Автоматическая сварка труб оборудование

Обновлено: 05.07.2024

CRC-Evans – американская компания, которая является одним из мировых лидеров в области производства сварочного оборудования для монтажа магистральных газо- и нефтепроводов различных диаметров.

С помощью разработанных инженерами CRC-Evans автоматических комплексов обеспечиваются:

  • высокое качество сварного шва на всем его протяжении;
  • сокращение наплавления металла, что позволяет уменьшить расход материалов и увеличить производительность;
  • высокая скорость формирования сварочного шва;
  • минимизация погрешностей при ошибках, допущенных оператором;
  • возможность оптимизировать оборудование под определенные условия работ.

Автоматические системы CRC-Evans просты в управлении и обслуживании, благодаря чему снижаются затраты на предварительное обучение персонала.

Комплект оборудования для сварки трубопроводов значительного диаметра включает в себя ряд установок, работающих на трех последовательных этапах:

  • обработке кромок,
  • сварке корня шва,
  • наружном заполнении шва.

Установки для обработки кромок

Не всегда состояние кромок труб удовлетворяет условиям, при которых может работать автоматическая система сварки. Плоскость разделки может проходить не перпендикулярно оси проката, притупление не имеет достаточной высоты для формирования шва или угол кромки не соответствует требуемому значению 30°. К тому же обрез трубы не всегда обладает строго цилиндрической формой. Если в ручном или полуавтоматическом режиме сварщик способен нивелировать эти дефекты, то для использования автоматики требуется сформировать новый профиль кромки.

Установка CRC-Evans для обработки кромок включает зажимную секцию (центратор) и режущее оборудование. Первая составляющая оснащена кулачками с гидравлическим приводом, надежно фиксируется в полости трубы, обеспечивая положение режущего инструмента в перпендикулярной плоскости. Конфигурация разделки кромок выбирается с учетом способа формирования корня шва. Скорость обработки зависит от диаметра проката и толщины стенок.

Системы для формирования корня сварного шва

Компания CRC-Evans представляет несколько таких решений:

  • изнутри, при этом применяется сварочная станция Internal Welding Machine (IWM);
  • снаружи – внутренний центратор с медным кольцом;
  • снаружи – технология Surface Tension Transfer (STT).

Станция IWM оптимальная для сварки корня шва в трубах значительного диаметра с высокой производительностью. Станция имеет центратор, который устанавливается в прокате по его обрезу. После точного позиционирования и фиксации на элемент надвигается вторая секция трубы. Сварочные головки (от 4 до 8 штук) распределены по периметру на вращающемся кольце, работающем от электропривода. Каждая из них имеет устройство подачи защитного газа и собственный механизм подачи проволоки. После того как корень сварного шва будет сформирован, установка извлекается из трубы выдвижной штангой или лебедкой. Данная схема используется для труб диаметром от 600 до 1500 мм.

Внутренний центратор с медными кольцом или керамическими прокладками применяется на трубах диаметром менее 560 мм, когда нет возможности использовать станцию IWM. Совместно с ним работают наружные сварочные головки. Центратор устанавливается в полости трубы и служит для точного позиционирования внешнего пояса со сварочным оборудованием над торцевыми кромками. Внутреннее кольцо с амортизирующими прокладками предназначено для поддержания сварочной ванны и охлаждения металла.

Технология STT , основанная на переносе металла под действием сил поверхностного натяжения, позволяет обойтись без внутреннего центратора, что значительно повышает производительность автоматического оборудования в трубах не только малого, но также большого диаметра.

Использование CRC Automatic Welding – наружных сварочных головок – позволяет формировать корень шва при минимальных (в том числе нулевых) зазорах кромок. Это снижает производительность сварочных работ, но компенсируется за счет отсутствия необходимости устанавливать и извлекать центратор. Кроме того, STT-сварка обеспечивает:

  • высокую проплавку металла кромок,
  • минимальное дымообразование,
  • формирование идеального обратного валика,
  • отсутствие прожогов и тепловых деформаций.

Наружные сварочные головки

Производитель CRC-Evans представляет различные наружные сварочные головки, которые используются не только для формирования корня шва, но также для выполнения облицовочных и заполняющих проходов.

Сварочный аппарат состоит из четырех основных узлов:

  • ленты из пружинистой стали, фиксируемой на трубе;
  • каретки с подающими механизмами;
  • сварочных модулей;
  • пульта управления.

Направляющая устанавливается по шаблону на срезе трубы. Каретка перемещается по ней с помощью электропривода. Сварочные модули применяются в паре и могут работать одновременно на двух участка шва, что обеспечивает высокую производительность системы.

Микропроцессорное управление сварочной головкой позволяет программировать параметры работы оборудования в зависимости от условий производства. С помощью бортового компьютера осуществляется:

  • автоматическая регулировка сварочного тока,
  • скорость подачи проволоки,
  • перемещение кареток,
  • управление клапаном подачи защитного газа и др.

Все параметры задаются перед началом работ через дистанционный пульт управления и хранятся в памяти компьютера для дальнейшего переноса в документацию.

Автоматическая сварка трубопроводов



В этой статье рассматриваются различные подходы к вопросу механизации сварки трубопроводов и их применение в различных частях мира.

Системы механизированной сварки трубопроводов применяются уже более 40 лет. Уже давно они широко используются также при строительстве трубопроводов на шельфах. Однако до последнего времени они мало применялись при строительстве наземных трубопроводов. В наши дни трудность найма и высокая зарплата квалифицированных сварщиков ручной и полуавтоматической сварки привела к быстрому росту механизированной сварки наземных трубопроводов. В этой статье рассматриваются различные подходы к вопросу механизации сварки трубопроводов и их применение в различных частях мира.

Ранние системы

Почти сразу после разработки процесса сварки в среде углекислого газа, для механизации сварки кольцевых стыковых швов трубопроводов горелки стали монтировать на передвижных тележках. Первый наземный трубопровод с применением механизированной полуавтоматической сварки в среде СО2 был проложен в США в 1961 году. К этому времени были разработаны пять механизированных систем для сварки в среде защитных газов плавящимся электродом.

В этом же году прошли первые полевые испытания.

Неизбежно начался дарвиновский процесс естественного отбора первых систем. Удивительно быстро стали выкристаллизовываться черты современных механизированных систем.

Развитие систем пошло по двум путям. В первом горелки укреплялись на тележках, смонтированных на ленточных бандажах или цепях, закрепляемых на трубах. Этот тип стал исходной моделью для последующего развития сварочных систем для строительства наземных трубопроводов.

Во втором применялись наружные конструкции (рамы), внутри которых монтировались сварочные головки. Этот тип систем стал применяться в дальнейшем на судах-трубоукладчиках. Спроектированные для строительства трубопроводов на широких просторах США и СССР первые подобные системы, появившиеся в шестидесятых годах, не отличались компактностью и легкостью, что было не удивительно, поскольку они разрабатывались не для стран с ограниченным пространством, выделяемым для прокладки трубопровода, и с большим количеством различных пересечений.

Вскоре обнаружилось, что правильный выбор размера и типа электрода является ключевым фактором успеха. Вначале полагали, что чем меньше диаметр проволоки, тем легче контролировать дугу. Некоторые стали применять электродную проволоку диаметром 0,8 мм. Однако на практике сварщики предпочитали использовать проволоку диаметром 0,9 мм. Оказалось, что малое сопротивление вылета проволоки и, следовательно, меньший нагрев означало более медленное плавление электрода (при одинаковом токе). Таким образом, большее количество тепла расплавляет основной металл и устраняет явление непровара. Другим открытием было то, что небольшое содержание титана в электродной проволоке уменьшает скорость плавления и уменьшает количество сварочных дефектов. Сравнивая проволоку без титана диаметром 0,8 мм с проволокой, легированной титаном диаметром 0,9 мм, оказалось, что при токе 200 А и напряжении на дуге 25 В первая проволока плавилась со скоростью 4,1 кг/час, а вторая 2,99 кг/час. В первом случае 33% тепла уходило на плавление проволоки; во втором только 24%. В последующие 40 лет тысячи километров трубопроводов были построены с использованием проволоки диаметром 0,9 мм, легированной титаном. Такая проволока остается популярной и в наше время.

Работа сварщика тяжелый труд, поэтому любыми способами необходимо снижать трудоемкость сварки, что приведет к уменьшению объема ремонтных работ по устранению дефектов. Несмотря на то, что большое количество трубопроводов построены с использованием метода механизированной сварки в защитных газах, не совсем ясно преимущество применения проволок легированных титаном. В таких проволоках используется свойство легирующего титана образовывать структуру игольчатого феррита, однако, современные стали и проволоки содержат так мало примесей, что высокая ударная вязкость может быть достигнута при различных микроструктурах. Современные механизированные системы сварки труб успешно используют как легированные титаном проволоки, так и не содержащие титан проволоки. Производители дают пользователям право самим выбирать тип проволоки. ЭСАБ предлагает проволоку Spoolarc XТi, легированную титаном, и проволоку OK Autrod 12.66, не содержащую титан.

Развитие конструкций сварочных систем MIG/MAG (плавящимся электродом в среде защитных газов).

В 70-80х годах сварочные системы MIG/MAG сварки получили дальнейшее развитие, становясь более распространенными и надежными. Скорость прокладки трубопровода зависит от скорости сварки корневого прохода стыка. Поэтому установка сварочных головок на центрирующих устройствах, располагаемых внутри трубы, была следующим шагом вперед. Применение четырех одновременно работающих сварочных головок позволило бы довести скорость сварки до 2 м/мин (установка CRC). Однако, сложность конструкции таких систем препятствовала их внедрению. В других сварочных процессах применяют внутренние медные кольцевые подкладки, что обеспечивает высокую скорость сварки при использовании меньшего количества сварочных головок. Системой, положившей начало новому поколению сварочных установок, явилась установка PASSO (Progetto Arcos Saipem di Saldatura Orbitale). Это оборудование было легче и компактнее предыдущих конструкций и применялось для строительства как наземных, так и шельфовых трубопроводов. Дальнейшие разработки такого оборудования получили широкое применение и в Европе, заменяя ручную сварку при строительстве магистральных трубопроводов, проходящих даже в горной местности с ее туннелями ограниченного сечения. Впервые механизированная сварка труб была одобрена в Канаде. В США, на родине процесса, одобрение заняло большее время скорее из-за социальных, чем технических проблем.

С самого начала возможность установки двух сварочных горелок на одной сварочной головке была продемонстрирована в Советском Союзе еще в 1961 году. Эта система успешно использовалась, например, компанией Serimer-Dasa с девяностых годов. Позднее было обнаружено, что обе проволоки могут быть расположены ближе друг к другу, используя единую газовую защиту и оставаясь электрически изолированными друг от друга. Проволоки подаются поочередно импульсами, без негативного взаимного влияния дуг. Этот метод позволяет увеличить скорость сварки, несмотря на то, что обе проволоки подаются в одну сварочную ванну. Тепловложение при этом остается не слишком высоким и к сварочным материалам не предъявляются дополнительные требования.

Дальнейшие разработки позволили заменить две горелки системы, на двойные (тандемные) горелки. Такой процесс получил название "Dual-Tandem process"[2]. Это позволило еще больше увеличить производительность сварки. Однако высокое суммарное тепловложение может повлиять на механические качества сварного шва, особенно для труб, выполненных из высокопрочной стали (например, Х80 и выше). Производители в настоящее время работают над оптимальным легированием сварочных проволок, используемых для сварки труб из таких сталей.

Сварка «на подъем»

Все системы механизированной сварки, описанные до настоящего времени, старались добиться максимальной скорости сварки, а это значит, что сварка осуществлялась по узкому стыку «на спуск». Такой метод требовал дополнительную доработку кромок труб в полевых условиях с помощью станка, стоимость которого превышает стоимость самой сварочной системы. Это затрудняло применение сварочных систем механизированной сварки в малых странах, особенно в развивающихся.

В других наиболее развитых странах, таких, например, как Великобритания, имеется иная проблема: многочисленные пересечения шоссейных дорог, железных дорог и рек. Эти пересечения требуют другой технологии проведения сварки: доработка кромок трубы и применение внутренних центраторов невозможно. Проблема в обоих случая может решаться применением сварки «на подъем».

При сварке «на подъем» необходимо применять подкладки под сварочную ванну. Эта проблема успешно решается при образовании во время сварки достаточно твердого шлака, такого, который образуется при использовании рутиловых порошковых проволок. Такая сварка позволяет использовать стандартную (API рекомендации американского нефтяного института) разделку кромок трубы с углом наклона 600. Трубные заводы поставляют трубы именно с такой разделкой. Подрядчики, имеющие сравнительно недорогое оборудование, могут легко соединить трубы даже для магистрального трубопровода, с получением стыка, где наилучшим образом можно использовать механизированную сварку «на спуск». При отсутствии внутреннего центратора сварка корневого прохода целлюлозными электродами будет едва ли не самым быстрым способом решения задачи. В то же время надо отметить, что полуавтоматические системы сварки постоянно модернизируются.

При сварке «на спуск» задача выбора типа электрода становится более простой, поскольку быстрое остывание образует достаточно прочные микроструктуры с высокой ударной вязкостью. Даже простые углеродисто-марганцовистые сварочные материалы могут подойти для сварки труб из стали Х80.

В противоположность сварке «на спуск» при сварке «на подъем» уровень тепловложения обычно выше, а скорость охлаждения ниже той, что указана на сертификатах производителя сварочных материалов. Пользователи должны иметь в виду, что может быть придется выбирать сварочные материалы с более высокой прочностью, приведенной в каталоге, чем прочность материала трубы. Учитывая вышеизложенное, прекрасно себя зарекомендовали новые проволоки, такие как OK Tubrod 15.09, специально разработанные для таких случаев применения.

Сварка самозащитными проволоками

Трубопроводы часто прокладываются в удаленных местностях, где могут возникать проблемы со снабжением защитными газами. В этих случаях могут показаться привлекательными самозащитные проволоки, не требующие защитного газа.

Сварочная система, в которой успешно использовалась самозащитная порошковая проволока, частично стала жертвой распада Советского Союза. Применялся процесс "Стык" эффективный электрогазовый процесс сварки кольцевых швов без применения защитного газа. Медные подкладки или формы, удерживающие на месте наплавленный металл во время перемещения сварочной головки вокруг трубы (Рис. 2), позволяли сваривать в два прохода трубы с толщиной стенки до 16 мм, и в четыре прохода с толщиной стенки до 25 мм. Достигалась хорошая ударная прочность наплавленного металла при температурах до - 400 и даже до - 600 С, а процент исправления сварочных дефектов был ниже 1,5% [4]. К сожалению, когда произошел распад СССР, Украина, где производилось это оборудование и сварочные материалы, и Россия, где в основном использовалось это оборудование, стали отдельными независимыми государствами, процесс перестал применяться, а средств на его дальнейшую разработку не было.

Хотя специально разработанные самозащитные проволоки для полуавто-матической сварки труб выпускались в течение нескольких лет, они оказали малое влияние на развитие механизированной сварки. ЭСАБ недавно вновь обратил на них внимание, имея в виду тот факт, что малая скорость плавления современных проволок вызывает неудовольствия сварщиков при их использовании для механизированной сварки, поскольку их производительность соизмерима с производительностью штучных электродов. Новые проволоки показали более высокую производительность и могут помочь изменить эту ситуацию.

Процессы недуговой сварки

Вот уже 40 лет на каждой научной конференции по сварке труб появляются доклады о новых способах сварки труб трубопроводов. Среди них: фрикционная и электроннолучевая сварка труб (шестидесятые годы); сварка оплавлением, MIAB (Magnetically Impelled Arc Butt - стыковая сварка магнито-концентрированной дугой) и сварка взрывом (семидесятые годы); лазерная сварка (восьмидесятые годы) и гибридная лазерная сварка (девяностые годы). Некоторые методы предполагали единовременною сварку сразу всего кольцевого стыка, что, безусловно, было бы для подрядчиков очень заманчивой перспективой - сразу кардинально решить вопрос ускорения производительности прокладки трубопроводов. Не удивительно, что на разработку прототипов таких систем были потрачены огромные деньги. Из всех вышеописанных процессов, однако, только стыковая сварка оплавлением нашла применение для прокладки некоторых участков трубопроводов.

Институт Патона в Киеве разработал серию установок для стыковой сварки оплавлением труб диаметром до 42 дюймов. В руководстве одной такой установки для сварки небольших труб 325 х 14 мм было указано, что сварочный ток достигает 16000 А и потребляемая мощность равняется 180 КВт, производительность 15 швов/час. Более мощные установки имели несколько меньшую, но достаточно конкурентоспособную производительность. Несмотря на то, что технология была лицензирована одной компанией в США и включена в стандарт API 1104, она так и не нашла распространение за пределами бывшего СССР.

Это частично объясняется вопросом надежности механических характеристик шва и, кроме всего прочего, удивительными возможностями механизированной сварки плавящимся электродом в среде защитного газа (GMAW).

Будущее механизированной сварки трубопроводов

В любое время специалист, не знакомый с историей развития сварки трубопроводов, читая материалы последней конференции по этому вопросу, может прийти к выводу, что новый описываемый в докладе процесс может совершить революцию в области прокладки трубопроводов. Действительно, лучшие подрядчики могут увеличить среднюю скорость прокладки трубопровода. Наилучшие результаты достигнуты в отдельных случаях сваркой низкоуглеродистыми электродами снизу-вверх. Возможно, что следующим шагом в прокладке морских трубопроводов будет замена оборудования полуавтоматической сварки на сравнительно недорогие, доступные системы механизированной сварки, которые, тем не менее, позволят использовать стандартную подготовку торцов труб по API.

Для тех, кто имеет возможность вложить средства в разработку установок, обеспечивающих максимальную скорость сварки и максимальную производительность, процесс GMAW сварки «на спуск», по крайней мере, на ближайшие годы остается наиболее перспективным. Новые системы сварки корневых проходов без применения подкладок могут достигать скорость сварки до 1,5 м/мин [5]. Системы, использующие сварку заполняющих и облицовочных швов двойным тандемом (Dual Tandem), могут уменьшить число постов при прокладке трубопровода диаметром 48 дюймов и с толщиной стенки 19 мм с 14 до 5. Даже зная о таких преимуществах нового метода, едва ли все-таки подрядчики пойдут на большие затраты на развитие неизвестной технологии, которая не обещает больших улучшений сварочных характеристик.

Даже небольшие изменения требуют больших усилий для достижения требуемой надежности, при том, что в то же время наблюдается снижение затрат за счет применения для труб сталей марок Х80 и Х100. Использование этих сталей уже вынуждает производителей выпускать надежные сварочные материалы, которые подтверждали бы свои характеристики не только в лабораторных условиях, но и в условия строительства трубопровода. Сварочные материалы будут играть важную роль в непрерывном процессе улучшения экономических показателей сварки трубопроводов.

Об авторе: Дэвид Виджери (David Widgery) MSc, PhD Metallurgy работает в «ЭСАБ» с 1983 года в качестве руководителя отдела разработки порошковых проволок. С 1996 года он менеджер проекта «ЭСАБ Групп».

Что такое орбитальная сварка

Для монтажа трубопроводов в полевых условиях используется орбитальная сварка. Это автоматизированный процесс соединения бесповоротных стыков. Труба проваривается головкой, закрепленной на вращающемся устройстве. Специальный зажим плотно фиксирует аппарат в рабочей зоне. Для работы необходимы навыки оператора. Сварщик выбирает необходимый режим в зависимости от размера, толщины стенки, химического состава сплава. В процессе работы следит за параметрами.

Орбитальная сварка труб

Особенности орбитальной сварки

Дуга в автоматическом режиме проворачивается по всей окружности, труба равномерно проваривается со всех сторон. Стыковая сварка труб орбитальными аппаратами незаменима в труднодоступных местах, где сложно проварить неподвижную заготовку.

Сварочный автоматизированный процесс представляет собой ручную или аргонодуговую электросварку с использованием тугоплавкого вольфрамового электрода и наплавочной проволоки. При зажигании дуги кромки оплавляются, создается ванна расплава. Присадка образует на месте стыка аккуратный валик. Головка проходит по всей окружности (орбите). Заготовки при работе не вращаются, остаются неподвижными.

Область применения

Автоматы для орбитального соединения трубных стыков используют:

  • для линейного монтажа трубопроводов; ;
  • соединения отрезков трубного проката с отводами, тройниками, другой трубной арматурой;
  • сварки трубной доски теплообменников.

Орбитальная сварка труб минимизирует процент брака, увеличивается скорость монтажа трубопроводов, сборки котлов и теплообменников. Упрощается ремонт ТЭС, ТЭЦ, обслуживание нефтепроводов, газовых магистралей, инженерных коммуникаций.

Преимущества и недостатки

Стыковая сварка орбитальными автоматами обеспечивает герметичность трубопроводов за счет качественных швов. Металл проваривается по всей окружности равномерно. Преимущества орбитальной сварки труб:

  • снижается риск дефектов шовного валика;
  • регулирование дуги снижает область разбрызгивания ванны расплава;
  • соединение частей трубопровода, трубных досок можно производить в любом пространсвенном положении;
  • широкий диапазон свариваемых сплавов: углеродистых и легированных сталей, цветного металла;
  • возможность работать с присадкой и без нее;
  • отсутствие окалины на шве;
  • процесс протекает без образования дыма.
  • высокая стоимость аппаратов;
  • сложность ремонта и обслуживания оборудования;
  • низкая скорость тонких трубопроводов (головка медленно движется по небольшой орбите).

Оборудование для орбитальной сварки труб

У аппарата для сварки трубопроводов имеется:

  • источник электропитания – инвертор, выдающий от 30 до 400 А, подключаемый к однофазной сети напряжением 220 В или трехфазной 380 В, с ним просто контролировать силу рабочего тока;
  • вольфрамовый электрод;
  • соединительная головка, образующая шов;
  • клещевая система крепления, фиксирующая головку на трубе;
  • система подачи газа с регулируемым соплом для проволоки;
  • блок управления, регулируется:
  • частота вращения головки;
  • скорость подачи прутка;
  • расход инертного газа (объем впрыскивания);
  • угол наклона электрода.

Некоторые модели оснащены печатающим устройством, информацию о режиме работы можно вывести на бумагу.

Оборудование для орбитальной сварки применяется при монтаже труб с наружным диаметром от 17 до 170 мм. Выпускают аппараты для аргонодуговой и ручной дуговой сварки в защитной атмосфере трех основных типоразмеров (величина свариваемых труб указана в мм): 17–50; 33–90; 60–170. По согласованию с заказчиком некоторые производители делают фиксирующие клещи другого размера. Верхний предел увеличивают до 275 мм. Разработаны модели для тонкого трубного проката, минимальный наружный размер – 1,6 мм.

Виды орбитальных головок, удерживающих горелку на фиксированном расстоянии от свариваемого металла:

  • Закрытого типа рассчитана на соединение труб небольшого диаметра. Стык располагается в камере, заполненной защитным газом. Такие головки считаются самыми надежными, они образуют герметичный шов, не содержащий окислов.
  • Открыто типа, аргон или другой инертный газ или специальная смесь поступает в рабочую зону под давлением. Такие головки используют на толстостенных трубах, где стык заваривается за несколько циклов. Горелка для удобства наклоняется под нужным углом до 45°.

Схема орбитальной сварки

Для трубных досок, головки созданы для ремонта теплообменников, регулировка процесса происходит в автоматическом режиме, оператору достаточно установить клещевое крепление.

Предусмотрена система предварительного прогрева электрода и свариваемого металла до необходимой температуры, имеется система охлаждения, по замкнутому контуру циркулирует вода.

Технология сварки

Для выравнивания концов применяют отрезные станки, обеспечивающие вертикальную ровную кромку. Толстостенные трубы подготавливают к работе в заводских условиях: производят разделку кромок, срезают под углом 30°. Тонкостенный прокат заплавляют без присадки.

До орбитальной сварки труб проводятся подготовительные работы. Производится очистка концов от заусенцев, загрязнений. Подготовленные отрезки центруют, укладывают на установленном расстоянии друг от друга. Для орбитальной сварки труб малого диаметра достаточно приобрести съемную головку. Она крепится на универсальных зажимных системах. Поверхность стыка делят на сектора, для каждого задаются индивидуальные режимы с учетом давления собственного веса заготовки в нижней части. Расплавленный металл не должен провисать сверху. Параметры рабочего тока, скорость подачи присадочного прутка устанавливает оператор в зависимости от марки стали, формы заготовки. Орбитальный аппарат крепится в области стыка.

Сваривание металла производится автоматически. После заделки всех секторов оборудование отключается самостоятельно.

Орбитальные аппараты узкоспециальные. Их приобретают для монтажа трубопроводов большой протяженностью, для ремонта теплообменников и котлов. Это наиболее перспективный метод монтажа трубного проката. В быту подобное оборудование применять нецелесообразно из-за длительного периода окупаемости.

Преимущества автоматической сварки

На поточном производстве сварочный автомат полностью заменяет опытного сварщика. С большой производительностью, без участия человека обеспечивает точное соединение деталей. Автоматическая сварка – полностью механизированная технология.

Сварочный автомат

Аппарат самостоятельно поддерживает стабильное горение дуги, подает присадочную проволоку. Процесс происходит в закрытом корпусе. Оператор не подвергается воздействию вредных факторов. Автоматы-сварщики способны работать без перерывов и выходных. После программирования процедура сварки полностью контролируется в автоматическом режиме. При ускоренном процессе получаются качественные швы.

Сущность автоматической сварки

Процедуру автоматизации сварки по электродуговой технологии условно делят на несколько операций:

  • обновление расплавляемого стержня в постоянном режиме;
  • поддержание необходимых условий (подача флюса или защитного газа в рабочую камеру);
  • равномерное движение дуги по заданной траектории с постоянной скоростью;
  • формирование шовного валика.

При этом автомат контролирует:

  • расстояние между кончиком электрода и свариваемым металлом до микрон;
  • силу сварочного тока;
  • скорость образования шва;
  • глубину прогрева заготовки.

Автоматы различаются по:

  • способу защиты рабочей зоны;
  • движению сварочной дуги;
  • количеству устанавливаемых электродов, их типу;
  • роду рабочего тока.

При таком разнообразии аппаратов сущность процесса одинаковая.

Благодаря автоматическим установкам производителям удалось увеличить производительность и качество сварных соединений.

Виды сварочных автоматов

Исходя из функционала, в любом оборудовании с автоматической сваркой должны быть базовые элементы:

  • источника тока инверторного типа, чтобы обеспечить стабильное горение дуги, поддерживающего нужные вольт-амперные характеристики;
  • головки, заменяющей электрод;
  • устройства, обеспечивающего движение головки или ванны расплава;
  • механизированной подачи присадки;
  • блок управления.

Все эти части собраны в едином корпусе. Необходимо предусмотреть стол для укладки заготовок. Устройство формирует шов за счет взаимного движения ванны расплава и головки. Одни из элементов закреплен жестко, другой подвижен. Разработано два типа автоматов:

  • с равномерной (устанавливаемой) скоростью подачи присадки в рабочую зону;
  • регулированием вращения подающих валиков в зависимости от напряжения дуги.

Саморегулирование происходит за счет удлинения дуги для снижения ампеража рабочего тока. Соответственно, при короткой дуге сила тока возрастает. Если преобразованный сигнал об изменении электродуги передавать на механизм вращения роликов, корректируется скорость подачи проволоки. В автоматах в постоянном режиме регулируется ампераж и вольтаж. Величина напряжения устанавливается на пульте управления, ток регулируется по внешним характеристикам источника питания.

Сварочный трактор

Первые установки для автоматической сварки создавались в годы СССР для тяжелого машиностроения. Электропривод одновременно подает крутящий момент на механизм подачи проволоки и ходовую часть аппарата. Дополнительно монтируется бункер для подачи флюса, бобина для проволоки. Головка с тугоплавким электродом закреплена стационарно в нижней части трактора, вблизи оси, проходящей по центру тяжести сварочного устройства.

Сварочный трактор

Автомат устойчиво движется по свариваемой поверхности или рельсовым направляющим. Устройство применяется для изготовления и ремонта габаритных емкостей, демонстрирует высокую производительность.

Подвесное оборудование

Сварочные автоматы выпускают двух типов:

  • стационарные с неподвижно закрепленным электродом, генерирующим дугу;
  • передвижные, оборудованные тележками.

Подвесной сварочный автомат

Первые применяются для соединения труб или других вращающихся вокруг оси заготовок. Самоходные нужны для формирования длинных швов. Область применения подобных автоматов обширна, например изготовление сварного проката или наплавка крупногабаритных деталей. Подвесное оборудование используется в робототехнике, оснащается манипуляторами.

Продвигаясь по заданной траектории на недоступных человеку скоростях, автоматическая сварка обеспечивает достойный уровень качества сварных соединений.

Используются для однослойной или многослойной сварки деталей различной толщины с разделкой кромок или без, внахлест или встык. Автоматы выполняют угловые, кольцевые прямые швы.

Технология автоматической сварки

Главный узел аппарата – токопроводящая сварочная головка. Осуществляется подача:

  • присадки;
  • разряда, формирующего электрическую дугу.

Автоматическая сварка чаще производится с использованием присадочной проволоки, закрепляемой на бобине или катушке. За счет роликовой системы устанавливается траектория движения, скоростной режим. Предварительно присадка выпрямляется, затем поступает в направляющий мундштук, который в процессе работы размещается над рабочей зоной.

Автоматическим сварочным аппаратом дуга формируется по тому же принципу, что у ручного – при замыкании электрода на поверхности детали происходит пробой заряда. Контакт и электродуга расположены так, что присадка выполняет функцию короткого плавящегося электрода. За счет непрерывной подачи проволоки длина токопроводящего отрезка остается неизменной.

Сварочная зона обширная, зависит от марки оборудования. При правильной настройке не возникает перегрева металла или мундштука. Инверторный источник питания способен зажигать дугу без контакта дуги и заготовки. Когда длина электродуги фиксированная, исчезает риск залипания электрода при коротком залипании по капле. Металл стабильно поступает в ванну расплава. При падении капли проволока на холостом ходу движется назад, увеличивая дистанционный разрыв, необходимый для поддержания электроразряда. Вручную подобную стабильную работу обеспечить невозможно.

Визуально швы по автоматической технологии намного ровнее, чем ручной. Сварка автомат обладает другими достоинствами:

  1. Перед ручной дуговой, сварочное оборудование необходимо долго настраивать, регулировать параметры тока, напряжения. Использование электронных систем ускоряет настроечный процесс.
  2. Производительность автоматов в разы выше, чем у бригады сварщиков. Не нужны перерывы на отдых, качество не зависит от профессионализма.
  3. Снижается объем отходов. Количество испорченных деталей зависит от правильности настройки аппаратов, а не от человеческого фактора.
  4. Стабильный сварочный шов. Сварка автоматами ценится за аккуратные ровные шовные валики одинаковой высоты без разрывов и наплывов.
  5. Экономичность: расход проволоки ограниченный, меньше энергопотерь из-за разбрызгивания, угара.
  6. Возможность варить металл:
  • в труднодоступных для человека местах;
  • замкнутых пространствах;
  • вредных условиях: повышенной загазованности, некомфортной для человека температуре.

Теперь о недостатках сварки автоматом:

  • низкая маневренность;
  • необходимость перестройки при смене операций;
  • высокая стоимость оборудования.

По этим причинам сварочные автоустройства не могут полноценно заменить сварщиков.

Аппараты для автоматической сварки

Автоматизация сварочного процесса – одна из основных задач современного производства. Она позволяет существенно повысить производительность на серийных линиях и улучшить качество соединений. При работе используется оборудование для автоматической сварки. Участие человека ограничивается настройкой аппарата и отслеживанием процесса.

При автоматической сварке используются такие технологии, как:

  • дуговая,
  • под флюсом,
  • в среде защитных газов.

Электродуговая сварка автоматом производится открытыми трубчатыми электродами с обмазкой, которая при плавлении выделяет шлаки и газы. Этим обеспечивается защита от атмосферного кислорода.

Наибольшее распространение получили установки автоматической сварки, работающие под флюсом. Оборудование позволяет сваривать черные и цветные металлы, используется в машиностроении, судостроении, производстве магистральных труб и других отраслях промышленности.

В газоэлектрических аппаратах для автоматической сварки защита обеспечивается активными или инертными газами, которые подводятся к соплу горелки через рукав.

Устройство сварочного автомата

Установка для автоматической сварки включает следующие узлы:

  • источник рабочего тока,
  • сварочную головку,
  • систему управления и контроля автоматом,
  • механизм передвижения.

В качестве генератора тока используются инверторы, поддерживающие жесткие или падающие вольтамперные характеристики.

Сварочная головка является ключевым элементом аппарата. В ее функции входят подводка тока, подача сварочной проволоки, регулировка высоты горелки и угла наклона.

Для формирования шва необходимо обеспечить передвижение установки вдоль линии сваривания. В механизированных процессах применяют технологии перемещения либо детали относительно неподвижной подвесной головки, либо самого сварочного аппарата по направляющим. Для орбитального передвижения автомата при соединении магистральных труб используются пояса соответствующего диаметра.

Система управления сварочным процессом

Существует два типа установок для сварки: с постоянной скоростью подачи проволоки и с ее изменением в соответствии с напряжением дуги. В первом случае источником тока служит генератор с жесткими вольтамперными характеристиками. Увеличение или уменьшение длины дуги вызывает саморегулирование параметров тока. Такие установки предназначены для соединения изделий толщиной до 3 мм.

В устройствах с зависимыми характеристиками изменение напряжения, вызванное увеличением или уменьшением длины дуги, передается в виде сигнала на блок управления, где происходит корректировка скорости подачи проволоки. В таких установках используются генераторы тока с падающей вольтамперной характеристикой.

Проволока для автоматической сварки

Качество сварочного соединения во многом зависит от правильного выбора электродной проволоки. Всего существует более 70 марок расходного материала. Поскольку проволока участвует в формировании сварного шва, то желательно, чтобы ее химический состав был приближен к химическому составу изготавливаемой детали. В составе могут присутствовать ванадий, хром, титан и другие химические элементы. Сваривание нержавеющих сталей выполняется порошковой проволокой типа Tubrod.

Преимущества аппаратов для автоматической сварки

Применение сварочного автомата для сварки металла в производственных условиях:

  • увеличивает производительность в 5–10 раз по равнению с ручными методами,
  • минимизирует трудоемкость процесса,
  • обеспечивает стабильный режим сварки и высокое качество шва,
  • уменьшает расход электродов и электроэнергии.

ООО «ТСК» предлагает купить оборудование для автоматической сварки, выполнив заказ через сайт компании.

Читайте также: