Какие электроды следует использовать для сварки конструкций химического машиностроения из стали 12мх

Обновлено: 16.05.2024

Электроды, применяемые при сварке сталей, должны обеспечивать высокие механические свойства сварного соединения и высокую производительность процесса сварки.

Электродная проволока. Электродную проволоку изготовляют диаметром 1—12 мм. Длина электродов, нарезаемых из проволоки диаметром до 3 мм, обычно составляет 350 мм, а диаметром свыше 3 мм — 450 мм. На практике преимущественно применяют электроды диаметром 2—7 мм. Электродами диаметром 2 мм сваривают металл толщиной до 2 мм, диаметром 3 мм — металл толщиной 2 мм и выше. Для сварки металла толщиной 5—10 мм применяют электроды диаметром 4—5 мм, а для толщин свыше 10 мм — электроды диаметром 5—7 мм. Химический состав металла стальной электродной проволоки установлен ГОСТом и имеет 19 марок. Для сварки малоуглеродистой стали и многих сортов конструкционных сталей самое широкое применение в производстве имеют три марки проволоки: Св-I, Св-IA и Св-II.

Указанные марки проволок отличаются по содержанию углерода, кремния и фосфора. Лучшая проволока Св-IA содержит до 0,10% С; 0,35— 0,6% Mn; 0,15—0,25% Si; 0,03—0,04% S; до 0,03% Р. Марка Св-II содержит углерода до 0,18%.

Для ручной дуговой сварки проволоку-электрод покрывают специальными обмазками с целью защиты ванны расплавленного металла от поглощения кислорода и азота из воздуха. Содержание кислорода в металле шва свыше 0,2% и азота свыше 0,15% резко снижает пластические свойства металла шва: относительное удлинение, угол загиба, ударную вязкость. Поглощение азота и кислорода расплавленным металлом в процессе сварки происходит как при переходе капель металла с электрода в ванну, так и в самой ванне и продолжается до затвердевания металла. Кислород, обладающий большой химической активностью, вступает с железом в соединения: FeO, Fe3О4 и Fe2O3.

Низший окисел — закись FeO — образуется ранее других на поверхности капли расплавленного металла и сразу же растворяется в нем. Высшие окислы железа в момент переноса капли металла в ванну раскисляются углеродом, марганцем, кремнием, содержащимися в электродной проволоке. Выгорание этих примесей уменьшает их содержание в металле шва. На поверхности сварочной ванны реакции окисления продолжаются и, несмотря на происходящие внутри ванны раскислительные процессы, металл насыщается кислородом в виде твердого раствора FeO в железе или включений окислов.

Насыщение расплавленного металла азотом воздуха может происходить либо путем образования при высоких температурах нитридов марганца MnN и кремния SiN, либо окисла NO. При температуре металла около 1000°С этот окисел выпадает из твердого раствора и диссоциирует на атомарный азот и кислород. Атомарный азот образует с железом нитриды Fe4N и Fe2N в интервале температур 500—800°С. Для уменьшения содержания азота и кислорода в металле шва применяют ряд мер: в металле электродов увеличивают содержание раскислителей (Mn, Si), наносят специальное электродное покрытие, содержащее раскислители. Хорошей защитой расплавленного металла от кислорода и азота воздуха при ручной дуговой сварке является применение покрытых электродов, которые при плавлении дают шлаки, защищающие металл как при переходе его с электрода в ванну, так и в самой ванне. В зависимости от толщины покрытия электроды разделяются на тонкопокрытые, с толщиной слоя обмазки 0,1—0,3 мм и толстопокрытые, с толщиной слоя обмазки до 2 мм. Вес тонкого покрытия составляет около 1%, а толстого около 20—35% от веса электрода. Тонкие покрытия предназначаются для увеличения устойчивости горения дуги и поэтому часто называются ионизирующими покрытиями. Наиболее распространенным ионизирующим покрытием является меловое, состоящее по весу из 80—85% мелко просеянного мела СаСО3 и 15—20% жидкого растворимого стекла NaOSiО2.

Сварные швы, выполненные этими электродами, из-за отсутствия защиты расплавленного металла обладают низким пределом прочности и низкой пластичностью. Для получения сварных швов с высокими показателями прочности и пластичности пользуются электродами с толстым покрытием. В состав толстого покрытия входят газообразующие, шлакообразующие и легирующие вещества и раскислители.

Газообразующие вещества в покрытиях, вроде древесной муки, крахмала, пищевой муки, целлюлозы и т. п., предназначаются для создания в процессе плавления электрода газовой защитной среды (вокруг дуги и ванночки жидкого металла), состоящей в основном из водорода и окиси углерода. В результате этой защиты удается устранить вредное влияние воздуха на жидкий металл. Шлакообразующие вещества, входящие в состав толстых покрытий, вроде полевого шпата, марганцевой руды, титановой руды, мела, каолина и т. п. образуют при плавлении электрода шлаки, защищающие расплавленный металл от воздействия воздуха и улучшающие условия формирования металла шва.

Ферросплавы в виде ферромарганца, ферротитана, ферросилиция и др. вводят в покрытия для раскисления металла шва и шлаков, перевода закиси железа в металле в другие соединения, а также для легирования металла шва путем повышения содержания в нем некоторых элементов, вроде Mn, Si, Ti и др.

Для сварки сталей с незначительным содержанием легирующих примесей применяют электроды со стержнями из малоуглеродистой стали, но с введением в покрытие легирующих элементов в виде ферросплавов (ферромарганца, ферросилиция, феррованадия, ферротитана и др.) вместе с соответствующими газо- и шлакообразующими компонентами.

Легирующие элементы из покрытия, частично выгорая, переходят в наплавленный металл шва и позволяют получить механические свойства шва, близкие к свойствам свариваемого металла. При сварке высоколегированных сталей (нержавеющих и жаропрочных) применяют электроды, стержни которых по своему химическому составу одинаковы со свариваемым металлом. Для компенсации выгорания при сварке легирующих элементов, содержащихся в проволоке, в состав покрытия для этих электродов, кроме газо- и шлакозащитных веществ вводят соответствующие компоненты в виде ферросплавов.

Во всех покрытиях в качестве связующего вещества применяют жидкое стекло. В некоторых случаях применяют декстрин и органический клей.

Электроды для коррозионностойких кислотостойких сталей

Основное требование при выборе электродов для сварки кислотостойких сталей - это обеспечение коррозионной стойкости металла шва в жидких агрессивных средах при нормальных и повышенных температурах и давлениях. К наиболее агрессивным жидким средам относятся кислоты и их растворы, которые обладают как окислительными, так и неокислительными свойствами.

Для сварки конструкций из кислотостойких сталей, работающих в неокислительных жидких средах при температурах до 360°С и не подвергающихся термической обработке после сварки, рекомендуются электроды марок ЭА-400/10Т, ЭА-400/10У и др., марок ОЗЛ-8, ОЗЛ-12, Л-39 и др., марки ЭЛ-606/10 и т. п. Термическая обработка сварных соединений, выполненных этими электродами, не допускается.

Для конструкций, работающих в неокислительных или малоокислительных жидких средах, для которых после сварки необходим отпуск, рекомендуются электроды марки ЭЛ-898/21 и др., которые обеспечивают стойкость шва против межкристаллитной коррозии как в исходном состоянии, так и после отпуска.

Конструкции, которые эксплуатируются в окислительных жидких средах, например в азотной кислоте, рекомендуется сваривать электродами типа Э-08Х19Н10Г2Б марок ЦТ-15, ЗИО-З и др.

Для низкоуглеродистых кислотостойких сталей, содержащих до 0,03% углерода, используются электроды типов Э-04Х20Н9 марок ОЗЛ-14Л, ОЗЛ-36; Э-02Х20Н14Г2М2 марок ОЗЛ-20 и др.

Характеристики электродов для сварки коррозионностойких кислотостойких сталей

Для коррозионностойких сталей

Марка электрода / проволоки
Обозначение кода по ГОСТ
Область применения
Технологические особенности

Покрытие

Род,
полярность тока

Коэффициент наплавки, г/А?ч

Положение в пространстве

ЦТ-15 / 07Х19Н10Б
Е- 2453 - Б20

ЗИО-3 / 07Х19Н10Б
Е - 2403 - Б20

ОЗЛ-8 / 04Х19Н9
Е - 2304 - Б20

Для сталей 08Х18Н10, 12Х18Н9, 12Х18Н10Т и др., когда к металлу шва не предъявляются жесткие требования по стойкости против межкристаллитной коррозии. Сварка короткой дугой по зачищенным кромкам

ЛЭЗ-8/04Х19Н9
Е - 2004 - Р26

Для сталей 08Х18Н10, 12Х18Н9, 12Х18Н10Т и др., когда к металлу шва не предъявляются жесткие требования по стойкости против межкристаллитной коррозии.

ОЗЛ-8С
Е - 2000 - П20

Для сталей 08X18Н10, 12Х18Н9, 12Х18Н10Т и др., когда к металлу шва не предъявляются жесткие требования по стойкости против межкристаллитной коррозии. Сварка короткой дугой по зачищенным кромкам

ЦТ-50/01Х19Н9
Е - 2004 - РБ36

Для сталей 08Х18Н10, 12Х18Н9,12Х18Н10Т и др., когда к металлу шва предъявляются жесткие требования по стойкости против межкристаллитной коррозии. Сварка короткой дугой по зачищенным кромкам

ЭА-606/10 / 05Х19Н9Ф3С2
Е - 2006 - Б20

Для сталей 09Х17Н7Ю, 09X15Н8Ю и других, а также для сталей 14Х17Н2 и др.

ЭА-400/10У 1 04Х19Н11М3
E - 2204 - Б20

Для сталей 08Х18Н10Т, 12Х18Н10Т, 08Х17Н13М2Т и др., работающих в жидких агрессивных средах при температурах до 350°С и не подвергающихся после сварки термической обработке. Пригодны для наплавки антикоррозионного покрытия. Стойкость против межкристаллитной коррозии обеспечивается в состоянии после сварки и после аустенизации. Электроды ЭА-400/10Т обеспечивают лучшую, чем ЭА-400/10У, отделяемость шлака. Электроды ЦЛ-11 для более коррозионностойких сталей

ЭА-606/11 /08Х19Н9Ф2С2
Е-2007-Б20

Для сталей 08Х18Н10Т, 12Х18Н9Т и др., работающих при температурах до 350°С и не подвергающихся после сварки термической обработке. Не рекомендуются для сварки сталей, не легированных титаном или ниобием

ГЛ-2 /08Х19Н9Ф2С2
E - 2006 - Б30

ЭА-898/21 /08Х19Н10Г2Б
E - 2304 - Б20

Для сталей 08Х18Н10Т, 08Х17Н13М2Т и др., работающих в окислительных и малоокислительных средах при температурах до 350°С и подвергаемых после сварки термической обработке

ОЗЛ-З6 / 01Х19Н9
Е - 2056 - РБ20

Для сталей 08Х18Н10Т, 06Х18Н11, 08Х18Н12Т, 04Х18Н10 и др., когда к металлу шва предъявляются требования по стойкости против межкристаллитной коррозии как в исходном состоянии, так и после кратковременных выдержек в интервале критических температур. Жаростойкость до 800°С без серосодержащих газов

Для коррозионностойких сталей с пониженным содержанием углерода

ОЗЛ-20 / 01Х17Н14М2
E - 2001 - П30

Для сталей 03X16H15M3, 03Х17Н14М2 при жестких требованиях к швам по стойкости против межкристаллитной коррозии

Сварочные материалы

Перед сваркой электроды прокаливают согласно режиму, при веденному в ОСТе, ТУ или на упаковке электродов.

Прокаливать можно не более трех раз. Если после этого электроды показали неудовлетворительные сварочно-технологические свойства, то их применять нельзя.

Рекомендуемые режимы прокалки

Марка электрода Температура, °С Продолжительность, ч
ТМУ-21У; ЦУ-5; УОНИ-13/55; ТМЛ-ЗУ; ТМУ-50; ТМУ-46; ЦЛ-9; ЭА-400/10Т; ЦТ-15 380 - 400 1-1,5
ЦУ-6; ЦУ-7; ЦУ-8; ИТС-4С; УОНИ-13/45; ТМЛ-1У; ЦЛ-39; ЦЛ-20; ЦУ-2ХМ; ЭА-395/9; ЭА-400/10У 360 - 370 1,5 - 2
ЦЛ-45; ЦП-25/1; ЦЛ-25/2; ЦТ-10; ЦТ-26; ЦТ-26М; ЦТ-15К 330 - 350 1,5
МР-3; АНО-4; АНО-6М; ОЗС-4; АНО-18; АНО-24 180 - 200 1
ВСЦ-4А 90-110 1

Сварочная проволока

Сварочную проволоку сплошного сечения применяют в качестве присадка при ручной аргонодуговой сварке W-электродом, газовой ацетилено-кислородной сварке. Поверхность проволоки должна быть чистой, без окалины, ржавчины, масла и грязи.

Проволоки Св-08МХ, Св-08ХМ и Св-09ХМФА применяют для аргонодуговой сварки только легированных сталей с содержанием кремния не более 0,25%.

Проволоки Св-08МХ, Св-08ХМ и Св-09ХМФА применяют для сварки трубопроводов с температурой среды до 510°С включительно, а также для сварки корневого шва независимо от параметров рабочей среды.

При ручной аргонодуговой сварке корневого шва трубопроводов с толщиной стенки более 10 мм из хромомолибденовых и хромомолибденованадиевых сталей используют проволоку Св-08Г2С или Св-08ГС.

Область применения

Тип и марка стали Марка проволоки
Ручная аргонодуговая сварка W-электродом Ручная газовая сварка ацетиленокислородным пламенем
Углеродистая Ст2; Ст3; Ст4; Ст3Г; 08; 10; 20; 15Л; 20Л; 25Л Св-08ГА-2; Св-08Г2С; Св-08ГС Св-08; Св-08А; Св-08ГА; Св-08ГС; Св-08Г2С; Св-08МХ
Низколегированная конструкционная 15ГС; 16ГС; 17ГС; 14ГН; 16ГН; 09Г2С; 10Г2С1; 14ХГС; 20ГСЛ; 17Г1С; 17Г1СУ Св-08ГС; Св-08Г2С Св-08ГС; Св-08Г2С
Легированная теплоустойчивая 12МХ; 15ХМ; 20ХМЛ; 12Х2М1 Св-08МХ; Св-08ХМА-2; Св-08ХМ; Св-08ХГСМА Св-08МХ; Св-08ХМ; Св-08ХМФА
12Х1МФ Св-08ХГСМФА; Св-08ХМ; Св-08ХМФА; Св-08МХ; Св-08ХМА-2 Св-08МХ; Св-08ХМ; Св-08ХМФА
15Х1М1Ф; 20ХМФЛ; 15Х1М1ФЛ; 12Х2МФСР; 15Х1М1Ф-ЦЛ; 12Х2МФБ Св-08ХМФА; Св-08ХГСМФА; Св-08ХГСМФА2; Св-08ХМФА2 -
Высоколегированная коррозионностойкая, жаростойкая и жаропрочная 08X18H10T; 12X18H12T; 12X18H10T; Св-04Х19Н11МЗ; Св-08Х19Н10Г2Б; Св-04Х20Н10Г2Б; Св-01Х19Н9; Св-04Х19Н9; Св-06Х19Н9Т -
12Х11В2МФ Св-10Х11НВМФ; Св-12Х11НМФ

В качестве защитного газа при ручной аргонодуговой сварке W-электродом используют аргон высшего и первого сортов по ГОСТ 10157-79. Допускается газообразный или жидкий аргон.

Перед использованием защитный газ необходимо проверить. На пластину или трубу наплавляют контрольный валик длиной 100-150 мм и по внешнему виду поверхности наплавки определяют качество защиты. Если в наплавленном металле шва обнаружат поры, газ бракуется.

Для газовой сварки используют технический ацетилен по ГОСТ 5457-75, поставляемый в баллонах или получаемый в газогенераторах из карбида кальция по ГОСТ 1460-81.

Карбид кальция СаС2 - твердое вещество темно-серого или коричневого цвета, при взаимодействии которого с водой образуется ацетилен С2Н2. В зависимости от грануляции карбида кальция различен выход ацетилена.

Допускается использовать газообразный кислород только первого или второго сорта по ГОСТ 5583-78.

Ориентировочные размеры кусков карбида кальция, мм × мм Выход ацетилена, л/мин
I сорта II сорта
2 × 8 255 235
8 × 15 265 245
15 × 25 275 255
25 × 80 285 265

Неплавящиеся электроды

Применяют стержни как из чистого вольфрама, так и легированные тугоплавкими окислами (ГОСТ 23949-80):

ЭВЧ - чистый вольфрам;
ЭВЛ - с окисью лантана;
ЭВИ - с окисью иттрия;
ЭВТ - с окисью тория.

Электроды марки ЭВЧ используют для сварки на переменном токе, а прочие - для сварки на переменном и постоянном токах прямой и обратной полярности.

Перед сваркой неплавящийся электрод затачивают.

Заточка вольфрамового электрода

Сварочные материалы должны соответствовать требованиям стандартов и технических условий, подтвержденным сертификатом изготовителя. Марки, сортамент, условия хранения и подготовки должны соответствовать технической документации на сварку

Список вопросов базы знаний

5.01.1.01.ОХНВП-I-РД Оборудование химических, нефтехимических, нефтеперерабатывающих и взрывопожароопасных производств. 1.Оборудование химических, нефтехимических, нефтеперерабатывающих производств, работающее под давлением до 16 МПа.

В каких пределах должна находиться длина прихватки при сборке под сварку разнотолщинных материалов в химическом машиностроении?

В каких пределах должно находиться расстояние между прихватками при сборке под сварку разнотолщинных материалов в химическом машиностроении?

Укажите максимальную величину относительной влажности, при которой допускается хранить сварочные материалы, используемые в химическом машиностроении.

Укажите минимальную температуру, при которой следует хранить сварочные материалы, используемые в химическом машиностроении.

Электроды какого диаметра рекомендуются для первого (корневого) прохода при сварке штучными электродами низкоуглеродистой и низколегированной стали?

Какие электроды следует использовать для сварки оборудования химического машиностроения из стали 12МХ?

Какие электроды следует использовать для сварки оборудования химического машиностроения из стали 12ХМ?

Когда следует выполнять сварку слоя шва, обращенного к агрессивной среде, при многопроходной сварке аустенитных сталей?

Какой длины должны быть прихватки при сварке коррозионно-стойких сталей аустенитного и аустенитно-ферритного класса?

Каким должно быть расстояние между прихватками при сварке коррозионно-стойких сталей аустенитного и аустенитно-ферритного классов?

На какой скорости рекомендуется вести сварку высоколегированных сталей аустенитного и аустенитно-ферритного классов небольшой толщины для уменьшения перегрева и обеспечение оптимальных механических свойств и коррозионной стойкости?

До какой температуры должен охлаждаться металл при многопроходной сварке аустенитных сталей перед выполнением каждого последующего прохода?

Какую разделку кромок следует применять при ручной дуговой сварке оборудования химического машиностроения из аустенитных сталей толщиной до 3 мм?

Какую разделку кромок следует применять при ручной дуговой сварке оборудования химического машиностроения из аустенитных сталей толщиной от 3 до 14 мм?

Какую разделку кромок следует применять при ручной дуговой сварке оборудования химического машиностроения из аустенитных сталей толщиной свыше 20 мм?

Электроды какого диаметра рекомендуются для ручной дуговой сварки корневого слоя шва оборудования химического машиностроения из аустенитных сталей при односторонней разделки кромок?

Электроды какого диаметра рекомендуется для ручной дуговой сварки оборудования химического машиностроения из аустенитных сталей?

Какими электродами следует сваривать сталь 08Х13 при условии равнопрочности сварного шва и основного металла? (без требований стойкости против МКК)

Какими электродами следует сваривать сталь 08Х13 при условии пластичности металла шва? (без требований стойкости против МКК)

Электроды какой марки рекомендуются выполнения переходного слоя при сварке двухслойных сталей Сталь 20+12Х18Н10Т?

Укажите требования к сварщикам, впервые приступающим к сварке электродами с содержанием никеля 40% и выше при ремонте корпуса стального сосуда или аппарата.

?) Сварщики должны быть аттестованы в установленном порядке и должны пройти практическую тренировку и сварку контрольного образца диаметром 159 с толщиной стенки 10..12мм.

?) Сварщики должны быть аттестованы в установленном порядке и должны пройти практическую тренировку и сварку контрольной пластины 150х250х12..18 мм.

Требуется ли подогрев при удалении дефектов корпуса аппарата из хромомолибденовых сталей термическим способом?

Читайте также: