Газ гелий для сварки

Обновлено: 24.04.2024

В статье «Электрическая дуга» подробно рассказано, что такое сварочная дуга. В данной статье речь пойдет о свойствах сварочной дуги в среде инертного газа – аргоне или гелии.

Характеристики сварочной дуги различны в зависимости от выбранного защитного газа. Любой дуговой заряд поддерживается благодаря тому, что между электродами заключено ионизированное пространстве, в котором наблюдается движение ионов и электронов от одного электрода к другому.

В среде двухатомных газов электроны при своем движении теряют больше энергии, чем при движении в среде аргона или гелия, так как при этом происходит много неупругих столкновений. Это и ведет к большой потере энергии, ионизация молекул сопровождается их диссоциацией. Данный процесс одновременно обусловливает и меньшую подвижность свободных электронов. Подвижность их в среде инертного газа в несколько раз больше чем в среде активных газов, что увеличивает вероятность возбуждения и ионизации нейтральных частиц газа. При разряде в среде двухатомного газа в дуговом промежутке образуются отрицательные ионы, которые затрудняют движение электронов из-за увеличения электрического сопротивления, чего не наблюдается в среде инертных газов.

Отсутствие отрицательных ионов снижает коэффициент рекомбинации, что ведет к увеличению стабильности разряда. В аргоне и гелии меньше вероятность самопроизвольного прекращения разряда, чем в других газах, так как первые обладают меньшими потенциалами зажигания самостоятельного разряда. Катодное падение напряжения минимально, поэтому для поддержания разряда требуется минимальное напряжение. Нахождение атомов аргона и гелия в метастабильном состоянии облегчает ступенчатую ионизацию газов, а это ведет к тому, что потенциал горения дуги оказывается ниже ионизационного потенциала газов.

Обычно потенциал возбуждения и ионизации инертных газов выше соответствующих потенциалов паров металла, азота и кислорода, что затрудняет зажигание дуги переменного тока при ее питании от обычных трансформаторов. Во время сварки в среде гелия при одинаковой силе тока напряжение дуги на электродах, состоящих из W - Me (металл), Al - Al, Ti - Ti, значительно выше, чем дуги в аргоне. При сварке стали напряжение между железными электродами очень низкое, примерно 8 - 10 В.

Дуга в гелии имеет большую проплавляющую способность и менее концентрирована, она создает более равномерную форму проплавления, чем дуга в аргоне, а последняя обеспечивает большую глубину проплавления в центре. Перепад напряжения в столбе дуги в гелии больше, чем в аргоне, поэтому изменение длины дуги в гелии более заметно сказывается на напряжении и общей тепловой эффективности.

Форма шва и проплавление для различных защитных газов

Изменение формы проплавления в зависимости от свойства инертного газа

В зависимости от того, какой инертный газ применяется, меняется поверхностное натяжение на границе металл - газовая фаза. Так, поверхностное натяжение жидких хромоникелевых сталей аустенитной структуры при сварке в гелии заметно меньше, чем в аргоне. Указанное обстоятельство сказывается на формировании поверхности усиления шва. В гелии наблюдается более плавный переход усиления к основному металлу, что иногда ведет к уменьшению концентрации напряжений в этом районе и улучшению работоспособности сварного соединения. Поэтому в ряде случаев становится целесообразным применение аргоно-гелиевых смесей в разных пропорциях смешения.

Дуга, горящая между вольфрамовым электродом и металлом в среде аргона, имеет свои особенности. Статическая характеристика такой дуги в аргоне, как и дуги под слоем флюса, имеет положительный характер. Это объясняется охлаждающим действием газовой струи и высокой плотностью тока на вольфрамовых электродах, которая составляет 10-90 А/мм 2 . На рисунке ниже приведены статические характеристики для вольфрамовой дуги, горящей в аргоне. Можно видеть, что при больших токах и малых дуговых промежутках напряжение на дуге Uд меньше потенциала ионизации Uп.

  • для аргона Uп = 15,7 В
  • для гелия Uп = 25,4 В

Минимальное напряжение на дуге приближается к потенциалу возбуждения аргона, метастабильное состояние которого, вероятно, в этом случае играет значительную роль. Градиент напряжения в гелии для больших дуговых промежутков больше, чем для малых промежутков. Обратное явление наблюдается в аргоне. Здесь расход газа и диаметр электрода мало отражаются на характере зависимости напряжения дуги от ее длины, а в гелии, наоборот, напряжение дуги можно изменять, меняя расход газа. Свойства дуги, горящей в аргоне между вольфрамовым электродом и металлом, могут меняться в зависимости от свойств металла и состава газовой смеси.

Статические характеристики вольфрамовой дуги в аргоне для различных длин дуг

Статические характеристики вольфрамовой дуги в аргоне для различных длин дуг

Технологические свойства вольфрамовой дуги при сварке ухудшаются из-за выпрямления переменного тока (если он применяется) и появления в цепи составляющей постоянного тока.

Анализ этого явления, проведенный по осциллограммам, показывает, что степень выпрямления тока в дуге зависит от различия термических временных постоянных материала электродов (теплоемкости, умноженной на величину, обратную теплопроводности). Чем больше разность этих постоянных, тем больше степень выпрямления тока в дуге. При разных материалах электродов разность их температур во время горения дуги пропорциональна разности термических временных постоянных. Однако различие температур катода в разные полуциклы горения дуги ведет к появлению составляющей постоянного тока, и степень выпрямления оказывается пропорциональной разности термических временных постоянных материалов электродов. Наряду с различием теплофизических свойств электродов на выпрямляющее действие дуги в аргоне сказывается и изменение геометрической формы электродов. Наибольшее значение составляющей постоянного тока, обусловленное различием теплофизических свойств, наблюдается для дуги, возникающей при использовании электродов системы W - Al.

Постоянная составляющая в сварочной цепи переменного тока для дуги системы W – Al в аргоне

Uхх – напряжение холостого хода
Uд - напряжение на дуге
Iд – сила сварочного тока

Постоянная составляющая в сварочной цепи переменного тока для дуги системы W – Al в аргоне

В полупериодах, когда катодное пятно расположено на вольфрамовом электроде (прямая полярность), из-за мощной термоэлектронной эмиссии катода создаются благоприятные условия для возбуждения и горения дуги при низком напряжении. В полупериодах, когда катодное пятно находится на алюминии (обратная полярность), катод холодный и термоэлектронная эмиссия затруднена. В данном случае для возбуждения дуги требуются более высокие максимальные (пиковые) значения напряжения, а горение дуги будет происходить при большем значении напряжения, чем в предыдущий полупериод. При сварке на малых токах возбуждение дуги в полупериоды обратной полярности может не произойти вообще, и дуга станет «выпрямительным вентилем». Это ведет к резкому ухудшению стабильности ее горения. При наличии постоянной составляющей и значительно увеличивается сопротивление магнитопровода трансформатора и понижается мощность, отдаваемая дуге. При уменьшении тока в полупериоды обратной полярности затрудняется катодная очистка свариваемых кромок и поверхности сварочной ванны от тугоплавких окисных пленок. Поэтому установки для сварки вольфрамовой дугой (особенно алюминия и его сплавов) должны содержать специальные устройства (стабилизаторы, импульсные возбудители, батареи конденсаторов, полупроводниковые вентили), либо подавать импульсы в полупериод обратной полярности для облегчения зажигания дуги или частичного (полного) подавления возникшей постоянной составляющей тока.

Гелий вместо аргона

У меня такой вопрос:есть ли какие то особенности сварки при использовании гелия в место аргона и как это влияет на качество шва?
Просто есть халявный гелий и я сегодня решил попробовать его вместо аргона.
Завтра буду экспирементировать,но хотелось бы узнать мнение более опытных коллег.
Варю в основном люминь и реже нержавейку.

Владимир,по сути особых отличий нет,если не углубляться в нюансы теории.
Провар будет глубже и сам гелий легче воздуха,т.е может быть давление придётся добавить.Мы его раньше применяли для потолочных швов на сплаве и для сварки меди с нержавейкой.

« Забор как вчера упал,так и стоит »

Читал что в США основной газ гелий . Но тогда вопрос что на российско -американских фирмах америка. перешла на аргон ?

У нас 1200гр.баллон ,может его в смеси с аргоном можно.Но слишком дорого,аргон 200гривен.

Смысл может бывает . Это когда трудно поддув аргоном применить (чисто теоретически) . и нужен гелий который легче атмосферы и сам в верх поднимается .

Именно поэтому и применяли гелий на "титановых" обтекателях.Защита в потолке намного лучше и ток слегка можно занизить.

Сегодня пробовал варить.
Нержавейка варится просто отлично(кажется даже лучше чем в аргоне)но приходится долго разогревать электрод,а вот с диском(литье) мне не понравилось на переменке дуга горит как то грубо и непонятная копоть появляется.
Так же попробовал на полуавтомате(вот тут превзошло все мои ожидания)ток убавил на минимум,подобрал подачу и просто песня .
Вывод:на ТIGе лучше аргон (к гелию нужно приспосабливаться),а вот на п\автомате он дает возможность сваривать более толстые детали и красивейший шов без брызг.

Все верно, гелий на переменке коптит, но сварка в нем качественнее. Самые ответственные узлы в оборонном судостроении варили в гелии. Самому не приходилось, но видел лично на соседнем посту, еще в СССР. Да и гелия по случаю притырить, это аргон без счета стоял, подходи да бери, а гелий специально под тот узел заказывали.

Слышал в каком то буржуйском видео, что тепла гелиевой дуги хватает чтоб и на постоянном токе варить алюминий. Причём вроде бы на обычной прямой полярности. Типа того, что плавится и окись алюминия, которая сварке мешает. Брехня, не? Владимир, проверьте если не лень.

ARGONIUS,
Ни на прямой ни на обратной нихрена у меня не получилось.Даже фоткать не стал .
На постоянке даже в гелие не варится.

Слышал в каком то буржуйском видео, что тепла гелиевой дуги хватает чтоб и на постоянном токе варить алюминий. Причём вроде бы на обычной прямой полярности. Типа того, что плавится и окись алюминия, которая сварке мешает. Брехня, не? Владимир, проверьте если не лень.

Вот,ходят слухи,что не будет больше слухов. (С) В.Высоцкий.
Может статься,что тепловложения для расплавления алюминия и хватит,но в сварку как-то не верится. Разрыв оксидной плёнки основан на явлении катодного распыла.Катодный распыл возможен только на переменном токе.Неспроста ж производители сварочной техники для сварки переменным током неплавящимся электродом алюминия и его сплавов идут на всякие ухищрения,чтоб подавить в дуге постоянную составляющую.На качество сварки её присутствие влияет плохо.

Миротворец,
Я пробовал только ради интереса и пленку у меня побороть не получилось.Может если поиграть с настройками что то и получится,но времени особо нет,сейчас работой завален.
Зимой обязательно попробую.
У меня тоже китаец элитеч 200 и купил я его всего пару месяцев назад,так что в тигсварке я можно сказать новичек а главный учитель у меня данный форум.

Я пробовал только ради интереса и пленку у меня побороть не получилось.

Главная настройка это поменять полярность на ОП и току ,желательно, не более 40 А на электроде 3,2 мм голубого, серого или золотистого цвета.

Чего-то в дебри полезли!


все просто, ясно и наглядно.

Ну что тут ясного и понятного? Очередной пиндосский бред и никакой инфы. Даже бразилы на brazil welds дают намного больше инфы-толщины, токи, типы присадок, технологию выполнения шва и тд.
Пиндосы вообще ущербная нация по своей сути, учится у них . себя не уважать.

S5024427.JPG

Абсолютно согласен.Здесь не увидел ничего,кроме мутного отражения сварщика в зеркальной поверхности осн.металла.

АМг 61 в Ar

По мне так гелий лучше всего был для сварки алюминия ( He30 для тонких листов и He70 более 6 мм) И шовчик всегда аккуратный и красивый, а если аргоном варить вообще удаж, жаль у меня не сохранились фотки, я делала 2 детали одинаковых, одну варила гелием, а другую аргоном, гелий гораздо лучше! да тем более и легче и перенситься лучше)) А вот аргон вообще только для сварки нержавейки, ну и всего остального. Гелием ни к коем случае нельзя варять нержавейку, там структура меняется и всякое такое))) Хотя аргон переношу хуже, он тяжелее и всё. вообщем так.

Многие люди думают, что единственным способом для аргонодуговой TIG сварки алюминия является наличие аппарата с переменным током AC..

Так думают пиндосы-тупая и ущербная нация
Хотел прокоментировать этот изврат, но лень.
При токе 180А я и 8 мм ПРОЖГУ с минусом на горелке в среде аргона, а тут этому мистеру гелий подавай. извращенец.

Гелий группы "Б" подойдет для сварки, или только "А" нужно? Планирую использовать в чистом виде и мешать с аргоном.

Не знаю не А не Б, но знаю то, что все мои эксперименты с гелием закончились провалом.

Аргон рулит! Может у меня гелий был плохой,может я не смог настроиться,но факт остается фактом.

Пока был халявный гелий я его использовал на П\А,а как лавочка закрылась то и мои эксперименты кончились.

У нас он в три раза дороже аргона.

Марка А - 6000р, марка Б - 3000р. Разница большая. Аргон 800р.

Планируется сварка алюминия толщиной от 10мм, везде читаю нужно смесь с гелием. Готовую не купить, самому намешать можно, но нужно определиться какой гелий использовать.

Варить П/А будем, не TIG.

Свармен, а гелий тогда за чем. Если полуавтомат, то только аргон. Гелий хорош для потолка, т.к. вверх подымается. Во всех остальных случаях можно и на аргоне варить. Главное это зачищенная поверхность.

Конечно сварка гелием интереснее, т.к. температрура будет выше и следовательно при том же токе можно глубже взять.

Для сварки алюминия нужен инвертор, если на трансе варить, то шов не такой плотности получится и чистоты. На инверторе можно поиграться с режимами и получить очень шикарный шов со всех сторон (провар, плотность шва, чистота шва и т.п.)

Все ИМХО и из личных наблюдений.

зарабатываем и получаем удовольствие от процесса.

П/А импульсник 500А, в аргоне как-то не очень получается. Точнее на алюминии толщиной до 5мм - неплохо. А свыше 10мм, даже после предпрогрева совсем не то. Вот и думаю, что тепла не хватает, а увеличиваю ток и напругу, просто больше наваливает и все. Швы не то что не блестят, черные в копоти.

На п/а не варил алюминий но на РАДС 320А дал и в бой в начале дугой погрел без предварительного прогрева в печи. Так вот я считаю что ваш п/а не прогревает. У вас случайно шов белым не становится или метал возле шва? Если белый значит точно непрогрели.

П/А импульсник 500А, в аргоне как-то не очень получается. Точнее на алюминии толщиной до 5мм - неплохо. А свыше 10мм, даже после предпрогрева совсем не то. Вот и думаю, что тепла не хватает, а увеличиваю ток и напругу, просто больше наваливает и все. Швы не то что не блестят, черные в копоти.

Слышал в каком то буржуйском видео, что тепла гелиевой дуги хватает чтоб и на постоянном токе варить алюминий. Причём вроде бы на обычной прямой полярности. Типа того, что плавится и окись алюминия, которая сварке мешает. Брехня, не? Владимир, проверьте если не лень.

вот это видео только там обратная полярность

Гелий – солнечный газ

Формула гелия

Гелий химический элемент, атомный номер 2, атомная масса 4,0026, относится к инертным газам, без цвета и запаха. Объемное содержание гелия в воздухе 0,00052%. Гелий значительно легче воздуха, плотность 0,1785 кг/м 3 при нулевой температуре и нормальном давлении. Температура кипения -268,9°С. Потенциал ионизации 25,4 В. Бесцветный, неядовитый, негорючий и невзрывоопасный газ, хорошо диффундирует через твердые тела. Химическая формула - He.

Содержание

История открытия гелия

Впервые гелий был обнаружен во время солнечного затмения 1868 г. астрономы впервые применили спектроскопию для исследования атмосферы Солнца.

Вопрос о том, какому веществу отвечает линия D3, долго еще оставался открытым. Было лишь установлено, что в спектрах элементов, известных на нашей планете, пока не обнаружено спектральной линии, подобной ярко-желтой линии D3. Локьер ошибочно считал, что раскаленный газ, излучение которого дает таинственную линию D3, является модификацией водорода, не встречающейся на Земле.

В августе 1871 г. Кельвин заявил, что линия D3 до сих пор не идентифицирована с каким-либо земным элементом. Возможно, что она принадлежит новому веществу, которому Локьер и Жансен предложили дать название гелий (от греческого слова гелиос - солнце).

В 1895 г. Сэр Уильям Рамзай (Sir William Ramsay) изучал газ, выделенный им из минерала клевеита, и в гейслеровой трубке неожиданно обнаружил яркую желтую линию. Выдающийся спектроскопист того времени Уильям Крукс (William Crookes) определил длину волны новой линии (5874,9 А) и установил, что это линия D3, на этом основании Рамзай сообщил (23 марта 1895 г.) об открытии им гелия на Земле.

Такова история открытия важнейшего представителя группы инертных газов, который сначала был обнаружен в солнечной атмосфере, а затем (через 27 лет) - на Земле.

Вскоре гелий был обнаружен в других минералах и горных породах, содержащих уран. Наличие гелия в земной коре позволило сделать вывод о его содержании в атмосфере, хотя многие ученые утверждали, что этот легкий газ, выделяющийся из земной коры, полностью уносится из атмосферы в космическое пространство. Вскоре Генрих Кайзер, а затем Зигберт Фридлендер (1896 г.), а также Эдвард Бэли в результате анализа первой выпаренной фракции жидкого воздуха доказали его присутствие в атмосфере.

Способы получения гелия

Гелий получают из гелийсодержащих природных газов, минералов и воздуха. Об этом мы писали в статье о производстве гелия, поэтому здесь не будем повторять написанное.

Применение гелия

В промышленности гелий применяют в меньших масштабах, чем газ аргон. Чаще всего его используют:

  • хладагент – охлаждение сверхпроводящих магнитов в медицинских сканерах МРТ;
  • металлургия – выплавка чистых металлов;
  • подводно-спасательное дело – в составе дыхательных смесей;
  • сварочное производство – защитный газ;
  • в индустрии развлечений – заполнение шариков.

Применение гелия в сварке

В связи с тем, что He примерно в 10 раз легче Ar, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении, поэтому расход гелия при сварке увеличивается в 1,5-3 раза.

Применяют его в основном при сварке неплавящимся электродом химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Применение гелия в сварке

Гелий становится предпочтительнее аргона при необходимости дополнительной защиты швов при сварке в потолочном положении. Особенно при сварке титановых сплавов и других химически активных металлов, поглощающих азот и кислород не только в расплавленном состоянии, но и в твердом при нагреве выше определенной температуры.

Однако не только защитные свойства Ar и He различны. Различными являются и характеристики дуги в этих газах. Так, при одинаковой силе тока напряжение дуги в гелии значительно выше, чем дуги в аргоне. Такая дуга имеет большую проплавляющую способность и менее концентрирована (создает иную форму проплавления, более равномерную, в то время как дуга в аргоне при сварке, например, титановых сплавов вольфрамовым электродом дает большое проплавление в центре и значительно меньшее по краям ванны). Перепад напряжения в столбе дуги в гелии больше, чем в аргоне, поэтому изменение длины дуги заметнее сказывается на напряжении и общей ее теплоэффективности. Для более развернутой информации обязательно прочитайте статью о сварочной дуге в инертных газах.

Форма шва и проплавление для различных защитных газов

Форма шва и проплавление для различных защитных газов

В зависимости от применения того или иного газа меняется и поверхностное натяжение на границе металл-газовая фаза. Так, для хромоникелевых сталей аустенитного класса поверхностное натяжение жидкого металла при сварке в He заметно меньше, чем в Ar. Это сказывается и на формировании поверхности швов. Более плавные переходы от шва к основному металлу, при сварке в гелии, имеют место и для других металлов, в частности титановых сплавов и в ряде случаев оказывают влияние на некоторые характеристики работоспособности сварных соединений.

Чаще всего He используют для образования инертных газовых смесей c Ar. Обладая большей плотностью, чем гелий, такие смеси лучше защищают металл сварочной ванны от воздуха и увеличивают производительность сварки в целом. В смеси в полной мере реализуются преимущества обоих газов:

  • аргон - обеспечивает стабильность горения дуги;
  • гелий - обеспечивает высокую степень проплавления.

Опасность и вред гелия

Гелий не относится к ядовитым и токсичным газам, поэтому в малых количествах он не является опасным. Он может оказать действие как удушающий газ (асфиксант) только в том случае, если в результате утечки уровень кислорода окажется ниже допустимой концентрации. Но утечку гелия очень легко выявить т.к. за счет сжимания голосовых связок у человека меняется голос. Мы все знаем данный комический и мультяшный эффект, когда при вдыхании гелия из шарика голос становится более высоким.

Гелий является опасным, только в случае снижения уровня кислорода в окружающей среде ниже допустимой концентрации.

Хранение и траспортировка гелия

Транспортируют и хранят гелий в газообразном состоянии в стальных баллонах при давлении 15 МПа или в сжиженном состоянии при давлении менее 0,2 МПа.

Баллоны с гелием окрашены в коричневый цвет с надписью белыми буквами «ГЕЛИЙ». Баллоны должны соответствовать требованиям ГОСТ 949.

Баллон с гелием

Методы определения доли примесей и условий поставки регламентируются ГОСТ 20461.

Гелий

Получение гелия в промышленности осуществляется в основном путем конденсации из гелийсодержащих газов. Добыча гелия из минералов или из воздуха является нерентабельной, но об этом мы расскажем ниже. Газ гелий очень редкий гость в воздушном пространстве планеты Земля и его объемное содержание в воздухе составляет всего 0,00046-0,00052% и с этим связаны основные трудности и проблемы в его получении.

Получение гелия

Сварочные смеси бывают не только из аргона и углекислого газа

Сварочные смеси применяются в сварочном производстве относительно недавно и связано это в первую очередь с высокой стоимостью отдельных компонентов: аргона и гелия. До середины 90-х годов повсеместно в странах СНГ для сварки полуавтоматом углеродистых сталей применяли углекислый газ, поскольку он тяжелее воздуха и хорошо обеспечивает защиту сварочной ванны, а для сварки алюминия и нержавеющих сталей — аргон, так как он, являясь инертным газом препятствует окислению и выгоранию легирующих элементов. Но по ряду отрицательных характеристик, однокомпонентные газы заменяются двух-, трех- и даже четырехкомпонентными сварочными смесями, чтобы полностью использовать все положительные качества каждого отдельно взятого газа.

Сварочные смеси

Свойства сварочной дуги в инертных газах – аргоне и гелии

Баллоны для сжатых газов

Для хранения и транспортировки сжатых, сжиженных и растворенных газов, находящихся под давлением, применяют стальные баллоны. Баллоны имеют различную вместимость - от 0,4 до 55 дм 3 .

Объем, размеры и устройство газового баллона

Газовый баллон - стальная емкость, предназначенная для хранения и транспортировки сжатых, сжиженных и растворенных газов под давлением.

Газовые баллоны изготовляют из бесшовных труб углеродистой и легированной стали. Для сжиженных газов допускается применение сварных корпусов при рабочем давлении менее 3 МПа.

Некоторые стандарты допускают изготовление корпуса из алюминия или композитных материалов, например ISO 11439. В качестве композитного материала применяют полимер, армированный углеродным волокном, который имеет очень высокие прочностные показатели. Газовые баллоны из композитных материалов сложнее в изготовлении, но у них есть главное преимущество - малый вес.

Объем газового баллона, а также размеры, вес и его устройство

Подогреватель, расходомер, осушитель газа для сварки

Подогреватель, расходомер и осушитель применяют при полуавтоматической сварке или как её еще называют MIG и MAG. Расходомер необходим для учета и установке оптимального расхода газа или сварочной смеси.

Поскольку углекислый газ в баллоне находится в жидком состоянии, при отборе из баллона происходит процесс испарения и превращение в газ, который уже поступает в сварочную горелку полуавтомата. В результате перехода из жидкого состояния в газообразное резко уменьшается температура газа и происходит процесс замерзания влаги в каналах редуктора и их заполнение льдом. Во избежание данного негативного эффекта применяют подогреватели газа, которые устанавливают между вентилем баллона и редуктором или расходомером. Но и этого иногда недостаточно так как из углекислоты необходимо удалить лишнюю влагу и для этого применяют осушители газа.

Читайте также: