Что такое углекислота в баллонах для сварки

Обновлено: 16.05.2024

Диоксид углерода СО2 приводится в жидкое состояние высоким давлением с охлаждением. Хранится углекислота в стальных баллонах под давлением 70 атмосфер. Угольный ангидрид не имеет цвета и запаха. Применяется при низкотемпературной сварке для защиты воздействия на шов атмосферных кислорода и азота.

Технические требования

Стальные сосуды под давлением объёмом 0,4–50 л используются без малого век. Отечественный ГОСТ 949-73 распространяется на ёмкости для транспортировки промежуточного хранения, технологической раздачи потребителям.

Цельнотянутые бесшовные баллоны малого и среднего объёма из конструкционной стали 45Д и легированной 40ХГСА рассчитаны на рабочее давление 15 и 20 МПа для сосудов 50–20 л и 15 МПа для меньших, которые допускается выпускать с плоским дном.

Отличительная маркировка – жёлтая надпись эмалью «углекислота», «СО2» «двуокись углерода» по чёрному полю. Основные физические параметры и типоразмеры представлены в таблице:

Сосуды меньших объёмов выполнены из стали 45Д, рабочее давление 15 МПа

Ø, мм 12 л 10 л 8 л 5 л 4 л 2 л
L, мм M, кг L, мм M, кг L, мм M, кг L, мм M, кг L, мм M, кг Ø, L, мм M, кг
140 1020 17,6 865 13,0 710 12,4 475 8,5 400 7,3 108/330 3,7

В комплектацию входят:

  • запорный вентиль кислородный с правой резьбой латунный;
  • предохранительные кольца из резины на цилиндрическую часть;
  • опорный башмак прямоугольной формы для устойчивости;
  • колпак предохранительный стальной либо формованный из неметаллов.

Эксплуатирующиеся баллоны проходят через 5 лет периодическую переаттестацию, включающую техосмотр и испытание избыточным давлением, превышающем рабочее на 50%. Информация с датой освидетельствования наносится ударными клеймами на зачищенную горловину, обрамляется жёлтой полосой по периметру.

Это «паспорт углекислотного баллона» с полным перечнем информации:

  • дата выпуска, переаттестации;
  • № баллона, присвоенный производителем;
  • литраж наполнения;
  • технологическое гидродавление;
  • марка стали и физические величины веса и размеров.

Применение: газоподготовка

Длительное и промежуточное хранение баллонов допускается на оборудованных кровлей и защитными перегородками рампах, исключающих попадание атмосферных осадков, в холодных и отапливаемых помещениях с естественной вентиляцией.

Жидкая углекислота в поставке для сварочных работ приобретается высшего и первого сортов. Заправка баллонов углекислотой для пищевиков дороговата, но желательна: Влажность газа нулевая.

Применение газа второго сорта допускается при возможности осушения: к 1% водного осадка добавляется нерегламентированное количество паров жидкости. Извлечением из газового потока паров воды занимается газоосушитель.

Это герметичная ёмкость с засыпкой гигроскопичными материалами. Осушители низкого давления устанавливаются после редуктора, высокого – принимают газ из баллона перед редуктором. Влагопоглотителями выступают алюмогель, силикагель, медный купорос.

Адиабатическое охлаждение газа провоцирует резкое объёмное расширение. Газопотребление в пределах 15–20 л/мин приводит к оледенению паров влаги, что чревато закупоркой редуктора. Газозабор высокого объёма требует установки газоподогревателя змеевикового типа на 24/36 В. Термоэлемент нейтрализует замерзание паров воды, рассчитан на пропуск больших объёмов.

Активная газозащита сварочных швов при полуавтоматической дуговой сварке плавящимся проволочным электродом ведётся углекислотой в чистом виде или в смеси с аргоном.

Использование баллонов подразумевает ограниченный суточный расход сварочными постами. 40-литровый баллон с внутренним давлением 6 МПа принимает 25 кг сжиженной субстанции. В газообразном виде после испарения жидкость трансформируется в 12,5 тыс. л газа.

Покупка: критерии выбора и выбраковки


Приобретение инвентаря высокого давления (ВД) длительного использования нового либо б/у сложностей не представляет. Трудности возникнут при заправке углекислотных баллонов, если покупатель не учёл ограничения в эксплуатации и заправке:

  • Заправка баллонов углекислотой затрудняется, если оборудование станции заправки рассчитано на больший литраж – выручат заправщики огнетушителей;
  • Заполнение малолитражных ёмкостей в условиях гаража возможно посредством баллона-донора шлангом высокого давления при соблюдении условий безопасности;
  • Если пропущен срок аттестации, сосуд ВД подлежит проверке и сертификационному испытанию;

[stextbox газобаллонное оборудование желательно у надёжных поставщиков. Б/У – у производственников. Они следят за оборудованием, документооборот на уровне: предоставят оригинал сертификата соответствия, акты проведения испытаний.[/stextbox]

Причины браковки газобаллонного оборудования, касающиеся всех категорий наполнения по результатам внешнего осмотра:

  • неисправность запорного вентиля;
  • износ резьбы горловины;
  • неполное нанесение паспортных данных, просрочено очередное освидетельствование: отсутствие, неполнота паспортной информации переводит баллон в статус непригодных к эксплуатации;
  • срок жизни баллона с момента первой аттестации производителем 20 лет, превышение срока пользования на практике невозможно;
  • большая площадь и глубина наружной коррозии;
  • вмятины либо выпучины;
  • трещины;
  • риски и раковины глубиной 1/10 толщины металла;
  • повреждён либо косо посажен башмак;
  • несоответствие окраски и надписи.

Обязательные требования к пользователю оборудованием ВД:

  • автомобиль для перевозки должен обеспечить транспортировку в горизонтальном положении;
  • период покоя независимо от сезона перед началом работ составляет 0,5 часа;
  • задействованные и складские сосуды ВД не повергаются прямым солнечным лучам, не складируются вблизи нагревательных приборов.

Редуктор


Стабилизацию, понижение давления подачи газозащиты, оптимальный расход углекислоты при сварке полуавтоматом, блокировку подачи двуокиси углерода при прекращении сварки осуществляет редуктор.

Однокамерный и двухкамерный (двухступенчатый) регулятор давления с последовательным расположением полостей снижения давления настраивается поворотом ручного регулятора изменения потока подачи СО2.

Манометр на входе регистрирует давление двуокиси углерода в баллоне. Второй – в камере регуляции, сети раздачи угольного ангидрида. Не ограничиваясь функцией регистратора изменений, редуктор работает как стабилизатор выходного давления.

Расход диоксида углерода в баллоне не должен влиять на то, какое давление углекислоты должно быть при сварке полуавтоматом. Мембрана редуктора занимает позицию пропуска газа в полость камеры снижения рабочего давления при первичной настройке. Изменение параметров напряжения управляющей пружины приводит в действие противоположную регулировочную пружину.

Площадь открытого сечения впускного клапана плавно меняется в сторону увеличения, но расход углекислоты при сварке полуавтоматом остаётся прежним. Постоянство либо изменение выходного давления корректируется по текущему показанию манометра регулировочным винтом.

Манипуляциями входящего в комплектацию шарового крана ведётся уточнение величины газоистечения. Расходная шайба с дюзой корректируют выпуск по величине значения давления в рабочей камере.

Защитой пневморедуктора занимается вмонтированный предохранительный клапан. Скачок давления приведёт к разрыву мембраны. Потеря герметичности входным штуцером с увеличением пропуска газа ведёт к превентивному запиранию системы.

Пневморедукторы классифицируются по количеству ступеней выравнивания давления (камер). Двухступенчатый редуктор с последовательным снижением давления в неотапливаемом помещении в зимнее время незаменим.

Разделение пневморегуляторов по условиям использования:

  • сетевые – работа в стационарной сети углекислотной станции;
  • рамповые – обслуживание многопостовых участков.

[stextbox Использование редуктора на наклонённом, лежачем баллоне недопустимо![/stextbpx]

Взаимозаменяемость кислородного и углекислотного

Но применение не по назначению будет ошибкой. При сварке с диоксидом углерода кислородный редуктор замерзает. Коэффициент расширения углекислоты приводит к понижению температуры на редуцирующем клапане до –60 0 С. Кристаллизация влаги приведёт к выходу из строя устройства.

[stextbox взрывобезопасности диктуют ставить на кислород редуктор с накидными гайками. Баллон углекислотный позволительно крепить хомутом – утечка не приведёт к пожару.[/stextbox]

УР 6-6

Среди многообразия редукторов выделяют компактный универсальный стрелочный УР 6-6 с калиброванным жиклёром. Пригоден для регуляции подачи аргона, иных газов и смесей с предельной долей кислорода до 23% на газобаллонном оборудовании 20–50 л. Ударопрочный корпус выполнен из латуни. Рекомендовано подключение электроподогревателя.

  • встроен очистной фильтр во впускной клапан, противодействующий обратному стравливанию в баллон;
  • входное давление – до 20 МПа;
  • пропускная способность – до 1,8 м 3 /час. (30 л/мин.);
  • рабочее давление – 0,35 МПа;
  • предел неравномерности рабочего давления – 4%
  • вес – 0,7 кг;
  • считается самой экономичной моделью.

С ротаметром


Удобство расходомера при сохранении функциональности обычного регулятора в отображении расхода углекислоты при сварке полуавтоматом в текущем режиме. Ротаметрический регулятор оснащён на выходе калиброванной дроссельной заслонкой. Гарантируется точность управления и показаний газопотока.

Манометр указывает единицы расходования. Прибор настроен и уточняющие регулировки нежелательны. Двухротаметрные редукторы предназначаются для защиты шва химически активных металлов с обеих сторон.

Меры безопасности при работе с СО2

Углекислота лишена токсичности, взрывобезопасна, однако при условиях, способствующих концентрации диоксида углерода более 5% в непроветриваемых помещениях, возможно проявление кислородного голодания, удушья.

В процессе сварки выделяются угарный газ и аэрозоли. Ремонт на баллоне, затяжка разъёмных соединений до сброса давления недопустимы.

Для чего нужна углекислота при сварке полуавтоматом?

Углекислота для сварки металлов широко используется в качестве защитного газа. Он подается через специальное сопло в горелке полуавтоматического аппарата и надежно защищает сварочную зону от кислорода и азота воздуха, а также от водяных паров.

Специфика технологии


Сварка в атмосфере углекислого газа — разновидность электродуговой. Постоянный разряд электродуги выделяет большое количество тепловой энергии, которая разогревает и расплавляет металл заготовки. Ток идет через заготовку, воздушный промежуток и неплавкий вольфрамовый электрод.

Сварочный материал в виде проволоки подается в рабочую зону отдельно, она не служит проводником. Подача осуществляется с постоянной скоростью подающим механизмом, встроенным в полуавтоматический сварочный аппарат.

Для того, чтобы защитить сварочную ванну от воздействия кислорода и водорода воздуха, а также водяных паров, в рабочую зону подается защитная атмосфера, состоящая из углекислого газа. Его облако вытесняет воздух и предотвращает нежелательные химические реакции

Что такое углекислый газ?

Молекула углекислого газа СО2 состоит из атома углерода и двух атомов кислорода. При нормальных условиях оксид углерода представляет собой газообразное вещество тяжелее воздуха, без цвета и запаха.

Оксид углерода обладает низкой химической активностью, что делает его отличным кандидатом на роль создателя защитной атмосферы вокруг сварочной зоны. Это же свойство используется при работе углекислотных огнетушителей, прекращающих доступ кислорода воздуха к очагу возгорания.

При атмосферном давлении в жидком состоянии находиться не может. При охлаждении до -78 о С затвердевает, образуя рыхлую массу, напоминающую снег. Это так называемый «сухой лед», используемых для охлаждения продуктов в пищевой промышленности и торговле.

Вещество выделяется в ходе окисления органических веществ — при сгорании, гниении, дыхании живых организмов.

[stextbox условия на промышленный СО2 регламентируются ГОСТ 8050-85.[/stextbox]

Перевозится вещество в газообразном состоянии, в емкостях под давлением.

Сфера применения

Углекислота в производстве обходится существенно дешевле аргона, гелия и других, но уступает им по своим защитным свойствам. Сварка в атмосфере СО2 используется для рядовых соединений из обычных конструкционных сталей.

Для более ответственных конструкций, специальных сталей, высоконагруженных узлов используют более дорогое, капризные в хранения и применении инертные газы.

При массовом производстве типовых металлоконструкций применение углекислого газа для защиты сварочной зоны дает заметную разницу в себестоимости.

Дешевле обходится и организация хранения СО2.

Запорно-регулирующая аппаратура для баллонов


При работе с оксидом азота используют специальную запорно-распределительную арматуру. Редуктор понижает входное давление со 100 атм. до рабочего значения в 3 атм.

Он снабжен двумя манометрами: на выходе и на входе, по которым сварщик следит за значением давления.

Редуктор снабжен двумя фильтрами, задерживающими примеси.

Установка необходимого рабочего давления осуществляется вращением рукоятки регулятора.

С помощью накидных гаек устройство присоединяется к баллону и к шлангу, снабжающему потребителя.

Предохранительный клапан при возникновении нештатной ситуации сбрасывает избыток давления в атмосферу.

[stextbox устройств, связанные с углекислым газом — баллоны, редукторы, шланги — маркируются черным цветом.[/stextbox]

Особенности заправки

Углекислотный баллон для полуавтомата заряжают двумя методами:

  • перепусканием из емкости хранилища через редуктор и расходомер в заправляемый баллон;
  • закачкой в заправляемый баллон с помощью компрессора.

Независимо от способа наполнения важно точно установить вес пустого баллона. Взвесив баллон после заполнения, можно точно установить количество закачанного СО2.

Заправка баллонов оксидом углерода, в отличие от ацетилена или кислорода, не требует чрезвычайных мер предосторожности. Однако расслабляться при этом нельзя: в случае массовой утечки углекислый газ образует атмосферу, непригодную для дыхания. Поэтому необходимо тщательно проверять состояние баллонов, арматуры и шлангов на отсутствие механических повреждений.

При заправке способом «баллон в баллон» тот баллон, из которого заправляют, рекомендуют перевернуть дном вверх и следить за его температурой.

Расход

Расход углекислоты для выполнения сварки полуавтоматом определяется сочетанием ряда факторов.

  • погодные условия (температура, ветер, влажность);
  • качество сварочных материалов;
  • квалификация и опыт сварщика.

Она может изменяться от 3 до 60 литров в минуту.

При расчете планового расхода учитывают такие характеристики, как диаметр сварочной проволоки и толщину заготовок. К расчетному значению, равному произведению удельного расхода на длину шва, добавляют запас в 10% на подготовительные операции.

Из стандартного баллона, содержащим 25 кг СО2, после понижения давления до рабочего образуется приблизительно 500-510 литров газа. При максимальном расходе этого количества хватит на 8 часов работы сварочного углекислотного полуавтомата. В среднем баллона хватает на 15-20 часов.

Плюсы и минусы

Работа в атмосфере СО2 имеет следующие преимущества перед другими видами сварки:

  • надежная защита сварной зоны от химически активных веществ;
  • дешевизна;
  • возможность варить «на весу», без использования подкладочных пластин;
  • устойчивая дуга на тонкостенных заготовках;
  • рациональное использование тепловой энергии электродуги.

Кроме достоинств, методу присущ и ряд недостатков:

  • низкая пригодность для работы с высоколегированными сплавами и цветными металлами;
  • сложность проведения многослойной сварки;
  • опасность удушья при работе в непроветриваемых объемах.

Длительно время подготовки и запуска процесса делает его малопригодным для небольших объемов сварочных работ, которые нужно выполнить быстро.

Техника безопасности.

Углекислый газ имеет два потенциально опасных фактора воздействия:

  • взрыв баллона при нагреве;
  • удушье при работе в замкнутом непроветриваемом объеме при превышении уровня концентрации в 5%.

Исходя из этих рисков и формируются требования техники безопасности к проведению работ с СО2.

Во время транспортировки:

  • все баллоны должны перевозиться в специальном поддоне, в вертикальном положении;
  • на каждом баллоне должны быть резиновые предохранительные кольца.

Во время хранения и заправки:

  • все помещения должны быть оборудованы газоанализирующей аппаратурой;
  • при заправке баллона необходимо контролировать его температуру;
  • не допускается перезаправка баллона свыше нормативного значения;
  • не прикасаться к трубопроводам, шлангам и арматуре без защитных перчаток.

Во время работы:

  • при работе в замкнутом объеме организовать постоянный контроль содержания СО2 в воздухе;
  • обеспечить вентиляцию или снабдить сварщика изолирующей маской с подачей воздуха;
  • работать вдвоем, причем один человек должен находиться снаружи объема и следить за состоянием сварщика.

При соблюдении требований безопасности углекислый газ не представляет угрозы для здоровья.

Опасность угарного газа СО.

Угарный газ – сильно ядовитое вещество. При вдыхании ведет к общему угнетению функций организма и тяжелому отравлению. Возможен и летальный исход. Работать в атмосфере угарного газа допускается только в изолирующей дыхательной аппаратуре.

Полярность

Полярность при сварке полуавтоматом в среде углекислого газа обратная, то есть «плюс» подсоединяется к заготовке, а «минус» — к электроду. При работе прямой полярностью в среде СО2 будет трудно обеспечить стабильность электродуги. Нестабильная дуга при такой схеме подключения приводит к возникновению дефектов сварного шва.

Работа

Перед началом сварки проводятся обязательные подготовительные работы. в них входят следующие операции:

  • зачистка зоны шва от механических загрязнений, остатков старых лакокрасочных покрытий, следов коррозии и т.п.;
  • обезжиривание поверхности с использованием органических растворителей, кислот или щелочей;
  • пробный шов для окончательного уточнения величины рабочего тока, особенно при соединении заготовок малой толщины.

Сварочный полуавтомат с углекислотой размещают так, чтобы шланг не мешал движениям сварщика.

Сварку полуавтоматом-инвертором в среде СО2 выполняют двумя методами, различающимися углом наклона относительно направления движения руки:

  • углом вперед, применяется для сварки листовых заготовок малой толщины;
  • углом назад, дает возможность глубокого провара на деталях средней и большой толщины, ширина шва при этом получается меньше.


После того, как шов заварен до конца, требуется сохранять подачу газа до остывания сварочной зоны. Это предотвратит окисление нагретого металла. Сначала следит прервать подачу сварочной проволоки, потом- отключить ток и только потом- газ. Ха этот промежуток времени шов остынет.

Далее следует зачистить зону шва от шлака и окалины

Полуавтоматическая сварка в атмосфере углекислоты позволяет обеспечит высокое качество и приемлемую себестоимость сварного соединения. Расход СО2 зависит от параметров детали и условий работы и составляет от 3 до 60 л/час. При работе необходимо соблюдать правила техники безопасности.

Краткий справочник начинающего сварщика


Сколько весят баллоны

Кислород, аргон, азот, гелий, углекислота, сварочные смеси: вес пустого 40-литрового баллона — 70 кг
Ацетилен: вес пустого 40-литрового баллона — 90 кг
Пропан: вес пустого 50-литрового баллона — 22 кг

Какая резьба на баллонах

Резьба под вентили в горловинах баллонов по ГОСТ 9909-81
W19,2 — 10-литровые и меньшего объема баллоны для любых газов, а также углекислотные огнетушители
W27,8 — 40-литровые кислород, углекислота, аргон, гелий, а также 5, 12, 27 и 50 литров пропан
W30,3 — 40-литровые ацетилен
М18х1,5 — огнетушители (Внимание! Не пытайтесь заправлять в порошковые огнетушители углекислоту или любой сжатый газ, но вполне можно заправлять пропан.)

Резьба на вентиле для присоединения редуктора
G1/2" — часто встречается на 10-литровых баллонах, под стандартный редуктор нужен переходник
G3/4" — стандарт на 40-литровых кислороде, углекислоте, аргоне, гелии, сварочных смесях
СП 21,8x1/14" — для пропана резьба левая

Давление кислорода или аргона в полностью заправленном баллоне в зависимости от температуры

-40C — 105 кгс/см2
-20C — 120 кгс/см2
0C — 135 кгс/см2
+20C — 150 кгс/см2 (номинал)
+40C — 165 кгс/см2

Давление гелия в полностью заправленном баллоне в зависимости от температуры

-40C — 120 кгс/см2
-20C — 130 кгс/см2
0C — 140 кгс/см2
+20C — 150 кгс/см2 (номинал)
+40C — 160 кгс/см2

Давление ацетилена в полностью заправленном баллоне в зависимости от температуры

-5C — 13,4 кгс/см2
0C — 14,0 кгс/см2
+20C — 19,0 кгс/см2 (номинал)
+30C — 23,5 кгс/см2
+40C — 30,0 кгс/см2

Проволока сварочная Св-08, вес 1 километра проволоки по длине в зависимости от диаметра

0,6 мм — 2,222 кг
0,8 мм — 3,950 кг
1,0 мм — 6,173 кг
1,2 мм — 8,888 кг

Калорийность (теплотворная способность) природного и сжиженного газа

Природный газ — 8570 ккал/м3
Пропан — 22260 ккал/м3
Бутан — 29415 ккал/м3
Сжиженный газ СУГ (усредненная пропан-бутановая смесь) — 25800 ккал/м3
По теплотворной способности 1 куб.м сжиженного газа = 3 куб.м природного газа!

Отличия бытовых баллоных пропановых редукторов от промышленных

Бытовые редукторы для газовых плит типа РДСГ-1-1,2 "Лягушка" и РДСГ-2-1,2 "Балтика" — пропускная способность 1,2 м3/час, давление на выходе 2000 — 3600 Па (0,02 — 0,036 кгс/см2).
Промышленные редукторы для газопламенной обработки типа БПО-5 — пропускная способность 5 м3/час, давление на выходе 1 — 3 кгс/см2.

Основные сведения о газосварочных горелках

Горелки типа Г2 "Малютка", "Звездочка" являются самыми распространенными и универсальными сварочными горелками, и при покупке горелки для общих целей стоит приобретать именно их. Горелки могут комплектоваться разными наконечниками, и в зависимости от установленного наконечника обладать разными характеристиками:

Наконечник №1 — толщина свариваемого металла 0,5 — 1,5 мм — средний расход ацетилена/кислорода 75/90 л/час
Наконечник №2 — толщина свариваемого металла 1 — 3 мм — средний расход ацетилена/кислорода 150/180 л/час
Наконечник №3 — толщина свариваемого металла 2 — 4 мм — средний расход ацетилена/кислорода 260/300 л/час

Важно знать и помнить, что ацетиленовые горелки не могут устойчиво работать на пропане, и для сварки, пайки, нагрева деталей пропан-кислородным пламенем необходимо применять горелки типа ГЗУ и прочие, специально предназначенные для работы на пропан-бутане. Необходимо учитывать, что сварка пропан-кислородным пламенем дает худшие характеристики шва, чем сварка на ацетилене или электросварка, и поэтому к ней следует прибегать только в исключительных случаях, а вот пайка или нагрев на пропане могут быть даже более комфортны, чем на ацетилене. Характеристики пропан-кислородных горелок, в зависимости от установленного наконечника, следующие:

Наконечник №1 — средний расход пропан-бутана/кислорода 50/175 л/час
Наконечник №2 — средний расход пропан-бутана/кислорода 100/350 л/час
Наконечник №3 — средний расход пропан-бутана/кислорода 200/700 л/час

Для правильной и безопасной работы горелки очень важно установить правильное давление газа на входе в неё. Все современные горелки выполняются инжекторными, т.е. подсос горючего газа в них выполняется струей кислорода, проходящей по центральному каналу инжектора, и поэтому давление кислорода должно быть выше давления горючего газа. Обычно устанавливают следующее давление:

Давление кислорода на входе в горелку — 3 кгс/см2
Давление ацетилена или пропана на входе в горелку — 1 кгс/см2

Инжекторные горелки наиболее устойчивы к обратному удару пламени и рекомендуется использовать именно их. В старых, безинжекторных горелках, давление кислорода и горючего газа устанавливается равным, в силу чего развитие обратного удара пламени облегчается, это делает такую горелку более опасной, особенно для начинающих газосварщиков, которые часто умудряются макнуть мундштук горелки в сварочную ванну, что чрезвычайно опасно.

Также следует всегда соблюдать правильную последовательность открывания/закрывания вентилей горелки при её зажигании/гашении. При зажигании первым всегда открывается кислород, потом горючий газ. При гашении сначала закрывается горючий газ, а потом кислород. Учтите, что при гашении горелки в такой последовательности может происходить хлопок — не бойтесь, это нормально.

Обязательно нужно правильно выставлять соотношение газов в пламени горелки. При правильном соотношении горючего газа и кислорода ядро пламени (небольшая яркая светящаяся область прямо у мундштука) жирное, густое, четко очерчено, не имеет вокруг вуали в пламени факела. При избытке горючего газа вокруг ядра будет вуаль. При избытке кислорода ядро станет бледным, острым, колючим. Чтоб правильно выставить состав пламени сначала дайте избыток горючего газа, чтоб появилась вуаль вокруг ядра, и потом плавно добавляйте кислород или убирайте горючий газ до момента, когда вуаль полностью исчезнет, и тут же прекращайте крутить вентили, это и будет оптимальное сварочное пламя. Сварку нужно вести зоной пламени у самого кончика ядра, но не в коем случае не совать само ядро в сварочную ванну, и не относить слишком далеко.

Не стоит путать сварочную горелку и газовый резак. Сварочные горелки имеют два вентиля, а газовый резак — три вентиля. Два вентиля газового резака отвечают за подогревающее пламя, а третий дополнительный вентиль открывает струю режущего кислорода, который, проходя по центральному каналу мундштука, заставляет металл гореть в зоне реза. Важно понимать, что газовый резак режет не выплавлением металла из зоны реза, а его выжиганием с последующим удалением шлака динамическим воздействием струи режущего кислорода. Для того, чтобы разрезать газовым резаком металл, необходимо зажечь подогревающее пламя, действуя также, как в случае зажигания сварочной горелки, поднести резак к краю реза, нагреть небольшой локальный участок металла до красного свечения и резко открыть кран режущего кислорода. После того, как металл загорится и начнет образовываться рез, резак начинают перемещать в соответствии с необходимой траекторией реза. По окончании реза кран режущего кислорода обязательно закрывают, оставляя только подогревающее пламя. Рез всегда нужно начинать только с края, но если есть острая необходимость начать рез не с края, а с середины, то не стоит "пробивать" металл резаком, лучше просверлить сквозное отверстие и начать резку от него, это намного безопаснее. Некоторые сварщики-акробаты умудряются резать металл небольшой толщины обычными сварочными горелками, ловко манипулируя вентилем горючего газа, периодически перекрывая его и оставляя чистый кислород, а потом снова зажигая горелку о горячий металл, и хотя видеть такое можно достаточно часто, стоит предупредить, что делать это опасно, а качество реза получается низкое.

Сколько баллонов можно перевозить без оформления специальных разрешительных документов

Правила перевозки газов автомобильным транспортом регламентируются Правилами перевозки опасных грузов автомобильным транспортом (ПОГАТ), которые в свою очередь согласуются с требованиями Европейского соглашения о международной перевозке опасных грузов (ДОПОГ).

В пункте ПОГАТ 1.2 указывается, что "Действия Правил не распространяются на … перевозки ограниченного количества опасных веществ на одном транспортном средстве, перевозку которых можно считать как перевозку неопасного груза. Ограниченное количество опасных грузов определяется в требованиях по безопасной перевозке конкретного вида опасного груза. При его определении возможно использование требований Европейского соглашения о международной дорожной перевозке опасных грузов (ДОПОГ)".

Согласно ДОПОГ, все газы относятся ко второму классу опасных веществ, при этом разные газы могут иметь различные опасные свойства: A — удушающие газы, O — окисляющие вещества, F — легковоспламеняющиеся вещества. Удушающие и окисляющие газы отностся к третьей транспортной категории, а легковоспламеняющиеся — ко второй. Максимальное количество опасного груза, перевозка которого не подпадает под Правила, указывается в ДОПОГ п.1.1.3.6, и составляет 1000 единиц для третьей транспортной категории (классов 2A и 2O), а для второй транспортной категории (класса 2F) максимальнное количество составляяет 333 единицы. Для газов под одной единицей понимается 1 литр вместимости сосуда, либо 1 кг сжиженного или растворенного газа.

Таким образом, согласно ПОГАТ и ДОПОГ, на автомобиле можно свободно перевозить следующее количество баллонов: кислород, аргон, азот, гелий и сварочные смеси — 24 баллона по 40 литров; углекислота — 41 баллон по 40 литров; пропан — 15 баллонов по 50 литров, ацетилен — 18 баллонов по 40 литров. (Примечание: ацетилен хранится в баллонах растворенным в ацетоне, и каждый баллон, помимо газа, содержит 12,5 кг такого же горючего ацетона, что учтено при расчетах.)

При совместной перевозке различных газов следует руководствоваться ДОПОГ п. 1.1.3.6.4: "Если в одной и той же транспортной единице перевозятся опасные грузы, относящиеся к разным транспортным категориям, сумма количества веществ и изделий транспортной категории 2, помноженного на "3", и количества веществ и изделий транспортной категории 3 не должна превышать 1000 единиц".

Также в ДОПОГ п. 1.1.3.1 содержится указание, что: "Положения ДОПОГ не применяются … к перевозке опасных грузов частными лицами, когда эти грузы упакованы для розничной продажи и предназначены для их личного потребления, использования в быту, досуга или спорта, при условии, что приняты меры для предотвращения любой утечки содержимого в обычных условиях перевозки".

Дополнительно имеется разъяснение ДОБДД МВД России от 26.07.2006 г. исх. 13/2-121, в соответствии с которым "Перевозку аргона сжатого, ацетилена растворенного, кислорода сжатого и пропана, находящихся в баллонах емкостью по 50 л. без соблюдения требований Правил перевозки опасных грузов автомобильным транспортом, возможно осуществлять на одной транспортной единице в следующих количествах: ацетилен растворенный или пропан — не более 6 баллонов, аргон или кислород сжатые — не более 20 баллонов. В случае совместной перевозки двух из указанных опасных грузов возможны следующие соотношения по количеству баллонов: 1 баллон с ацетиленом и 17 баллонов с кислородом или аргоном; 2 и 14; 3 и 11; 4 и 8; 5 и 5; 6 и 2. Такие же соотношения возможны в случае перевозки пропана и кислорода или аргона сжатых. При совместной перевозке аргона и кислорода сжатых максимальное количество не должно превышать 20 баллонов, независимо от их соотношения, а при совместной перевозке ацетилена и пропана — 6 баллонов, также независимо от их соотношения".

Исходя из вышеизложенного, рекомендуется руководствоваться указанием ДОБДД МВД России от 26.07.2006 г. исх. 13/2-121, там разрешается меньше всего и прямо указывается количество, чего можно и как. В этом указании конечно забыли про углекислоту, но всегда можно сказать, что она равна аргону, сотрудники ГИБДД как правило не являются великими химиками и им этого хватает. Помните, что ПОГАТ / ДОПОГ тут полностью на вашей строне, углекислоты по ним можно перевозить даже больше, чем аргона. Правда по-любому будет за вами. На 2014 год автору известно как минимум о 4 выигранных судебных процессах против ГИБДД, когда людей пытались наказать за перевозку меньшего количества баллонов, чем подпадает под ПОГАТ / ДОПОГ.

Примеры использования вышеприведенных данных на практике и в расчетах

Вопрос: На сколько хватит газа и проволоки при сварке полуавтоматом с кассетой проволоки 0,8 мм весом 5 кг и баллона с углекислотой объемом 10 литров?
Ответ: Сварочная проволока СВ-08 диаметром 0,8 мм весит 3,950 кг 1 километр, значит на кассете 5 кг примерно 1200 метров проволоки. Если средняя скорость подачи для такой проволоки 4 метра в минуту, то кассета уйдет за 300 минут. Углекислоты в "большом" 40-литровом баллоне 12 кубометров или 12000 литров, если пересчитать на "маленький" 10-литровый баллон, то в нём углекислоты будет 3 куб. метра или 3000 литров. Если расход газа на продувку 10 литров в минуту, то 10-литрового баллона обязано хватить 300 минут или на 1 кассету проволоки 0,8 весом 5 кг, или "большого" баллона 40 литров на 4 кассеты по 5 кг.

Вопрос: Хочу поставить на даче газовый котел и отапливаться от баллонов, на сколько будет хватать одного баллона?
Ответ: В 50-литровом "большом" пропановом баллоне 21 кг сжиженного газа или 10 кубометров газа в газообразном виде, но так прямо в лоб переводить в кубометры и считать по ним расход нельзя, потому что теплота сгорания сжиженного пропан-бутана в 3 раза выше, чем теплота сгорания натурального газа, а на котлах обычно пишут расход именно натурального газа! Правильнее делать так: находим данные котла сразу по сжиженному газу, например возьмем очень распространенный котел АОГВ-11,6 мощностью 11,6 кВт и рассчитанный на отопление 110 кв. метров. На сайте ЖМЗ указан расход сразу в килограммах в час для сжиженного газа — 0,86 кг в час при работе на полную мощность. 21 кг газа в баллоне делим на 0,86 кг/час = 18 часов непрерывного горения такого котла на 1 баллоне, реально это будет происходить, если на улице -30С при стандартном доме и обычном требовании к температуре воздуха в нем, а если на улице будет всего всего -20С, то 1 баллона будет хватать на 24 часа (сутки). Можно сделать вывод, что чтоб отапливать обычный домик в 110 кв. метров баллонным газом в холодные месяцы года нужно примерно 30 баллонов в месяц. Нужно помнить, что в связи с разной теплотворной способностью сжиженного и природного газа расход сжиженного и природного газа при одной и той же мощности для котлов разный. Для перехода с одного вида газа на другой в котлах обычно нужно менять жиклеры / форсунки. А теперь, кому интересно, можно посчитать и через кубы. На том же сайте ЖМЗ дан расход котла АОГВ-11,6 и по природному газу, он составляет 1,3 куб.м в час, т.е. 1,3 куба природного газа в час равны расходу сжиженного газа 0,86 кг/час. В газообразном виде 0,86 кг сжиженного пропан-бутана примерно равны 0,43 кубам газообразного пропан-бутана. Помним, что пропан-бутан в три раза "мощнее" природного газа. Проверяем: 0,43 х 3 = 1,26 куба. Бинго!

Вопрос: Купил горелку типа ГВ-1 (ГВН-1, ГВМ-1), подключил её к баллону через РДСГ-1 "Лягушку", а она еле горит. Почему?
Ответ: Для работы газовоздушных пропановых горелок, применяемых для газопламенной обработки, необходимо давление газа 1 — 3 кгс/см2, а бытовой редуктор, рассчитанный на газовые плиты, выдает 0,02 — 0,036 кг/см2, что явно недостаточно. Также бытовые пропановые редукторы не рассчитаны на большую пропускную способность для работы с мощными промышленными горелками. В вашем случае необходимо использовать редуктор типа БПО-5.

Вопрос: Купил газовый нагреватель в гараж, нашел пропановый редуктор от газового резака типа БПО-5, подключил нагреватель через него. Нагреватель пыхает огнем и горит нестабильно. Что делать?
Ответ: Бытовые газовые приборы обычно рассчитаны на давление газа 0,02 — 0,036 кг/см2, именно столько выдает бытовой редуктор типа РДСГ-1 "Лягушка", а промышленные баллонные редукторы расчитаны на давление 1 — 3 кгс/см2, что минимум в 50 раз больше. Естественно, что при вдувании в бытовой газовый прибор такого избыточного давления, он не может правильно работать. Вам необходимо изучить инструкцию на свой газовый прибор и использовать правильный редуктор, выдающий строго такое давление газа на входе в прибор, какое ему требуется.

Вопрос: Насколько хватает ацетилена и кислорода при сварке труб на сантехнических работах?
Ответ: В 40-литровом баллоне содержится 6 куб. м кислорода или 4,5 куб. м ацетилена. Средний расход газа горелкой типа Г2 с установленным наконечником №3, чаще всего используемом для работ по сантехнике, составляет 260 литров ацетилена и 300 литров кислорода в час. Значит кислорода хватит на: 6 куб. м = 6000 литров / 300 л/час = 20 часов, а ацетилена: 4500 литров / 260 л/час = 17 часов. Итого: пары полностью заправленных 40-литровых баллонов ацетилен + кислород примерно хватит на 17 часов непрерывного горения горелки, что на практике обычно составляет 3 смены работы сварщика по 8 часов смена.

Вопрос: Нужно или нет, согласно ПОГАТ / ДОПОГ, оформлять специальные разрешительные документы для перевозки на одном автомобиле совместно 2 баллонов пропана и 4 баллонов кислорода?
Ответ: Согласно ДОПОГ п. 1.1.3.6.4 производим расчет: 21 (вес жидкого пропана в каждом баллоне) * 2 (количество пропановых баллонов) * 3 (коэффициент из ДОПОГ п. 1.1.3.6.4) + 40 (объем кислородного в баллона в литрах, кислород в баллоне сжатый) * 4 (количество кислородных баллонов) = 286 единиц. Результат меньше 1000 единиц, такое количество баллонов и в таком сочетании можно перевозить свободно, без оформления специальных документов. Кроме того, имеется разъяснение ДОБДД МВД России от 26.07.2006 г. исх. 13/2-121, прямо указывающее, что такую перевозку допускается производить без соблюдения требований ПОГАТ.

Технические газы для электродуговой сварки: баллоны, регуляторы


Паришься с баллоном под углекислоту/аргон/сварочную смесь Ar+CO2 для сварки? мечтаешь о струйном переносе, но все ищешь смесители и 10 литровые баллоны? Все ответы здесь.

Итак, электродуговая сварка в среде защитных газов знает три типа основных газов, которые можно найти почти во всех крупных столичных городах:
— углекислота (CO2);
— аргон (Ar);
— сварочная смесь Ar+CO2
Все остальное или очень специфично, или тупо дорого (гелий He).

Применяемость газов хорошо описана в Интернете, но если проще — варить заборы из чернухи => углекислота. Варить в своем гараже: для TIG — аргон, для полуавтомата — сварочная смесь.

Тем самым, если Вы хотите стационарно работать с аргоном или сварочной смесью => Ваш выбор однозначно 40 л баллон. Если Вы хотите быть мобильным и наличие аргона/сварочной смеси не критично, то уточняйте у местных пожарных имеется ли возможность заправлять углекислотные баллоны 10 л., а если ответ положительный, то покупайте 10 л. с плоским дном.

Что нужно знать при покупке и обмене баллонов
Не буду повторяться, есть отличное видео —


Также, есть нормативное регулирование срока службы баллона.
Согласно п. 485 Федеральных норм и правил в области промышленной безопасности "Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением":

Срок службы баллонов определяет организация-изготовитель. При отсутствии таких сведений срок службы баллона устанавливают 20 лет. Экспертизу промышленной безопасности в целях продления срока службы баллонов массового применения, объем которых менее 50 л, не производят, их эксплуатация за пределами назначенного срока службы не допускается, за исключением баллонов специального назначения, конструкция которых определена индивидуальным проектом и не отвечает типовым конструкциям баллонов и экспертизу (техническое диагностирование) которых проводят по истечении срока службы, а также в случаях, установленных руководством (инструкцией) по эксплуатации оборудования, в составе которого они используются.

На основании разъяснений разрешается использовать баллоны с истекшим сроком службы, но с действующей аттестацией.
Таким образом, покупая баллон, Вы должны выбрать максимально более свежий по году выпуска. Баллоны старше 95 года без действующей аттестации могут не принимать на станциях обслуживания.

АПДЕЙТ 2020 г: появилась позиция, что срок службы баллонов, изготовленных по ГОСТ 949-73 и по ГОСТ 15860-84 до 22.12.2014г. установлен не более 40 лет в соответствии с ПБ 03-576 03, МТО 14-3Р-001-2002 и МТО 14-3Р-004-2002, в том числе баллоны, находящиеся в эксплуатации для наполнения газами, вызывающими разрушение и физико-химическое превращение материала (коррозия и т.п.) со скоростью:
— не более 0,1 мм/год 40 лет
— более 0,1 мм/год 20 лет
Газы, вызывающие коррозию металла баллона со скоростью:
— не более 0,1 мм/год — азот, аргон, водород, воздух, гелий, кислород, углекислота и другие;
— более 0,1 мм/год — хлор, фосген, сероводород, сернистый ангидрид, хлористый водород, хлористый метил и другие.

Тем самым распространенные баллоны под сварочные газы в виде аргона, углекислоты, гелия по указанной методике служат 40 лет.


Далее, на рынке есть три типа разного рода регуляторов/редукторов:
— регулятор с ротаметром
— стрелочный регулятор
— редуктор.

Отличие редуктора от регулятора понятно: редуктор на выходе выдает просто определенное давление, а регулятор на выходе регулирует поток газа. Редуктор Вам не нужен вообще :)

регулятор с ротаметром или стрелочный регулятор?
Возникает еще один вопрос, на рынке есть два основных типа регуляторов



Какой из них выбрать — дело вкуса. На мой взгляд, стрелочный более продвинутый в плане экономии газа, поскольку фактически это редуктор с калиброванным жиклером и он всегда поддерживает заданное давление. Исходя из известного диаметра жиклера и давления производитель нанес метки расхода на шкалу прибора… тем самым, при начале работы не происходит характерного сброса давления, как это бывает на дешевых регуляторах с ротаметром.
Дешевые регуляторы с ротаметром работают исключительно за счет снижения давления до определенной величины, условно до 6 атм, а также последующего истечения газа через изменяемое гайкой отверстие… иными словами, на начальном этапе работы во всем сварочном рукаве образуется максимальное давление и как только сварщик давит триггер, то избыточное давление сбрасывается, это влечет повышенный расход газа.
Так что по общему правилу — стрелочный подешевле будет в итоге, но есть одно исключение.
Если вы варите нержавейку, то Вам иногда требуется поддув с обратной стороны шва… для этого есть регуляторы с двумя ротаметрами:

Углекислый газ, он же углекислота, он же двуокись углерода…

Формула углекислого газа

Углекислый газ бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н2CO3, придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см 3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO2.

Содержание

Как получилось так, что у данного газа столько много терминов неизвестно, но в сварочном производстве, согласно ГОСТ 2601, используется термин «углекислый газ». В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 - «двуокись углерода». Поэтому далее мы будем оперировать всеми этими понятиями.

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.

Жидкая двуокись углерода

Жидкая двуокись углерода бесцветная жидкость без запаха, плотность которой сильно изменяется с изменением температуры. Она существует при комнатной температуре лишь при давлении более 5,85 МПа. Плотность жидкой углекислоты 0,771 г/см 3 (20°С). При температуре ниже +11°С она тяжелее воды, а выше +11°С - легче.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты.

При нормальных условиях (20°С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Сухой лед

Твердая двуокись углерода (сухой лед) по внешнему виду напоминает снег и лед. Содержание углекислого газа, получаемого из брикета сухого льда, высокое - 99,93-99,99%. Содержание влаги в пределах 0,06-0,13%. Сухой лед, находясь на открытом воздухе, интенсивно испаряется, поэтому для его хранения и транспортировки используют контейнеры. Получение углекислого газа из сухого льда производится в специальных испарителях. Твердая двуокись углерода (сухой лед), поставляемая по ГОСТ 12162.

При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода - поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

История открытия углекислого газа

Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).

Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3.

Джозеф Блэк использовал этот опыт для доказательства того, что углекислый газ выделяется в результате дыхания животных.

Способы получения углекислого газа

В статье "Как получить углекислый газ" рассказано все в мельчайших подробностях, здесь лишь скажем, что основными способами получения являются:

  • из известняка;
  • из газов при брожении спирта;
  • из газов котельных;
  • из газов производств химической отрасли.

Применение углекислого газа

Двуокись углерода чаще всего применяют:

  • для создания защитной среды при сварке полуавтоматом;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • очистка сухим льдом от загрязнений поверхности изделий.

Применение углекислоты для сварки

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Низкий потенциал ионизации и теплопроводность способствуют образованию горячей зоны в центре столба дуги и как следствие более глубокое проплавление и меньшую ширину шва. Углекислый газ является активным газом, т.е. в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.

Молекула углекислого газа CO2, попадая в зону сварочной дуги распадается на атомарный кислород О и угарный газ СО. В результате происходит выгорание легирующих элементов металла сварочной ванны и окисление основного металла (возникает окалина, шлак и дым). Реакция окисления расплавленного металла сварного шва имеет следующий вид:

Fe + CO2 = FeO + CO

Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование большого количества дефектов в сварных швах (преимущественно пор). Поры при сварке возникают в результате кипения затвердевающего металла сварочной ванны от выделения окиси углерода (СО) из-за недостаточной его раскисленности. При этом поверхность сварного шва сильно окислена и имеет большое количество шлака ввиду окисляющей атмосферы внутри сварочной дуги. Помимо неудовлетворительного эстетического вида, при необходимости дальнейшего нанесения защитного покрытия потребуется дополнительная операция зачистки поверхности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

Мэ + O = МэO, где Мэ - металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами. В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное - кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке вольфрамовым электродом - только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом. Для компенсации выгорания легирующих элементов в сварном шве, необходимо применять сварочную проволоку с повышенным содержанием раскислителей (кремния и марганца).

Уже давно известна зависимость, чем больше сила сварочного тока, тем больше размер капель расплавленного металла. В свою очередь увеличение размера капель электродного металла увеличивает разбрызгивание.

В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от данной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания. Еще один путь решения данного вопроса – это использование специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.

При сварке тонких деталей применением оптимальных режимов сварки возможно добиться короткозамкнутого переноса электродного металла и тем самым получить минимальное разбрызгивание. Например, при использовании сварочной проволоки ? 1 мм, силе сварочного тока 150 А и напряжения дуги 16-23 В происходит перенос металла небольшими каплями за счет поверхностного натяжения.

Для MAG сварки толстостенных конструкций целесообразно применение проволоки большого диаметра и, следовательно увеличение силы сварочного тока, увеличение разбрызгивания, что ведет к уменьшению скорости наплавки электродного металла. Для уменьшения разбрызгивания уменьшают скорость подачи сварочной проволоки. Поэтому применение чистой углекислоты оказывает негативное влияние на производительность сварки и качества сварного шва. Углекислоту в качестве защитного газа рационально применять при сварке порошковой проволокой (FCAW) углеродистых сталей поскольку обеспечивается короткозамкнутый перенос и хорошее качество сварного шва.

Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.

При выборе защитного газа стоит учитывать не только его стоимость, но и влияние потерь на разбрызгивание, последующую зачистку и общую трудоемкость процесса.

Вредность и опасность углекислого газа

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Хранение и транспортировка углекислого газа

Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы.

В стандартный баллон с водяной емкостью 40 л заливается 25 кг жидкой углекислоты, которая при нормальном давлении занимает 67,5% объема баллона и дает при испарении 12,5 м 3 углекислого газа.

В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10. 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги.

Баллон окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».

Читайте также: