкций. Сварку под флюсом можно выполнять со свободным формированием шва, когда дуга горит внутри полости, ограниченной в верхней части оболочкой расплавленного шлака, а в нижней- поверхностью расплавленного металла (рис. 85).


Эта полость заполнена парами флюса и металла с газами (в основном СО, частично водородом, азотом и др.) Давление этих газов поддерживает флюсовый свод над ванной. Конец электрода находится в непосредственной близости от переднего края ванны. По мере движения сварочной дуги вдоль изделия дуга отклоняется от вертикального положения в сторону, обратную направлению сварки. В эту же сторону отклоняются капли расплавленного металла при попадании в ванну. Капли расплавленного металла обволакиваются флюсом и смешиваются с основным металлом, оттесняясь давлением дуги к концу ванны. Жидкий металл находится в основном под действием давления дуги, собственного веса, веса находящегося над ванной флюса и силы поверхностного натяжения. Под действием давления дуги в основном металле образуется углубление (кратер) с тонким слоем расплавленного металла. В зависимости от изменения элементов сварочного режима изменяется глубина провара основного металла.

Форма сварных швов и форма проплавления (провара) характеризуются следующими основными параметрами: глубиной проплавления Н; высотой усиления сварного шва h; шириной проплавления или шириной шва В; коэффициентом формы провала ψПр = В/Н, ψпр = 0,5÷10 (оптимальное его значение 1,3-2); коэффициентом полноты проплавления µпр = FПр/(HB) (где Fnp - площадь проплавления), µпр=0,6÷0,8; коэффициентом формы валика фB=B/h, а также коэффициентом полноты валика µв = Fн/hB, где Fн - площадь наплавки.

Химический состав металла шва, его структура и механические свойства в известной мере регулируются составом основного и присадочного металлов, образующих шов. Доля участия основного металла у0 характеризуется отношением площади проплавления основного металла к площади всего сварного шва: y0=Fnp/(Fпp+FB). Величина у0 может изменяться в зависимости от типа шва, режима нагрева и техники сварки. В обычных условиях сварки уо = 60÷70 %, а при двудуговой сварке стыковых швов на большой скорости у0 = 80÷85 %.

При свободном формировании поверхности шва металл и шлак обладают большой жидкотекучестью, поэтому шов должен занимать горизонтальное положение или отклоняться от него не более чем на 10°.

Сварка с принудительным формированием шва позволяет выполнять швы в пространственных положениях, которые отличаются от горизонтального (в вертикальном, потолочном и т.п.). Для этого расплавленный металл и шлак охлаждаются с помощью искусственного теплоотвода. В этом случае на поверхности шва образуется слой охлажденного металла и шлака, который препятствует растеканию сварочной ванны. Эта ванна удерживается в требуемом пространственном положении с помощью медных водоохлаждаемых ползунов, которые перемещаются вместе с ней по стыку. Метод принудительного формирования шва применяют для сварки неповоротных стыков трубопроводов, сферических резервуаров и вертикальных стыков цилиндрических резервуаров.

Читайте также: