Критерии оценки сварочного шва

Обновлено: 06.05.2024

Качество сварочных работ и сварных соединений сильно влияет на прочность конструкций или герметичность резервуаров. Несоответствие сварных швов заданным характеристикам приводит к разрушениям конструкций с катастрофическими последствиями, то же относится и к системам, работающим с сосудами и трубопроводами под давлением.

Поэтому после сварочных работ в обязательном порядке готовое изделие подвергают испытаниям и контролю на предмет обнаружения дефектов в сварных соединениях.

Все процедуры по контролю над качеством сварки определены ГОСТом или руководящими документами. В них также указаны допустимые нормы погрешностей. После испытаний составляется акт и протоколы с результатами измерений.

Методы проверки

Контроль качества сварочных работ, выполняемых на производстве, может быть разрушающим и неразрушающим. Первые методы используются выборочно. Проверяется одно или несколько изделий из большой партии, или часть металлоизделия в строительной конструкции.

Оно проверяется по различным параметрам определенным протоколом испытаний. Но главным образом используют специальные приборы или материалы позволяющие проверить качество сварных соединений без разрушения конструкции.


Основными способами неразрушающего контроля качества сварки являются:

  • визуальный;
  • капиллярный;
  • проверка на проницаемость;
  • радиационный;
  • магнитный;
  • ультразвуковой.

Имеются и другие способы и виды контроля качества сварки, но в силу своей специфики они не получили распространения.

Проверка состояния сварных швов не является одноразовым актом, это результирующий этап, который показывает, как работает система контроля качества на предприятии.

Для минимизации дефектов сварочных соединений проводят операционный контроль работ. Регулярно проводится аттестация, на которой комиссия сначала дает разрешение на сварку контрольного соединения. При прохождении сварщиками этого испытания проверяются теоретические знания.

Перед началом работ проверяется квалификация сварщика, у него должно быть удостоверение на право сваривания определенных марок стали и наряд-допуск.

Инженер по сварке и контролер из службы техконтроля проверяют качество сборки, состояние кромок, работоспособность сварочного аппарата, контролирует температуру прогрева, если это предусмотрено нормативно-технической документацией.

Контроль качества сварочных материалов осуществляется с момента поступления их на предприятие и до использования на сварочном посту. Проверку электродов проводят на каждом этапе хранения и использования, при необходимости их прокаливают.

При непосредственном проведении работ проверяют, какой режим сварки используется, дуговая сварка, аргонодуговая или иной вид сварки. Проверяют порядок наложения швов, размеры слоев и всего соединения.

Если предусмотрены специальные требования в проектно-технической документации, то и их реализацию. По завершении сваривания проверяет наличие клейма сварщика.

Внешний осмотр

Любая проверка качества сварных швов начинается с визуального контроля. Осматривают все 100% сварных соединений. Сначала проверяют геометрию и форму шва.

Визуальный контроль помогает выявить, наряду с наружными, часть внутренних изъянов. Так, переменные по габаритам валики швов и неравномерные складки говорят о непроварах, возникающих из-за частых обрывов электрической дуги.

Перед началом работ со сварных соединений удаляют шлак, окалины прочие загрязнения. Чтобы лучше можно было разглядеть дефекты, швы обрабатывают азотной кислотой (10%). Это придает матовость шву, что облегчает поиск изъянов.

После обработки кислотой необходимо провести тщательную протирку спиртом, чтобы предупредить ее вредное влияние на сплав.

Для повышения качества проверки можно использовать фонарь и оптическую лупу. Для контроля геометрических размеров применяют штангенциркуль и шаблоны.

Капиллярный метод


Данный способ контроля использует свойство жидкости затягиваться в очень мелкие капилляры. Быстрота и степень проникновения внутрь материала связана с его смачиваемостью и диаметром капилляров. Больше смачивается сплав и тоньше капилляры – глубже проникает жидкость.

Капиллярный способ контроля качества шва позволяет иметь дело не только с любыми металлами, но и с керамикой, пластмассой, стеклом. Главное его применение связано с проявлением внешних изъянов, которые невозможно или трудно определить невооруженным глазом. Иногда, используя, к примеру, керосин, можно обнаружить сквозные дефекты.

Способ очень простой, работает со времен возникновения потребности проверки сварочных швов. Для него даже разработан специальный ГОСТ 18442-80.

В капиллярном методе контроля качества сварки используют пенетранты – вещества, имеющие малое поверхностное натяжение и сильный цветовой контраст.

Проникая в дефектные зоны, и подсвечивая их, пенетранты визуализируют изъяны сварки. Их делают на основе воды, керосина, масла для трансформаторов и прочих жидкостей.

Наиболее чувствительные пенетранты могут проявить дефекты диаметром от 0,1 микрона. Капиллярный метод контроля качества сварки эффективен для дефектов до 0,5 мм шириной. При больших диаметрах пор или трещин он не работает.

Способ с применением пенетрантов заключается в очистке поверхности, нанесении контрольной жидкости и проявлении изъянов. Очень эффективен способ контроля сварных соединений с помощью керосина.

Несмотря на разнообразные приборы контроля качества сварки, проверку этим способом используют до сих пор. С одной стороны наносят раствор мела, дают время для сушки, затем с другой стороны шов смазывается керосином. Бракованные места проявляются через несколько часов в виде темных пятен.

Проверка сварных соединений на проницаемость

В случае применения сварки при изготовлении резервуаров требуется контроль герметичности. Для этого проводят испытания на непроницаемость соединений. Контроль качества проходит с применением газов или жидкостей.

Суть метода основана на создании большой разности давлений между наружной и внутренней областью емкости. При сквозных изъянах в сварном шве жидкость или газ будут переходить из области с высоким давлением в область с низким давлением.

В зависимости от используемого вещества и способа получения избыточного давления контроль проницаемости осуществляют пневматикой, гидравликой или вакуумом.

Пневматический способ

Применение пневматического метода контроля качества сварки требует накачивания резервуара каким-либо газом до давления величиной 150% от номинального.

Затем все сварные швы смачивают мыльным раствором. В местах протечек образуются пузыри, что очень легко фиксируется. Для лучшей визуализации используют добавку аммиака, а шов покрывают бинтом пропитанным фенолфталеином. В местах протечек появляются красные пятна.

Если нет возможности накачать емкость, то применяют способ обдува. С одной стороны шов обдувается под давлением не менее 2,5 атмосферы, а с другой обмазывается мыльным раствором. Если имеется брак, то он выявится в виде пузырьков.

Гидравлический способ

При гидравлическом способе контроля качества сварки проверяемая емкость заполняется водой или маслом. В сосуде создается избыточное давление, которое больше номинального в полтора раза.

Затем в течение определенного времени, обычно 10 минут, область вокруг шва обстукивают молотком со скругленным бойком. При наличии сквозного дефекта сварки появится течь. Если избыточное давление невелико, то время выдержки резервуара увеличивают до нескольких часов.

Магнитная дефектоскопия


Явление электромагнетизма используется в магнитных дефектоскопах. Каждый металл имеет свою степень магнитной проницаемости. При прохождении через неоднородные материалы магнитное поле искажается, что говорит о присутствии инородных элементов внутри структуры.

Это используется в приборе для контроля качества сварки. Он вырабатывает магнитное поле, которое проникает в исследуемый металл. Неоднородности фиксируются магнитопорошковым или магнитографическим способом.

В первом случае на сварной шов наносят ферромагнитный порошок. Там где происходит скопление порошка вероятнее всего непровар, нет сплошного соединения. Порошок может быть сухим или влажным, с примесью масла или керосина.

Во втором случае на шов накладывают ферромагнитную ленту. Затем ее пропускают через прибор, где анализируют все аномалии, зафиксированные на ленте, и определяют дефекты сварки.

Магнитный способ контроля качества имеет ограничения, связанные с самим принципом действия прибора. Он может проверять качество сварных соединений только ферромагнетиков, к которым некоторые стали и цветные металлы не относятся. Соответственно, такой способ контроля имеет ограниченное применение.

Ультразвуковая дефектоскопия


Для контроля качества сварки применяют ультразвук. Принцип действия аппарата основан на отражении ультразвуковых волн от границы соединения двух сред с различными акустическими свойствами.

Датчик и излучатель плотно прикладывают к исследуемому материалу, после чего устройством вырабатывается ультразвук. Он проходит через весь металл и отражается от задней стенки, возвращаясь, попадает на приемный сенсор, который в свою очередь преобразует ультразвук в электрические колебания. Прибор представляет полученный сигнал в виде изображения отраженных волн.

Если внутри металла присутствуют какие-нибудь изъяны, датчик зафиксирует искажение отраженной волны. Опытным путем установлено, что различные дефекты сварки по-разному себя проявляют на ультразвуковом дефектоскопе. Это позволило провести их классификацию. При соответствующем обучении специалист может точно определить вид брака в шве.

Способ контроля качества сварных соединений ультразвуком широко распространился благодаря простоте и удобству применения, относительно недорогому оборудованию, безопасности использования по сравнению с радиационным методом.

Минусом способа является трудность расшифровки графического изображения. Контроль качества соединения может сделать только сертифицированный специалист. Его проблематично использовать для контроля крупнозернистых металлов типа чугуна.

Радиационный метод

Для контроля качества сварки используют радиационные методы и устройства. По сути это тот же рентгеновский аппарат, используемый в больницах, или прибор с источником гамма-излучения, приспособленный для облучения сварных соединений.

Он основан на способности этих лучей, проникать через любые материалы. Интенсивность проникновения зависит от вида исследуемых веществ. Благодаря этому на фотопленке, стоящей за исследуемым изделием, остается изображение, характеризующее состояние данного материала.

Все дефекты сварки в виде неоднородностей выявляются на пленке. Метод контроля очень точный, но дорогой и вредный для людей, требует подготовительных работ по установке защитных экранов и проведения организационных мероприятий.

Оформление документации

Для проведения сварки предусматривается специальный журнал. Он является первичным документом, оформляющийся по требованиям СНиП. Проектная организация составляет перечень узлов в металлоконструкции, которые необходимо сдать заказчику с оформлением сварочных документов.

Помимо журнала, сварочные работы сопровождает схема стыков, прилагаются сертификаты на расходные материалы (электроды, флюс или присадочную проволоку) и акты по контролю качества снаружи изделия.

Если проводились ультразвуковые или иные специфические исследования, то результаты и заключения по ним также прилагаются.

Все это позволяет говорить о качестве сварке и надежности конструкции. Только после сдачи в полном объеме сварочной документации производятся дальнейшие процедуры по принятию металлоконструкций объекта.

КРИТЕРИИ ПРИЕМКИ И ОЦЕНКИ КАЧЕСТВА СВАРНЫХ ШВОВ

2. Любое скопление разрывов общей длиной более 25 мм на 300 мм длины шва или более 8% общей длины шва.

2.2. Газопроводы среднесернистого газа*.

* Составлено по данным Инструкции по технологии сварки при производстве РВР на газопроводах, транспортирующих сероводородосодержащий газ, М.: ПО "Оренбурггазпром", 1987.

2.2.1. Требования настоящего раздела распространяются на выполнение сварочно-монтажных работ на действующих газопроводах, транспортирующих газ с содержанием до 10% (объем).

2.2.2. Сварочно-монтажные работы разрешается выполнять при температуре окружающего воздуха не ниже -40° С. При температуре ниже -25°С, ветре свыше 10 м/с, а также при выпадении атмосферных осадков производить сварочные работы без применения инвентарных укрытий ЗАПРЕЩАЕТСЯ.

2.2.3. При производстве огневых работ следует руководствоваться "Рабочей Инструкцией по организации и проведению огневых работ на объектах добычи, транспорта газа и конденсата, содержащих сероводород", ГПОГПУ /15/ или другими документами, утвержденными в установленном порядке.

2.2.4. Применяемые трубы, катушки, соединительные детали должны быть выполнены в коррозионно-стойком исполнении, иметь сертификат завода-изготовителя и соответствующую маркировку.

2.2.5. Независимо от способа изготовления тройники, отводы и заглушки должны быть термообработаны. Переходные кольца не термообрабатываются, если изготавливают их из отрезков толстостенных труб путем механической обработки. Характеристики некоторых марок труб приведены в Приложении 1а.

Требования к трубам, находившимся в эксплуатации, - в соответствии с разд. 1, п.2.7.

2.2.6. Присоединительные части концов труб, деталей, арматуры должны иметь разделку - табл. 1.8., табл. 1.14.

2.2.7. Длина врезаемых катушек, переходных колец, а также расстояние от свариваемого стыка до ближайшего кольцевого стыка на газопроводе должны быть не менее 500 мм для труб диаметром до 530 мм, а для труб большего диаметра - не менее диаметра трубы.

2.2.8. Перед сваркой необходимо провести осмотр концов труб, соединительных деталей газопроводов и арматуры на длине 200 мм и в случае обнаружения дефектов провести отбраковку.

2.2.9. Соединение разнотолщинных труб, труб с деталями (тройники, переходы, отводы) должно осуществляться с учетом требований раздела I, п. 4.3.11, табл. 1.8. и п. 2.2.7 раздела II.

2.2.10. Заводские продольные швы должны быть смещены не менее, чем на 100 мм (рис. 2.2.).

Рис. 2.2. Схема сварки труб с продольным швом:

1 - продольный шов;

2 - кольцевой шов;

Х - не менее 100 мм

2.2.11. Смещение внутренних кромок стыкуемых бесшовных труб с одинаковой нормативной толщиной стенки (рис. 2.1) не должно превышать 2 мм. Допускается местное смещение до 3,0 мм на длине не более 100 мм.

2.2.12. Смещение кромок стыкуемых электросварных труб не должно превышать 20% нормативной толщины стенки, но не более 3,0 мм. Для труб с S < 6,0 мм допускается смещение кромок до 30%, но не более 2,0 мм.

2.2.14. Концы свариваемых труб газопровода перед началом сварки и прихватки на длине не менее 150 мм от торцов подвергают предварительному подогреву и выдержке при температуре 200-250°С в течение 30-60 минут с целью дегазации металла (см. п. 2.1.12.8).

Прихватку и сварку стыков следует выполнять при 120-150°С.

2.2.15. Сварка труб должна выполняться электродами с основным покрытием (табл. 2.13).

2.2.16. Сварку всех слоев производят электродами с основным покрытием, ведут на постоянном токе обратной полярности по схеме "снизу-вверх".

Рекомендуемые значения сварочного тока согласно табл. 1.12.

2.2.17. ЗАПРЕЩАЕТСЯ зажигать дугу вне шва на трубе.

2.2.18. ЗАПРЕЩАЕТСЯ прекращать сварку до заполнения 2/3 разделки шва. Сварку захлесточных швов, швов катушек следует производить без перерывов до полного заполнения разделки.

2.2.19. Каждый стык должен иметь клеймо сварщика, выполняющего данный стык. Клеймо наносится нумератором на расстоянии 150 мм от стыка в верхней полуокружности трубы до термообработки и обводится несмываемой краской после термообработки.

Таблица 2.13.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.023)

Тема 24. НОРМЫ ДЕФЕКТНОСТИ И КАТЕГОРИИ ОТВЕТСТВЕННОСТИ СВАРНЫХ СОЕДИНЕНИЙ.

Нормы дефектности позволяют произвести сортировку сварных соединений по трём группам качества:

1 группа - годные сварные соединения

2 группа - дефектные сварные соединения (возможно устранение дефектов и ремонт изделия)

3 группа - бракованные сварные соединения (ремонт изделий не допускается)

Нормы дефектности указывают в технических условиях на изготовление сварного соединения (ТУ) или в строительных нормах и правилах для строительных сварных конструкций (СН и П).

Нормы допустимых дефектов выражают обычно в значениях минимальных размеров недопустимых дефектов или максимальных размеров допустимых дефектов, исходя из показателей работоспособности. Их рассчитывают проектировщики, с учётом мнений металловедов, технологов и дефектоскопистов. На основании норм дефектности выбирают технические средства контроля, а также эталонные или тест образцы и определяют условия проведения контроля.

При использовании неразрушающих методов контроля устанавливают связь между реальными размерами дефектов и их параметрами, оцениваемыми при контроле. Эти параметры являются критериями браковки сварных соединений.

Так, например, при ультразвуковом контроле о размере дефекта судят по амплитуде отражённого сигнала от дефекта, поэтому для установления зависимости между амплитудой отражённого сигнала от дефекта и его размерами используют эталоны или тест образцы с моделями допустимых дефектов.

В машиностроительных отраслях промышленности, выпускающих различные сварные изделия, нормы допустимых дефектов устанавливают исходя из степени ответственности изделий и с учётом сложившейся практики разработки браковочных норм на конкретные виды продукции.

По степени ответственности сварные изделия разделяют, как правило, на три категории. Каждой категории соответствует определённый уровень требований к качеству изделий. Так в авиационной промышленности известны следующие три категории ответственности:

1 категория – особо ответственные сварные изделия;

2 категория – ответственные сварные изделия;

3 категория – мало ответственные сварные изделия.

Для изделий первой категории, эксплуатирующихся при переменных нагрузках и в коррозионной среде, используют комплексную систему контроля, предусматривающую применение нескольких методов неразрушающего контроля. Для этой категории устанавливают самый высокий уровень требований. Изделия, относящиеся к третьей категории ответственности, обычно контролируют визуально. В сварных соединениях этой категории не допускаются только сквозные дефекты.

Категорию ответственности устанавливает конструктор совместно с эксплуатационниками изделий.

Тема 25. ЭКСПЛУТАЦИОННЫЙ КОНТРОЛЬ СВАРНЫХ СОЕДИНЕНИЙ.

В процессе эксплуатации сварных изделий происходит старение материала, сопровождающееся износом и разрушением. Эти явления приводят к появлению неисправностей и отказов изделий.

Неисправность – это состояние сварного соединения, при котором оно не соответствует хотя бы одному требованию НТД. Изделие, характеризующееся неисправностью, можно эксплуатировать с учётом обеспечения постоянного контроля за его эксплуатацией.

Отказ – это полное нарушение работоспособности изделия, при котором дальнейшая его эксплуатация невозможна. Отказы могут быть постепенные и внезапные.

Постепенные отказы связаны с медленным (вязким) разрушением изделия, а внезапные отказы - с хрупким разрушением изделия.

Износ – изменение размеров, формы и состояния поверхности сварного соединения. При износе наблюдается углубление, увеличивается шероховатость поверхности и имеет место остаточная деформация поверхностного слоя (наклеп).

Среди сварных соединений наиболее склонны к износу сварные соединения, выполненные контактной сваркой.

Износ классифицируют на виды:

• механический износ, возникает в трущихся элементах;

•абразивный износ, возникает в результате попадания твёрдых частиц в зазор между трущимися элементами;

•коррозионный износ, возникает при наличии нагрузок и коррозионной среды;

•усталостный износ, возникает при переменных нагрузках.

Износ сопровождается разрушением и возникновением поверхностных микротрещин.

В сварных изделиях возникают также усталостные трещины, а также трещины, связанные с явлением ползучести.

Появление усталостных трещин связано в первую очередь с влиянием концентраторов напряжений (забоины, риски, резкие переходы от шва к основному металлу, от одной толщины к другой, наличие отверстий). При действии переменных нагрузок в наиболее слабом месте изделия, где возникают остаточные напряжения, превышающие предел выносливости, появляются микротрещины, развивающиеся в дальнейшем в усталостные трещины, которые приводят к внезапному разрушению соединения (отказу) без видимых пластических деформаций.

Большое влияние на усталость оказывает изменение температурных условий эксплуатации (теплосмены) и воздействие коррозионной среды.

При этом разрушение соединения происходит при значительно меньших напряжениях. Появление трещин ползучести связано с медленным нарастанием во времени пластической деформации материала при длительных механических воздействиях и нагреве.

Материалы и сварные соединения, работающие длительное время при высоких температурах, постепенно разрушаются при напряжениях значительно меньших предела текучести.

На появление трещин усталости и ползучести оказывает влияние низкая пластичность металла, наличие дефектов – несплошностей в сварном шве, а также структурные изменения, связанные с упрочнением и разрупрочнением металла в процессе эксплуатации..

При эксплуатационном контроле важно фиксировать не только появление трещин, но и знать кинетику их развития во времени. Исследование кинетики развития трещин и разрушений является задачей технической диагностики сварного соединения.

Техническая диагностика – занимается установлением и изучением признаков, характеризующих техническое состояние изделий, для предсказания возможных отклонений контролируемых параметров ( например, длина трещины или толщина изделия) за допустимые пределы, вследствие чего возникают внезапные отказы.

Техническая диагностика даёт возможность оценить продолжительность эксплуатации изделия, т.е. его долговечность при появлении дефектов. Методы технической диагностики применяют для рациональной организации контроля работоспособности сварных изделий в процессе эксплуатации. Методы технической диагностики разделяют на:

В расчётных методах определяют напряжённое состояние контролируемого сварного изделия при наличии дефектов. При этом выполняют моделирование состояния дефектного соединения с помощью компьютерной техники.

К экспериментальным методам исследования работоспособности дефектного соединения, относят механические испытание, например, испытания на хрупкость ( трещиностойкость), используемое в механике разрушение, для оценки стойкости сварного соединения к хрупкому разрушению.

Испытания на хрупкость проводятся на сварных соединениях со статическим изгибом образца, у которого выполнен надрез, в вершине которого имеется искусственная усталостная трещина. Образец нагружают до момента быстрого (нестабильного) развития трещины. Затем по величине нагрузки и длине трещины рассчитывают коэффициент интенсивности напряжения:

σа- максимальное (амплитудное) напряжение,

lтр- длина трещины, при которой начинается быстрый ее рост;

Этот коэффициент является главным критерием оценки хрупкости разрушения сварного соединения.

Если σ √ π l < КIC , где σ- напряжение в данный момент нагружения, а l – текущая длина трещины, то трещина не развивается и разрушение не наступает. Если σ √ π l > КIC ,то трещина нестабильна, быстро развивается по длине и возникает хрупкое разрушение.

Испытания на хрупкость проводят для различных условий нагружения, что позволяет установить ресурс работы изделия и оценить вероятность возникновения отказа. Зная коэффициент интенсивности напряжения и предел текучести металла можно по приведенной формуле определить критическую величину трещины, превышение которой вызывает хрупкое разрушение сварного соединения.

Аналогичные коэффициенты можно определить не только при статических, но и динамических нагружениях.

Большую информацию по определению характера зон разрушения и связь её с дефектами и концентраторами дают методы фрактографии ( методы анализа изломов).

По виду излома можно определить пластичность или хрупкость металла, или сварного изделия.

Пластичные вязкие металлы дают волокнистый (с выступами) серый излом с матовой поверхностью, т.к. характеризуются мелкозернистой структурой. Хрупкие материалы имеют блестящий , кристаллического вида излом, т.к. характеризуются крупнозернистой структурой. Для изучения макро- и микроизломов используют металлографические и электронные микроскопы.

По виду излома можно судить также о дефектах сварного шва:

•поры выглядят как округлые или вытянутые пустоты;

•горячие трещины имеют темную окисленную поверхность;

•холодные трещины имеют блестящую поверхность;

•металлические включения имеют вид пустот с острыми краями;

•оксидные пленки, например на алюминиевых сплавах, имеют волокнистый вид.

К экспериментальным методам технической диагностики относят также методы толщинометрии, структуроскопии и интроскопии, являющиеся методами неразрушающего контроля.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.011)

Металл сварного шва

Металл сварного шва

Свойства, качество, процесс кристаллизации металла сварного шва зависят от множества параметров. К первичным относятся расходные материалы, используемые при сварке, свойства металла заготовки, режим работы сварочного аппарата. Вторичные – это среда, в которой производилась сварка, скорость выполнения шва, его остывания и т. д.

Подбирая те или иные параметры, можно заранее прогнозировать, каким получится сварной шов. Также это поможет избежать распространенных дефектов металла. Больше информации о металле сварного шва вы узнаете из нашего материала.

Параметры, влияющие на свойства металла сварного шва

Физические характеристики, определяющие особенности швов, сформированных сваркой, принято называть комплексными механическими свойствами сварных соединений. Подобные свойства зависят от расчетного соотношения механических показателей поверхности шва, зоны обработки, термических особенностей структуры изделия.

При проведении работ отталкиваются от характеристик металла сварного шва, а любые соединения в норме имеют структуру, приближенную к строению самого материала изделия.

Сварное соединение называют качественным, если достигнут предел прочности, а текучесть находится на уровне, обеспечивающем достаточную пластичность.

Равнопрочность сварного шва зависит от ряда технических и физических характеристик, таких как:

  • используемые расходники (электроды, флюс, проволоки);
  • химические показатели металла сварного шва;
  • режим проведения работы;
  • методика пайки, резки материала;
  • размеры изделия, причем основным показателем, с точки зрения прочности металла сварного шва, является толщина заготовки;
  • скорость охлаждения материала;
  • вероятная деформация в пластических характеристиках шва.

В соответствии с данным регламентом устанавливают физические и технические параметры металла, что упрощает определение его фактических характеристик при переходе от легированного к нелегированному типу и обратно.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Ключевые нормы определения механических свойств для сварных швов установлены в ГОСТ 9467-60. Причем подобные методы определения используются в том числе и для операций с применением флюса и иных методов сварки. К последним относится ручная, дуговая, электродуговая сварка автоматом и полуавтоматом.

Факторы, влияющие на качество металла сварного шва

Качество металла сварного шва зависит от ряда факторов, таких как свариваемость, степень подверженности металла термическим воздействиям, окисляемость, пр. Важно учитывать все подобные критерии, чтобы готовые сварные соединения подходили под определенные условия эксплуатации.

Свариваемость металлов является показателем, от которого зависит способность металлов и сплавов при подходящей обработке формировать соединения с заданными параметрами. Специалисты выделяют физическую и технологическую свариваемость.

В любом случае значимую роль здесь играют физические, химические особенности металлов, их кристаллическая решетка, присутствие примесей, степень легирования, пр., что сказывается на надежности металла сварного шва.

Металл сварного шва

Физической свариваемостью называют способность материала образовывать монолитное соединение с устойчивой химической связью. Данное качество свойственно большинству чистых металлов, а также их техническим сплавам и некоторым комбинациям металлов и неметаллов.

Технологическая свариваемость – это реакция материала на сварку и способность сформировать шов с необходимыми характеристиками.

Чтобы определить критерии свариваемости, учитывают такие свойства материалов:

  • чувствительность к тепловому воздействию в процессе сварочных работ;
  • склонность к росту зерна при сохранении неизменных пластических и прочностных характеристик, структурным, фазовым изменениям в области нагрева;
  • химическая активность, которая сказывается на окисляемости металла во время термического воздействия;
  • способность сопротивляться поробразованию, растрескиванию в холодном и горячем виде.

Качество сталей во многом зависит от их раскисляемости, которая определяется долей марганца, кремния и ряда прочих элементов в составе металла. Также на нее влияет и то, насколько равномерно распределены эти компоненты. На основании раскисляемости выделяют кипящие стали, маркируемые как «КП», полуспокойные с обозначением «ПС» и спокойные, то есть «СП».

В кипящей стали примеси распределены неравномерно по толщине проката, что наиболее ярко проявляется в случае с серой и фосфором и объясняется неполным раскислением марганцем.

У подобных сталей быстро проявляется старение, формируются кристаллизационные трещины на металле сварного шва и прилежащей к нему области. В результате при температуре ниже 0°C материал становится хрупким.

Спокойная сталь отличается равномерным распределением примесей, благодаря чему не так склонна к старению. Кроме того, на ней меньше отражается повышение температуры при сварке.

Полуспокойная сталь по своим свойствам находится между кипящей и спокойной.

Названные характеристики ложатся в основу выбора метода сварки, способов создания сварного шва, параметров теплового воздействия, пр.

Процесс кристаллизации металла сварного шва

Во время кристаллизации металл сварочной ванны испытывает на себе влияние горячей сварочной дуги и холодного окружающего металла. Иными словами, дуга вводит теплоту, а металл изделия ее отводит.

Переход металла из жидкого состояния в твердое сопровождается формированием кристаллов – это и есть кристаллизация. Металл сварного шва претерпевает этот процесс на протяжении всего процесса сварки.

Сварной шов обладает структурой литого металла. При сварке плавятся кромки заготовки и электродная проволока, подаваемая в зону ванны. Условно, последняя состоит из передней или головной и хвостовой части: в первой идет плавление, а во второй протекает кристаллизация и формируется шов.

Металл сварного шва

Принято выделять первичную и вторичную кристаллизацию. Первичная – это переход жидкого металла в твердое состояние, что сопровождается формированием кристаллов. Сначала образовавшийся кристалл растет свободно, обладает правильной формой.

Но поскольку идет параллельное развитие множества кристаллов, постепенно они начинают касаться друг друга, соответственно, форма нарушается. В итоге они становятся округленными, больше всего напоминающими зерно, поэтому кристаллы обозначают как зерна.

От хода кристаллизации зависит размер зерен: они бывают крупными, различимыми без специального оборудования, и мелкими. Вторые видны только под микроскопом.

Кристаллическое строение металла, сплава называют структурой. Также принято говорить о макроструктуре или строении металлов, которое можно различить невооруженным глазом или при помощи лупы.

Кристаллизация металла сварных швов происходит с гораздо большей скоростью, чем аналогичный процесс со слитками. Это объясняется тем, что интенсивный нагрев сварочной ванны быстро сменяется отводом тепла в заготовку.

Кристаллизация протекает в отдельных тонких слоях. Когда сформировался первый слой кристаллов, охлаждение металла замедляется на фоне выделения скрытой теплоты от протекающего процесса. Далее затвердевает второй слой, и так дальше по всей ванне.

Кристаллизационные слои имеют толщину от десятых долей миллиметра до нескольких миллиметров – конкретный показатель определяется объемом сварочной ванны и особенностями теплоотвода. Столбчатые кристаллы каждого нового слоя становятся продолжением предыдущего, благодаря чему кристаллы перерастают из слоя в слой.

Чтобы запустился процесс первичной кристаллизации, должны сформироваться ее центры или зародыши, которые будут непрерывно расти. Данную роль выполняют оплавленные зерна металла, оказавшиеся на дне сварочной ванны.

Далее могут появиться дополнительные центры кристаллизации – обычно это тугоплавкие частицы, обломки зерен или самопроизвольно сформировавшиеся в жидком металле центры.

Во время многослойной сварки функция центров ложится на кристаллы предыдущего слоя. Они растут, присоединяя атомы из окружающего жидкого металла.

Каждый кристалл представляет собой группу элементарных столбчатых кристаллов, один конец которых соединен с общим основанием или оплавленным зерном основного металла. По форме и расположению кристаллов специалисты различают зернистую, столбчатую и дендритную или древовидную структуру остывшего металла.

Испытание металла сварного шва на прочность

Механические испытания сварных швов позволяют определить эксплуатационные характеристики и на их базе рассчитать возможные нагрузки.

Подобные проверки металла сварного шва проводятся различными способами, но всегда предполагают разрушение образцов при помощи разнонаправленных нагрузок. Также здесь используется специальное контрольное оборудование.

В первую очередь выбирают несколько серийных образцов, чтобы при помощи ряда идентичных операций определить пластичность, устойчивость шва к разрушениям.

Металл сварного шва

Для швов, сформированных посредством различных видов сварки существует комплекс исследований. Речь идет о группах методов испытаний с направленными напряжениями:

  • Статический метод предполагает постепенное повышение разрушающей нагрузки. Чтобы обеспечить постоянное напряжение, на испытания отводят много времени.
  • Динамическое напряжение является мгновенным, не требуя большого отрезка времени для проведения проверки.
  • Усталостные способы связаны с неоднократным воздействием на образец, причем количество циклов достигает десятков миллионов, а нагрузка изменяется по знаку, значению.

Без механических испытаний металла сварных швов не обходится серийное производство деталей. При помощи статических проверок оценивают стыковые соединения, замеряют такие физические характеристики швов, как твердость, ползучесть, растяжимость, пластичность, способность к изгибу, пр.

Для этого соединение сравнивают с образцом из целостного металла. На исследования отправляют образцы с зачищенным и не зачищенным валиком.

Стоит пояснить, что условный предел текучести – это напряжение, на фоне которого длина изделия увеличивается на 0,2 %. Испытание на изгиб позволяет контролировать пластичность диффузного слоя. Подобная нагрузка замеряется до появления первой трещины на продольном и поперечном сечении сварного шва.

Такие эксперименты проводят с плоскими и трубчатыми образцами.

С помощью динамических испытаний устанавливают вероятность усталостной деформации шва, прочность на ударный изгиб. Для проверки задают разные условия, а именно нормальную, пониженную и повышенную температуру. Все полученные показатели фиксируются в протоколе в формате графиков, после чего исследуются по типу кривых.

Иногда могут использоваться иные, нормативно утвержденные исследования и расчеты показателей металла сварного шва.

Твердость замеряют в области диффузного слоя и зоны термического воздействия. Для проверки структурной прочности металла задействуют метод металлографии, с помощью которого исследуют такие области, как:

  • диффузный слой шва;
  • зона термического влияния;
  • металл изделия, не испытывавший воздействия повышенной температуры в процессе сварки.

Причины возникновения дефектов

Дефекты могут появляться по объективным и субъективным причинам. Дело в том, что любой вид металлопроката имеет определенный уровень свариваемости, который зависит от метода его изготовления и состава сплава. Если планируется работа с плохо свариваемыми деталями, то в технологических картах изначально прописывается значительный процент брака.

Обычно сварка швов связана с такими проблемами, как:

  • нарушение целостности металла;
  • деформация элементов под действием внутренних напряжений;
  • нарушение формы валика шва;
  • изменение геометрии наплавочного валика;
  • структурные изменения в металле, а именно меняется размер зерна в зоне фазового перехода сварного соединения.

Внешние дефекты несут меньшую опасность, чем внутренние, и могут быть обнаружены при помощи неразрушающих методов проверки. Однако важно понимать, что рискованно формировать ответственные сварные швы, не имея достаточных знаний и навыков, и лучше обратиться за помощью к специалистам.

Металл сварного шва

Обычно нарушение целостности металла сварных швов и зоны, подвергавшейся температурному воздействию, происходит по таким причинам:

  • некачественно проведена обработка стыков, например, плохо выполнена зачистка металла сварных швов от окалины, ржавчины, остатков оксидной пленки, жира и грязи, допущены нарушения в процессе удаления кислорода из металла сварного шва;
  • использована наплавочная проволока, электроды, не подходящие к металлу заготовки;
  • неисправно оборудование;
  • неправильно установлены параметры на регуляторах сварочного аппарата, такие как сила тока, напряжение;
  • допущена ошибка при укладке деталей, не учтен коэффициент линейного расширения;
  • нарушено расстояние между электродом и заготовкой, из-за чего дуга имеет слишком большую или недостаточную длину.

Сварочные работы сильно влияют на механические свойства низкоуглеродистой стали. А обработка конструкционных сталей приводит к структурным изменениям в зоне термического воздействия, из-за чего снижаются механические показатели соединения. При этом в металле сварного шва появляются закалочные структуры, трещины.

Нужно понимать, что шов, зона термического влияния и металл заготовки, не подвергавшийся воздействию, имеют разную прочность. А значит, во время исследования важно расценивать сварное соединение как неоднородное тело. Разрушения могут происходить в любой из трех названных зон – все зависит от того, где наблюдается самая низкая прочность.

Рекомендуем статьи

Сегодня удается добиваться равнопрочности сварных швов и основного металла при помощи электродов с качественными покрытиями и других расходников.

Надежность соединений обеспечивается прочностью металла сварного шва, а также зависит от ширины перегретого металла в зоне термического участка, общей ширины материала шва и перегретого металла. Немаловажными факторами становятся характер приложения внешней нагрузки, температура, при которой эксплуатируется изделие, пр.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Качество сварных соединений


Качество сварных соединений является ключевым параметром, по которому оценивают пригодность к эксплуатации всего изделия. Ошибочно полагать, что на него влияет только мастерство сварщика, не меньшее значение имеют состояние оборудования и пригодность материала для работ.

Существуют различные способы организации контроля качества сварных соединений, наиболее популярными из которых являются методы разрушающего и неразрушающего контроля. В нашей статье мы расскажем, что входит в понятие качества сварки, как организуется проверка и разберем актуальные способы ее проведения.

Определение качества сварных соединений

Определение качества сварных соединений четко отражено в ГОСТ 15467-79: это такая совокупность свойств продукции, которая даст гарантию удовлетворения определенных потребностей в соответствии с ее назначением. Поэтому изготовить качественное сварное изделие будет невозможно без учета таких параметров, как соответствие материала техническим условиям, техническое состояние используемых оснастки и оборудования, соблюдение технологических регламентов и инструкций и, безусловно, квалификация и опыт сварщика.

Обеспечение высококачественных эксплуатационных и технических характеристик изделия возможно только при точном соблюдении последовательности операций технологического процесса. Важная роль при этом будет отведена различным способам объективного контроля как отдельных производственных операций, так и готового изделия. Правильная организация технологического процесса подразумевает операцию контроля как неотъемлемую его часть. Обнаружение отклонений является сигналом не только для отбраковки изделий, но и для немедленной корректировки технологического процесса.


Проверка необходима на каждом этапе изготовления сварных конструкций. Помимо этого, периодически следует проверять и состояние приспособлений с оборудованием. Предварительный контроль включает в себя проверку качества основных и вспомогательных материалов, определяется их соответствие техническим условиям и чертежу.

После завершения нарезки заготовок необходимо визуально проверить качество поверхности и внешний вид детали, наличие забоин, трещин, заусенцев и подобных дефектов, а также измерить с помощью универсальных и специальных инструментов, контрольных приспособлений и шаблонов. Особое внимание следует придавать контролю качества сварных соединений. Для проверки геометрии кромок, предназначенных для сварки плавлением, используют специальные шаблоны, а качество подготовленных поверхностей контролируется специальными микрометрами или оптическими приборами.

На этапе сборки и прихватки проверяют отсутствие прожогов, трещин, размер и расположение прихваток, величину зазоров, правильность взаиморасположения деталей и другие дефекты в местах прихваток. Чаще всего качество прихватки и сборки контролируют при обмере или визуальном осмотре.

Текущий контроль за выполнением сварки является самой ответственной операцией, включающей в себя две задачи: проверка правильности выполнения самих процессов сварки либо соответствия заданным параметрам готового изделия.

Факторы, влияющие на качество сварных соединений

Помимо выполнения шва и соблюдения технологий, прочностные характеристики сварного соединения связаны и с другими факторами:

  • Качество свариваемого материала. Несоответствие металла требуемым характеристикам даже при правильном выполнении шва может негативно отразиться на прочности соединения.
  • Не менее строгие требования предъявляются и к применяемым расходным материалам, используемым при сварочных работах. Использование низкокачественных присадок или электродов не позволит сделать правильное прочное соединение из-за появления в структуре самого металла ломкости, хрупкости и т. д.
  • Оборудование, используемое для сварочных работ, должно обладать соответствующей мощностью и быть применимым к требуемой технологии (к примеру, аргонодуговой сварке).
  • Надежность соединения деталей (их качество провара) можно достигнуть только при правильном выборе режимов сварки (полярности и силы тока).
  • Подготовка для сварки самих заготовок является не менее важной операцией. Даже незначительное отклонение формы кромок стыков может существенно снизить качество и нарушить форму шва.

Рекомендуем статьи:

Все перечисленные моменты следует учитывать при планировании работы, особенно если это касается важных и ответственных конструкций.

Методы неразрушающего контроля качества сварных соединений

Визуальный контроль качества сварных соединений.

Любой вид контроля качества сварных соединений должен начинаться с простого осмотра. Чаще всего этого вполне достаточно, чтобы увидеть внешние или внутренние пробелы. Помимо этого, такая процедура выполняется без использования специального оборудования. Например, различная высота стыкового соединения, скорее всего, происходит из-за некачественно обработанных поверхностей. Поэтому перед осмотром необходимо все швы тщательно зачистить от пыли, окалин, металлических брызг и грязи.

Чтобы улучшить видимость мелких недочетов, производят обработку поверхности при помощи спирта или азотной кислоты. Покрытие становится матовым, видимость пор и трещин значительно увеличивается.

Внешний осмотр является самым простым и эффективным методом контроля качества сварных соединений, который позволяет обнаруживать поры, трещины и наплывы. Более качественную проверку можно выполнить только с помощью специальных устройств, например, лупы при ярком освещении. Увеличительное стекло повышает эффективность обнаружения мельчайших трещин и пор.


Радиационный метод для проверки качества сварных соединений.

Такую методику контроля шва можно произвести двумя способами:

  • используя рентгеновские лучи;
  • при помощи гамма-излучения.

Проверка качества сварных соединений деталей при помощи рентгеновских лучей является наиболее простым методом. Суть технологии – лучи рентгена проходят сквозь металлическое изделие, а вся информация о структуре металла отражается на фотопленке. Снимок может отразить даже скрытые дефекты. С помощью такого излучения можно обнаружить шлаковые включения, газовые поры, смещение кромок и подобные дефекты.

Методика проверки качества сварных соединений гамма-излучением имеет аналогичный принцип действия, только еще добавляются следующие преимущества:

  • долгое время не снижается работоспособность изотопов;
  • есть возможность проникновения в конструкции сложного типа;
  • обладает свойством повышенной проницаемости излучения;
  • технология проводится на более простом и компактном оборудовании.

Необходимо помнить, что излучения такого типа представляют большую опасность для здоровья человека. Поэтому такие работы могут выполняться только опытными специалистами в защитном снаряжении. А защиту рабочего места можно обеспечить при помощи свинцовых пластин, экранов и подобных средств.

Ультразвуковой метод контроля качества сварных соединений.

Метод дефектоскопии с помощью ультразвука позволяет обнаружить такие скрытые дефекты, которые можно определить только при отражении ультразвуковых волн от границ сред с разными свойствами. Проще говоря, специальным прибором посылается сигнал, а после достижения материала, он возвращается назад. Но если на его траектории появится какой-то дефект, то он станет отражаться на целостности волны, что и зафиксирует оборудование. Разным изъянам свойственен определенный сигнал, поэтому обнаружить причину и характер дефекта несложно. Такая технология позволяет выявить не только внешние, но и скрытые изъяны.

Методика магнитного исследования качества сварных соединений.

В основе такого метода заложен принцип воздействия силовых магнитных линий, реагирующих на любые виды изменений в металлическом сплаве. Специальное оборудование для определения подобных погрешностей позволяет обнаружить дефекты не только на поверхности металла, но и внутри него. Однако такая технология используется только для сплавов, имеющих ферромагнитные свойства, а для других типов материалов она не предназначена.

Капиллярная методика контроля качества сварных соединений.

Основу способа составляет применение особых свойств жидкостей, имеющих низкий коэффициент поверхностного натяжения. Такие жидкие составы не могут существовать в форме отдельных капель, поэтому всегда находятся только в текучем состоянии, заполняя собой маленькие канавки и отверстия. Благодаря такому свойству легко определяются дефекты на металлических поверхностях.


Процесс состоит в нанесении на сварочный шов особого состава, который сразу же заполняет любые изъяны. Затем сварное соединение тщательным образом осматривают. Для повышения визуализации в жидкость добавляют красители.

Контроль проницаемости.

Метод является логическим продолжением капиллярного. Основан на применении специальных жидкостей, которые позволяют обнаружить сквозные участки сварного соединения.

Для этого обычным керосином обильно смачивается шов. С противоположной стороны появляются мокрые пятна, показывающие наличие сквозных трещин.

Неважно, где выполняются работы: дома или в заводских условиях. Без контроля качества сварного соединения ни одно изделие не должно выпускаться в эксплуатацию.

Разрушающие способы контроля сварных соединений

К ним относятся специальные и механические испытания, металлографические исследования для определения уровня качества сварных соединений.

Для проведения таких испытаний используются сварные образцы, вырезаемые из опытного изделия, или специально сваренные контрольные соединения – технологические пробы, выполненные по требованиям и технологии сварки изделия.

Основные функции испытаний:

  • оценить надежность и прочность конструкций и сварных соединений;
  • определить качество основного и присадочного материала;
  • убедиться в правильности используемой технологии;
  • выявить уровень квалификации сварщиков.

Оценка качества сварных соединений производится методом сравнения полученного шва с характеристиками свариваемого металла. При отклонении результатов от заданных параметров их считают неудовлетворительными.

ГОСТ 6996-66 предусматривает следующие виды механических испытаний для определения качества металла шва и сварного соединения: проверка всего сварочного шва и некоторых его участков (основного металла, зон термического воздействия, наплавленного металла) на статическое растяжение, стойкость против старения, ударный и статистический изгибы и замер твердости.

Контрольные образцы для механических испытаний должны соответствовать определенным размерам и формам.

Прочность сварных соединений определяется при помощи метода испытаний на статическое растяжение. Пластичность соединения проверяется при испытании на статический изгиб, в процессе которого производится замер величины угла изгиба до появления первой трещины в растягивающейся зоне.

При испытаниях на статический изгиб используют образцы с поперечными и продольными швами со снятым усилением шва вровень с поверхностью основного металла. Методом проверки на ударный изгиб и разрыв определяется ударная вязкость сварочного шва. Твердость определяется по результатам структурных изменений и степени подкалки металла при резком охлаждении сварного соединения.

Главная функция металлографических испытаний состоит в установлении качества сварного соединения и структуры металла, выявлении характера и наличия дефектов. Металлографические исследования подразделяются на микро- и макроструктурный варианты анализа сварных соединений:

  • Макроструктурный метод предполагает визуальное обследование металлических изломов или макрошлифов при помощи лупы. Такой способ позволяет определить характер и расположение видимых дефектов в разных зонах сварных соединений.
  • Микроструктурный анализ позволяет с помощью оптических микроскопов изучить структуру металла при ее увеличении от 50 до 2 000 раз. Метод используется для определения пор, микроскопических трещин, величины зерен, качества металла и изменения его состава, засоренности шва неметаллическими включениями, пережогов металла, наличия оксидов и некоторых других нарушений структуры.

В методику изготовления шлифов для металлографических исследований входят такие операции как шлифовка, травление и полировка поверхности металла специальными травящими веществами, вырезка образцов из сварных испытываемых швов.

В состав исследований качества сварных соединений металлографическим способом также входят измерения твердости и при необходимости химического анализа структуры металла сварного шва. С помощью специальных испытаний определяют следующие характеристики сварных соединений при использовании в условиях эксплуатации конструкций сварного типа:

  • усталостная прочность при циклических нагрузках;
  • коррозионная стойкость конструкции при ее эксплуатации в агрессивных средах;
  • коэффициент ползучести условиях эксплуатации с повышенными температурами и др.

Поимо этого, используют и методы контроля качества сварных соединений с разрушением всей конструкции. При испытаниях такого типа определяют способность конструкции выдержать заданную расчетную нагрузку и необходимую нагрузку для ее разрушения, то есть определяется фактический запас прочности.

При проведении испытаний методом разрушения необходимо использовать такие нагрузки, которые будут применяться во время эксплуатации изделия. Количество изделий, предназначенных для проведения испытаний методом разрушения, регламентируется техническими условиями и зависит от степени их важности, технологической оснащенности конструкции и системы организации производственного процесса.

Специалист, занимающийся контролем качества сварных соединений металлических конструкций, должен относиться к своим обязанностям с полной ответственностью. От его профессиональных навыков и внимательного отношения к процессу зависит срок службы изделия и его функциональность. Фиксировать следует любые отклонения от нормы, которые можно продиагностировать. Для получения максимально понятной картины следует использовать комбинацию нескольких методов проверки качества сварных соединений.

Читайте также: