Расход материалов при сварке аргоном

Обновлено: 14.05.2024

Нормы расхода материалов при сварочных работах, правила подсчёта

Сварка в аргоновых средах востребована при работе с трубными изделиями из нержавейки, входящих в состав систем транспортировки промышленных жидкостей и газов. Высокое качество сварного соединения позволяет применять метод и при сваривании нержавеющих труб, эксплуатируемых под достаточно высоким давлением.

Основным ручным инструментом, используемым при работе с защитным газом, является специальная горелка с зафиксированным на ней электродом, через сопло которой к месту сваривания нержавейки подаётся струя аргона.

Качественный сварной шов подготавливается с помощью проволоки, специально подаваемой к месту формирования дуги в ручном режиме. При этом все перемещения и манипуляции с горелкой также выполняются только вручную.

Данная технология, в отличие от других методов обработки нержавейки, исключает какие-либо поперечные смещения электрода и подносимой к нему присадочной проволоки.

Единственно допустимое направление их перемещения – строго вдоль оси образуемого соединения. Положение горелки при проведении сварочных операций должно соответствовать рисунку, изображённому на фото.

Требования к манипуляциям сварщика в рабочей зоне обеспечивают постоянство нахождения сварочной ванны в пределах радиуса действия газовой защиты. Это является необходимым условием получения прочного соединения деталей из нержавейки. Также следует позаботиться о том, чтобы защититься от воздушного слоя с обратной стороны шва, обдуваемого струёй аргона.

Общий расход аргона в этом случае существенно возрастает, зато качество соединения нержавейки на всех участках шва повышается. С общими положениями о расходовании аргона при данном виде сварки, а также с используемым при этом оборудованием будет рассказано далее.

Как самостоятельно провести сварку нержавейки аргоном

Нержавеющая сталь содержит большое количество легирующих веществ, которые активно вступают в химическую реакцию с кислородом, азотом. При сварке нержавейки аргоном ванна защищена.

Окисление компонентов не происходит. Остается преодолеть остальные характеристики металла, которые создают сложности при соединении двух высоколегированных деталей.

Для этого производят подготовку зоны шва, используют неплавящиеся электроды.

Сварка нержавейки аргоном

Технология

Аргоновая сварка нержавейки проводится по обычной технологии в среде защитных газов. Присадочную проволоку следует перемещать только вдоль шва. Электрод не должен касаться металла, ванна разгоняется дугой. Следует следить, чтобы все расходные материалы были закрыты аргоном.

Шов прочнее, если аргонодуговая сварка производится с дополнительным поддувом защитного газа. Он направляется с обратной стороны. С одной стороны трубу можно закрыть, а с другой запустить газ.

Для розжига дуги используют осциллятор или графитовую пластину. Касаться электродом детали нельзя, в месте контакта сразу образуется прожог.

Подача газа продолжается 4–8 секунд после завершения работ.

Для соединения тонких листов используют медные подкладки. Их крепят на обратной стороне шва для отвода лишнего тепла.

Плюсы и минусы

Для защиты от окисления, разрушения используют инертный газ, который значительно дороже углекислоты. Расход аргона при сварке нержавейки зависит от толщины свариваемого металла и скорости подачи проволок, она составляет 10–20 л/мин.

Дополнительный обдув с обратной стороны деталей из нержавейки требует еще 6–7 л/мин. Увеличивается стоимость работ.

С другой стороны получается прочный, качественный шов. Его делают на ответственных деталях, трубопроводах, емкостях под агрессивные жидкости.

Сварка тонкой нержавейки осуществляется вольфрамовым электродом встык. Медные пластины-подкладки можно применять многократно, при массовом производстве придать им любую форму. Сокращаются расходы на рихтовку и послесварочную нормализацию.

Оборудование и расходные материалы

При обработке нержавейки нельзя поджигать дугу стандартным способом, чиркая по детали. Оборудование должно обеспечивать бесконтактный розжиг дуги. Таким требованиям соответствует инвертор и полуавтомат, работающие в режиме аргонодуговой сварки. Сварочный аппарат и газовый баллон должны работать синхронно, от одной кнопки на держателе.

Равномерное распределение газа обеспечивает мундштук с сеточкой и широким соплом. Его одевают на горелку. В результате газ идет широким потоком, закрывая всю ванну и шов. У него небольшая скорость, он не выдувает расплавленный металл и не деформирует шов.

Для изделий из нержавейки важно, чтобы присадочная проволока подбиралась одной марки или максимально близкая по содержанию хрома, никеля, марганца.

Вольфрамовый электрод подбирается диаметром меньше, чем зазор между деталями. Обычно используется электроды диаметром 1–1,6 мм. Край затачивается, делается острым.

Подготовка

При подготовке следует учитывать некоторые особенности нержавейки:

  • низкую теплопроводность;
  • высокую температуру плавления;
  • большое количество легирующих веществ;
  • большое удельное расширение.

Толстостенные детали рекомендуется нагреть до 200–300 ⁰C. Это снизит разницу температур между швом и основным металлом. В результате уменьшится риск образования переходной крупнозернистой зоны вдоль линии сварки.

Непосредственно перед сваркой готовятся кромки деталей. Их надо очистить от грязи, пыли, жира. Затем протереть очищенным бензином или ацетоном. Завершает очистку обработка мягким абразивным кругом или шкуркой.

Выставляя детали под прихватку, следует оставить между ними большой зазор. При нагреве от сварочной ванны края не должны соединиться и давить друг на друга, вызывая деформацию.

Прихватки следует делать тем же электродом, что будет накладываться коренной шов.

Правила и этапы проведения сварочных работ

Сварка в среде аргона используется для соединения труб из нержавеющей стали. При прокладке трубопроводов повышенной ответственности и создания резервуаров, внутрь подается аргон. Он защищает обратную сторону шва от окисления и выгорания хрома.

Сначала торцы обрезаются ровно, протравливаются и зачищаются. Затем трубы жестко фиксируются в специальном приспособлении. Это позволяет варить без прихваток.

Шов накладывается за 2 прохода снизу-вверх с небольшим переходом в местах соединения. Толстостенный детали после охлаждения зачищают от шлака, проверяют качество шва и накладывают второй слой. Делать это нужно сразу, пока температура стыка не упала ниже 150⁰.

Ручная

Для ручной сварки неплавящимся вольфрамовым электродом присадочную проволоку укладывают заранее в шов или подводят ее впереди ванны вдоль шва.

Газ включается за 2–4 секунды до образования дуги. Это обеспечивает защиту всего шва и горячего металла. После завершения аргон еще 4 секунды обдувает шов.



Cварка алюминия аргоном технология

Обеспечить качественное соединение деталей из алюминия можно только с помощью сварки ТИГ. Обычным электродом тоже можно заварить алюминиевый сплав для прочности, но он потребует более длительной последующей обработки. Сварка алюминия аргоном позволяет работать с материалом разной толщины, создавая аккуратные швы, обладающие при этом хорошими герметичными свойствами. Это особенно востребовано при ремонте автомобилей, катеров или различных емкостей. Но как варить этот специфичный материал впервые? Как настроить оборудование при сварке алюминия? Краткое руководство из статьи и видео урок помогут освоить это сложное дело.

Что необходимо учитывать при аргоновой сварке алюминия?

Сварка аргоном довольно универсальна, что позволяет соединять этим методом разные толщины материалов и работать со сплавами, считающимися трудносвариваемыми. Основой служит электрическая дуга, горящая между вольфрамовым электродом и изделием. Ее появление обеспечивается постоянным или переменным током, подающимся на горелку и массу, прикрепленную к свариваемым частям. Инертный газ выступает в качестве защиты сварочной ванны. Но алюминий и его сплавы имеют ряд специфичных особенностей, которые требуется знать и учитывать производя сварку.

Одной из трудностей служит оксидная пленка, образовывающаяся на поверхности материала. Она появляется при взаимодействии металла с кислородом. Плавится пленка при температуре 2000 градусов. Но сам алюминий начинает приобретать жидкую форму уже после 500 градусов. Поэтому выбрав слишком большую силу тока и расплавив оксид, невозможно вести шов. Установив малые параметры на аппарате не получается вообще начать процесс создания сварочной ванны. Поэтому аргонодуговая сварка алюминия подразумевает предварительную зачистку поверхности металла от оксида. Достигается это специальной щеткой или растворителем, после чего необходимо сразу начинать сварочный процесс.

Дополнительной сложностью является гигроскопичность материала. При высокой влажности окружающей среды алюминий впитывает часть воды из воздуха. Когда изделие начинает подвергаться нагреву от электрической дуги, то свариваемый материал выделяет влагу на поверхность. Это может отражаться на качестве формирования шва, плотности контакта с изделием, и пощипыванию малым напряжением сварщика, соприкасающегося с мокрыми участками. Хотя варить аргоном можно сразу, рекомендуется небольшой прогрев материала газовой горелкой при температуре 150 градусов. Это даст испариться лишней влаге и улучшит сварочный процесс.

Аргонная сварка алюминия требует и хорошей защиты расплавленного металла от внешнего воздуха. Для этого необходимо выставить правильный расход газа. Недостаточная подача последнего приведет к вспениванию металла и горению вольфрама. Чрезмерная продувка аргоном мешает формированию шва и сделает процесс более дорогим.

Еще одной сложностью для начинающих сварщиков является образование воронки в конце шва. Если дугу резко оборвать, то появляется кратер. Длительное удержание горелки на одном месте приводит к ненужному прогреву и расширению сварочной ванны. Поэтому аргоннодуговая сварка алюминиевых сплавов нуждается в дополнительных настройках режима затухания дуги, уменьшающего силу тока постепенно. Учитывая эти особенности материала, можно правильно выставить параметры напряжения и своими руками выполнить качественный шов.

Технология выполнения сварки для начинающих

Процесс аргоновой сварки алюминия выполняется не постоянным током, а переменным. Так можно добиться лучших результатов. Свой первый шов лучше начинать на тренировочной поверхности:

  1. Необходимо выставить пластины в удобное положение. Разделка кромок выполняется по тем же параметрам, что и остальные виды металлов.
  2. Желательно произвести прогрев материала до 150 градусов, чтобы удалить влагу.
  3. Щеткой снимается верхний тугоплавкий слой. В качестве альтернативы можно воспользоваться растворителем.
  4. Горелка подносится к изделию так, чтобы между электродом и поверхностью оставалось 3 мм. Нажимается кнопка и зажигается дуга. Текучесть алюминия зависит от примесей в составе.
  5. При возникновении небольшой лужицы расплавленного металла (сварочной ванны) можно подавать в зону сварки присадку.
  6. Горелку необходимо вести ровно, справа налево. Колебательные движения понадобятся в случае широкого шва. На переменном токе будет слышен характерный треск сварки.
  7. При завершении шва нажимается кнопка и дуга плавно затухает. Горелка удерживается над зоной сварки до полного прекращения продувки газом.

Настройка аппарата и режимы

TIG сварка алюминия возможна только там, где аппараты поддерживают работу не только постоянным током, но и переменным. Несмотря на частоту колебания напряжения, лучший шов получается при последнем варианте настройки. Полярность может быть как прямой, так и обратной. Параметры напряжения можно установить исходя из толщины материала:

Аргон используют для надежной защиты среды сваривания, а также при плавке редких и активных металлов. С его помощью можно осуществлять плавку алюминия и его сплавов, хромоникелевых и жаропрочных сплавов, нержавеющей стали. Хранится и поставляется к месту использования в аргоновых баллонах под давлением 150 ± 5 кгс на сантиметр квадратный.

В состав газа аргона, который используют при сваривании металла неплавящимися электродами, входят такие элементы, как:

  • Кислород;
  • Азот;
  • Соединения, содержащие углерод;
  • Водяной пар;

Расход аргона при сваривании может быть самым разным. Все зависит от толщины металла и самого свариваемого металла. Показатели расходов выглядят приблизительно так:

  • При сваривании алюминия расходуется 15 – 20 литров за минуту;
  • При сваривании меди расходуется 10 – 12 литров за минуту;
  • При сваривании конструкционных, а также низколегированных сталей расходуется 6 — 8 литров за минуту;
  • При сваривании сплавов магния расходуется 12 – 14 литров за минуту;
  • При сваривании сплавов никеля расходуется 10 – 12 литров за минуту;
  • При сваривании титана расходуется 35 – 50 литров за минуту;

При сваривании аргонодуговой сваркой стоит помнить о месте проведения сваривания. Если Вы работаете на сквозняке или на улице, Вам желательно применять защитные средства для проведения сварочного процесса. Также среди способов повышения качества сварочного шва является получение надежной защиты с помощью увеличения расхода газа.

Аргон является самым дешевым и самым доступным газом для сваривания. Особенно это стало ясно видно в последние десятилетия, когда аргон стал продуктом массового производства.

Сначала аргон использовался в электровакуумной технике. На сегодняшний день лампы накаливания наполняются смесью аргона с азотом в процентном соотношении 86/14. Так как в аргоне сочетается плотность и слабая теплопроводность, металл нити в лампе накаляется медленнее, поэтому передача тепла от нити к колбе значительно ниже. Также аргон применяют в люминесцентных лампах для того чтобы упрощать их включение.

В последние десятилетия аргон стал больше применяться в металлургии, чем в осветительных приборах. Сейчас выпускаются новые виды ламп, которые способны работать намного дольше и экономнее расходовать электрическую энергию.

Аргонная среда используется при обработке многих видов металлов. Например, продувая аргоном жидкую сталь, можно намного повысить ее качество, что позволит использовать ее для монтажа более ответственных конструкций. Аргон является универсальным газом, с помощью которого можно повысить качества металла при плавлении и при сварке.

Подачу тока важно установить ступенчатого типа, с плавным розжигом, восходящим значением в процессе ведения шва, и постепенным затуханием при завершении горения. Это позволит избежать образования кратера в конце соединения.

Расход аргона при сварке выставляется на манометре, ближнем к газовому шлангу. Российские модели требуется установить в пределах от 6 до 11 литров. Это погрешность измерительного прибора, которая доводится до оптимального значения только практическим путем. Если манометр импортного производства (немецкий, чешский), то можно сразу поставить 8 литров.

В настройках аппарата важно установить и последующее время продувки газом, после прекращения горения дуги. Длительность подачи аргона выставляется на значение в пять секунд, что дает достаточно времени на застывание ванны и охлаждение электрода.

Выбор присадочного материала

Поскольку алюминий плавится сравнительно быстро, то подобрав неверный диаметр присадочной проволоки, можно не успевать подавать ее в зону сварки и формировать шов. Поэтому толщина припоя должна быть такой же, как и толщина свариваемых пластин. Также необходимо быть внимательным и при выборе химического состава присадочного материала. Например, изделие из дюралюминия не получится заварить с прутком для пищевого алюминия. Помочь может таблица с номерами присадочной проволоки и ее предназначением:

Маркировка присадки, №Предназначение
1070/1100АД1, АМц.
5754Для сварки алюминия с примесью магния.
1450Для сплавов, используемых в авиастроении. Присадка оснащена титановым включением, укрепляющим шов.
5183Для пищевых емкостей и судостроения.
5554Для колесных дисков и емкостей химической промышленности.
4043Для сплавов с силумином, применяемых в строительстве.

Подбор электрода

Технология сварки алюминия аргоном требует и правильного выбора вольфрамового электрода, диаметр которого должен быть максимально близок к толщине свариваемых частей. Заточка выполняется классическим способом, но без острого кончика, как в случае со сваркой нержавейки. Во время первых секунд горения электрод примет форму капли на конце и так придется вести шов. Вылет из сопла необходим на 3-5 мм, чтобы избежать перегрева вольфрама. При сварке мелкие брызги алюминия будут налипать на электрод, что потребует повторной заточки.

Научиться сваривать алюминий не просто. Но зная вышеизложенные принципы и просмотрев видео с уроками от специалистов, можно уверенно пробовать свои силы на практике.

Расчет норм расхода сварочных материалов , страница 3

Норматив расхода электроэнергии при ручной дуговой сварке определяется по формуле:

где Nэ – расход электроэнергии на погонную длину шва 1 м;

Аэ – удельный расход электроэнергии, кВтч/кг;

G – масса наплавленного металла на погонную длину шва 1 м, кг.

Удельный расход электроэнергии равен:

где D = ωд/n + 1/Кисп

Кисп – коэффициент использования сварочного поста, равный отношению времени горения дуги за смену к продолжительности смены;

ан – коэффициент наплавки, г/(А·ч);

ωд – мощность сварочной дуги, кВт;

ωо – мощность холостого хода сварочного трансформатора или генератора, кВт;

J – сила сварочного тока, А.

Мощность дуги равна

где Цд – напряжение на дуге, В.

При ручной дуговой сварке от трансформатора удельный расход электроэнергии на 1 кг наплавленного металла равен

где nt – КПД трансформатора.

Коэффициент расхода сварочных материалов при ручной аргонно-дуговой сварке на 1 кг наплавленного металла

Толщина свариваемого металла, мм

Присадочная проволока (прутки)

Коэффициенты расхода сварочных материалов при механизированной сварке на 1 кг расплавленного и наплавленного металлов

Свариваемые толщины, мм

Аргон (расход Кг, м 3 )

Автоматическая плавящимся электродом

Автоматическая неплавящимся электродом в нижнем положении

Полуавтомати- ческая плявящимся электродом

При полуавтоматической и автоматической сварке удельный расход электроэнергии на погонную длину шва 1 м равен

где ωд – мощность дуги, кВт;

η – КПД установки, применяемый в зависимости от ее типа;

Vсв – скорость сварки, м/ч.

Для однопостовых преобразователей η = 0,45 – 0,5

Для однопостового трансформатора η = 0,85 – 0,88

5.УКРУПНЕННЫЙ РАСЧЕТ ОСНОВНЫХ И СВАРОЧНЫХ МАТЕРИАЛОВ.

Годовая потребность сварочного производства в прокате и заготовках каждой марки металла для выполнения заданной программы изготовления сварочных конструкций определяется по каждой группе его сортамента : листовой , полосовой , профильный и т.д.

Объем любой группы проката с учетом отходов для каждого типоразмера определяется по формуле

Нп = Gм * П/1-0,01Котх

где Нп – годовая потребность в прокате, т;

Gм – чистая масса материала на одно изделие, т;

П - количество изделий в годовой программе, шт;

Котх – средний процент отходов.

В укрупненных расчетах Котх может быть принят равным 2-8%.

Потребность в сварочных материалах каждого типа для электродуговой сварки и наплавки на годовую программу выпуска сварных изделий может быть рассчитана по формуле

Нсв.м =(Gн.м * П/Кп) * (1 + q ),

где Нсв.м - годовая потребность в сварочных материалах

(электроды, сварочная проволока),кг;

Gн.м - масса наплавленного металла на одно сварное изделие , кг;

П - количество сварных изделий в годовой программе, кг;

Кп - коэффициент перехода металла из электрода (сварочнй проволоки) в шов;

q - коэффициент массы покрытия.

При укрупненных расчетах величина коэффициента q принимается равной:

- для ручной дуговой сварки покрытыми электродами – 0,4;

- для сварки и наплавки электродной или присадочной проволокой – 0

Годовая потребность во флюсе Нф может быть определена по массе электродной проволоки Нпр :

Если технологическим процессом предусматривается сбор и последующее использование флюса , то потребность определяется с учетом следующего соотношения :

полуавтоматическая ……………………………1,2 - 1,4

полуавтоматическая электрозаклепками………2,7 - 3,0

электрошлаковая………………………………. 0,05 - 0,10

Расход вольфрамовых электродов диаметром 2-4 мм при аргонно-дуговой сварке укрупнено может быть вычислен из расчета 0,04 г/м сварного шва.

Средний расход сжатого воздуха и газов на единицу оборудования при расчетах можно принять:

Расход газа на сварку. Расчёт защитного газа

Показатели, сколько газа расходуется, могут быть следующими:

Диаметр проволоки (см)Сила тока (Ампер)Средние показатели расхода (литров в минуту)
0,8 — 160 — 1608
1,2100 — 2509 — 12
1,4120 — 32012 — 15
1,6240 — 13015 — 18
2 см280 — 45018 — 20

Факторы расхода

Наиболее значимыми условиями расхода сварочной смеси — контролируемой атмосферы, является следующие медиаторы:

  1. Тип и толщина соединяемого металла.
  2. Диаметр сварочного прута.
  3. Сила тока сварочного аппарата.

Учитывая каждый из приведенных факторов, можно вывести расход защитной среды. Приведенные ниже данные обусловливают количество выхода сварочной смеси при работе полуавтоматом с учетом диаметра проволоки и силы тока:

Причины расхода защитного газа

В процессе выполнения сварочных работ можно выделить несколько основных показателей, влияющих на то, сколько сварочной смеси расходуется:

  • какой силы ток;
  • проволоку какого диаметра используют;
  • какой толщины будет металл, который сваривают.

Найти показатели этих значений можно у многих производителей, если изучить паспортные данные о конкретно взятом сварочном газе. Это позволит в значительной степени упростить процесс выполнения расчетов.

К примеру, показатели среднего значения, сколько смеси аргона используется в процессе сварочных работ, выполняемых методом TIG, составляют 6 литров в минуту при использовании силы тока в 100 А. Если силу тока увеличивают до показателей в 300 А, то и нормы потребления будут расти до 10 литров в минуту.

Соблюдение такой тенденции происходит и в случае с методом MIG — если диаметр проволоки увеличить с 1 до 1,6 мм, это приведет тому, что количество потребляемого газа вырастет от 9 до 18 литров за минуту.

Также важную роль играет тот факт, какие условия созданы для проведения сварочных работ.

Расход защитного газа

Теперь давайте более подробно разберемся с темой расхода газа на конкретном примере. В качестве примера возьмем стандартный газовый баллон 40 л, который есть на большинстве предприятий. Один такой баллон содержит около 24 килограмм чистой углекислоты, при испарении она образует до 12 тысяч кубических дециметров газовой фазы. Этой информации нам уже достаточно, чтобы примерно понимать расход.

Допустим, вы используете присадочную проволоку диаметром 1 миллиметр и установили почти минимальную силу тока. Скажем, 100 Ампер. Судя по справочной литературе, при таком режиме сварки нам хватит одного 40 литрового баллона ровно на сутки, то есть 24 часа. Но вы, естественно, не сидите на работе днями, поэтому поделим это на 6 часов работы. Получим 10 литров газа.

Также можно рассчитать расход исходя из того, сколько килограмм металла мы наплавили. Мы знаем, что на 1 килограмм наплавки мы должны тратить около 1,1 килограмм углекислоты и 1,30 килограмм присадочной проволоки. Зная эти данные несложно рассчитать, сколько газа и проволоки вы потратите. Подскажем: если вы потратили около 1,2 килограмм присадочной проволоки, значит расход газа составил около 1 килограмма.

Теперь, когда мы знаем эти значения, можно посчитать, сколько вообще металла удастся наплавить при использовании 40 литрового баллона с газом. Ответ: 29 килограмм металла. Конечно, это всегда приблизительные цифры, но наша практика доказала, что обычно расход как раз и варьируется в этих пределах. Новичкам рекомендуем использовать таблицу, приведенную ниже.

таблица расхода газа

Формула расчета

Показатели расхода для сварочной смеси при сварке с полуавтоматом можно выполнить с помощью следующей формулы:

  • P = Py * T;
  • Py — показатели удельного расхода газа, о которых заявил производитель;
  • T — количество основного времени, необходимое, чтобы сварить один проход.

В приведенной ниже таблице указаны нормы потребления газа, на которые оказывают влияние такие показатели: какая в диаметре проволока и какие средние показатели имеет силы тока.


Так как 40-литровый баллон содержит сварочную смесь в количестве 6 000 литров, нетрудно произвести вычисления, сколько времени можно пользоваться одним резервуаром, если процесс сварки происходит непрерывно.

К примеру, расход CO2 при полуавтоматической сварке, когда используется проволока 1 мм в диаметре, составляет от 10 до 11 часов при условии, что процесс происходит непрерывно.

Показатели таких расчетов довольно грубые, ведь здесь не учитывают, сколько газа потребляется при выполнении подготовительных и финишных операций за один проход. Это поможет в определении приблизительной картины. Если потребуются более точные показания, для их проведения может потребоваться расходомер.

Как быстро расходуется газ

Для грамотного планирования рабочего процесса необходимо знать, с какой скоростью убывают расходные материалы, в т.ч. CO2.

Чтобы посчитать, насколько примерно хватит баллона, необходимо знать следующие исходные данные для задачки:

  • сила тока;
  • диаметр сварочной проволоки;
  • толщина металла, изготовляемого изделия.

Так как сварная проволока подбирается исходя из требуемых характеристик сварного шва, а они находятся в сильной зависимости от толщины обрабатываемого металла, то в целях упрощения последний параметр можно опустить.

В итоге после проведённых вычислений, получаются приблизительно такие показатели расхода углекислого газа:

Существует ещё два аспекта, которые сложно учесть в отрыве от конкретной ситуации:

  • Для оптимальной работы с различными металлами и их сплавами используются и разные газы.
  • Порывы ветра на улице препятствуют формированию защитной газовой среды. В результате расход углекислоты может существенно возрасти.

Советы по сокращению расхода

Расход защитного газа при полуавтоматической сварке можно сократить. В этом помогут следующие советы. Уровень сварочных работ зависит от того, насколько качественным и надежным будет шов. Для этих целей и понадобится использование защитного газа. Поэтому в занижении расхода сварочной смеси искусственным путем нет никакого смысла. Иначе это может вызвать ситуацию, когда образуются поры и возникнут побочные эффекты другого плана.

Для экономии очень важным является качество газовой смеси. Например, если постоянно использовать состав «Микспро 3212», в котором много разных компонентов, можно сократить потребление как минимум вдвое. В сравнении с ситуацией, когда используется бинарный защитный газ. Его основа состоит из аргоновой и углекислотной смесей. Применение смеси «Микспро» приводит к тому, что получается наиболее качественный шов.

Сколько прослужит стандартный баллон

В обычной 40-литровой ёмкости внутри находится 24 кг сжиженного углекислого газа, которые при испарении дают 12000 л. рабочего вещества. Если принять во внимание, рассмотренные ранее параметры расхода, то выходит, что один стандартный баллон прослужит 12000/10=1200 мин или же 20 часов при работе с проволокой 1,2 мм и силе тока 120А.

Справочники по сварке дают такую информацию на этот счёт: 1 кг наплавляемого металла = 1,35 кг сварочной проволоки = 1,1 кг углекислоты. Становится заметна пропорция на каждый кг расхода проволоки приходится 0,82 кг CO2. Это значит имеющихся в баллоне 24 кг сжиженного газа достаточно для работы с 29 кг сварочной проволоки.

  • Кузнечный горн на пропане: плюсы и минусы
  • Газовая плита: часто встречающие проблемы
  • Как снизить риски при заправке баллонов пропаном

Дуговая сварка в среде защитных газов



Защитный газ предотвращает попадание из воздуха в сварочную ванну водорода, кислорода, иных вредных веществ, которые ухудшают качество шва. В некоторых случаях, газ выводит подобные элементы из сварочной ванны.
Предприятиям газ поставляется кислородными цехами заводов, домашний сварщик может купить его баллон в торговой сети. Например, 10-литровый баллон углекислоты стоит немногим более 500 рублей, однако израсходовав запас газа, емкость можно заполнить новой порцией двуокиси.

Каждый сварщик старается увеличить продолжительность работы баллона с регулируемой газовой средой, и просто уменьшить его расход обычным зажатием вентиля не получится.

Любая сварка, дома или на производстве, стремиться не только к сокращению расхода углекислоты, но и повышению качества соединяемых деталей, что у новичка часто происходит обратно пропорционально.

Однако выход CO 2 — двуокиси углерода, при работе полуавтоматической сваркой можно предварительно просчитать, чтобы не бежать в магазин за новым баллоном перед самым окончанием трудового дня.

От чего зависит расход

Для начала разберемся, от чего вообще зависит расход газа или расход сварочной смеси из нескольких газов. Прежде всего, вы должны учесть металл, с которым будете работать, диаметр присадочной проволоки и силу сварочного тока. От сочетания трех этих компонентов как раз и складывается расход.


Далее мы дадим несколько рекомендаций, какой должен быть расход газа при полуавтоматической сварке, учитывая диаметр присадочной проволоки и силу сварочного тока. Учтите, что это довольно усредненные значения, от них можно отступать.

Итак, если вы используете проволоку диаметром от 0,8 до 1 миллиметра и установили силу тока от 60 до 160 Ампер, то средний расход должен быть около 8 литров в минуту.

Если вы используете проволоку диаметром 1,2 миллиметра и установили силу тока от 100 до 250 Ампер, то средний расход должен быть около 9-12 литров в минуту.

Если вы используете проволоку диаметром 1,4 миллиметра и установили силу тока от 120 до 320 Ампер, то средний расход должен быть около 12-15 литров в минуту.

Если вы используете проволоку диаметром 1,6 миллиметра и установили силу тока от 240 до 380 Ампер, то средний расход должен быть около 15-18 литров в минуту.

Это средний расход газа при сварке полуавтоматом. Ведь помимо прямых факторов увеличения расхода (таких как диаметр проволоки и толщина металла), есть еще и косвенные. К примеру, если вы варите на улице или просто не в закрытом боксе, то расход может существенно увеличиться, ведь газ будет быстро улетучиваться. Особенно расход неприятно удивит вас, если на улице дует ветер.

Также важно качество самого газа и то, насколько хорошо он взаимодействует с металлом. Ведь если на производство поставляют некачественный разбавленный газ, вы просто не сможете сохранить показатели расхода в норме. Перерасход будет в любом случае.

Расчёт расхода защитных газов при сварке.

Существует множество методов расчёта используемого при сварке защитного газа, но необходимо учитывать вид производства – серийное, массовое, единичное, а также номенклатуры. При производстве металлоконструкций на мелкосерийном производстве для составления сертификаций на материалы можно воспользоваться следующей формулой, которая, напомним, применима лишь к мелкосерийному производству:

В данном уравнении Nп представляется собой норму расхода проволоки на изделие, определяемое в килограммах, а Rг – это коэффициент, который учитывает затраты защитного газа на один килограмм проволоки. Для обобщающих отчётов под величиной данного коэффициента можно использовать значение 1.15. Но при производстве на предприятиях опытных образцов или выставочных серий изделий нормативы расхода материалов на сварку рекомендуем применять с коэффициентов не более 1.3.

От чего зависит расход газа при сварке

Установку силы обдува сварочной ванны следует устанавливать, учитывая:

  • тип материала – определяется опытным путём;
  • толщину заготовок – для работы с толстыми понадобится больше газа;
  • диаметр электрода (проволоки).

Также придётся принять во внимание условия в цехе или на площадке. При наличии сквозняков, открытого ветра следует либо защищать рабочее место ширмами, либо увеличивать расход газовой смеси.

Для уменьшения расхода газа во время работы следует тщательно проверять соединения шлангов, исправность редукторов, элементов горелки и сварочного полуавтомата.

На сколько хватает баллонов углекислоты разного объема

Как известно, стандартный 40-литровый баллон содержит 24 кг СО2, который при испарении образует около 12 000 дм³ газовой фазы. Учитывая приведенные выше данные, можно определить, на сколько хватает баллона углекислоты при непрерывном рабочем процессе.

Вот обычный 40 литровый баллон, заполненный углекислотой

Так, например, при использовании 1-миллиметровой проволоки и средней силе тока в 100 А, 40 литров газа хватит приблизительно на 24 часа. Соответственно, баллона объемом 10 л должно хватить на 6 часов непрерывной эксплуатации.

Согласно справочным материалам, на 1 кг наплавленного металла расходуется 1,1 кг СО2 и 1,35 кг сварочной проволоки. Благодаря этим данным определяется следующая пропорция: СО2/проволока = 1:1,2 кг. То есть, на 1,2 кг проволочного материала приходится 1 кг углекислоты в жидкой фазе.

Опираясь на полученный коэффициент, можно легко посчитать потребление: 24 кг углекислого газа (емкость 40 литров) хватит на 29 кг сварочного металла. Как показывает практика, данные расчеты в большинстве случаев соответствуют действительности.

Сварка аргоном (аргоновая сварка) — технология, описание процесса




Требования к манипуляциям сварщика в рабочей зоне обеспечивают постоянство нахождения сварочной ванны в пределах радиуса действия газовой защиты. Это является необходимым условием получения прочного соединения деталей из нержавейки. Также следует позаботиться о том, чтобы защититься от воздушного слоя с обратной стороны шва, обдуваемого струёй аргона.



Область применения

Благодаря своим практичным качествам, аргон может применяться практически повсеместно. В частной сфере он встречается достаточно редко, так как зачастую его не выгодно содержать, не говоря уже о покупке соответствующего оборудования. В строительстве, где нужно создавать ответственные несущие металлоконструкции, газ является практически незаменимым. Здесь не так важна стоимость, как надежность и минимизация вероятности появления брака во время работы.

Также его часто можно встретить в ремонтных мастерских. С его помощью соединяют детали в автомобилях, изделия из сложно свариваемых металлов. Сварка нержавейки и алюминия зачастую происходит именно с помощью этого газа. Сварочные цеха на различных предприятиях также не обходятся без постов с применением аргона, где приходится работать с тонкими деталями. В коммунальной сфере им могут сваривать трубы.


Расходование инертного газа

Расход аргона при сварке нержавейки в каждом конкретном случае определяется стоящими перед исполнителем задачами и объёмами сварочных операций.

При этом для объектов, требующих наплавления значительного количества свариваемого материала расход рассчитывается на каждый килограмм проволоки. Этот способ считается наиболее универсальным и очень часто используется в условиях серийного производства изделий из нержавейки.

Ещё один принцип расчёта объёма аргона основывается на том же показателе его расхода, но уже в литрах на метр полученного шва. Таким способом удобнее всего пользоваться при сварке одинаковых (однотипных) деталей из нержавейки и на малых производствах. Формула для расчёта в этом случае несколько усложняется и выглядит так:

  • Руг – это удельный показатель расхода аргона в заданных условиях, определяемый по таблице;
  • Т – общая продолжительность сварки аргоном;
  • Рдг – поправочный показатель, учитывающий расходы аргона на подготовительные процедуры подогрева.


Обратите внимание, что все входящие в эту формулу величины оцениваются только в литрах. Также важно учитывать, что при сварке нержавейки и ряда цветных металлов этот показатель может увеличиваться почти в 1,5, а порой и в 2 раза.

Расчет расхода сварочной смеси

Существует формула, которая позволяет выяснить приблизительный расход сварочной смеси в процессе сварки:

Р = Ру х Т

где, Ру – удельный расход газа, заявленный производителем,

Т – основное время, потраченное на сваривание одного прохода.

Удельное потребление защитного газа в зависимости от диаметра проволоки при средних значениях силы тока можно посмотреть ниже:

  • 1,0 мм – 9 л/мин;
  • 1,2 мм – 12 л/мин;
  • 1,4 мм – 15 л/мин;
  • 1,6 мм – 18 л/мин;
  • 2,0 мм – 20 л/мин.

Таблица расхода сварочной смеси в зависимости от разных параметров


Таблица 1 по зависимости параметров

Таблица 2 расхода сварочной смеси в зависимости от разных параметров


Таблица 2 по зависимости параметров

Исходя из того, что в стандартном 40-литровом баллоне находится 6 м³ или 6000 литров сварочной смеси, можно легко вычислить, на сколько хватит одного резервуара при непрерывном процессе сварки.

Например, при использовании проволоки диаметром 1 мм и соединения аргона с углекислым газом, баллон объемом 40 л полностью опорожнится через 10-11 часов непрерывного процесса.

Естественно, такие расчеты являются достаточно грубыми, так как в них не учитывается потребление газа на подготовительные и финишные операции при одном проходе. Однако, они позволяют увидеть приблизительную картину. При использовании расходомеров и сверке показаний данные вычисления будут более точными и объективными.

Особенности сваривания полуавтоматом

Аргонодуговая сварка специальных сплавов с использованием неплавящихся электродов из вольфрама осуществляется аппаратами переменного или постоянного тока, включёнными в прямой полярности.

Сварка нержавейки в среде аргона с применением полуавтомата обеспечивает существенное повышение эффективности производимых операций. Особо отмечается тот факт, что сварка полуавтоматом может применяться и для сплавления заготовок нержавейки значительной толщины.

При работе по указанной методике необходимо учитывать следующие особенности сварки с использованием аргона:

  • подаваемая в зону горения проволока должна содержать добавки никеля, оказывающие существенное влияние на качество будущего соединения;
  • когда требуется сваривать детали из нержавейки большей толщины – для улучшения показателя смачиваемости шва в общий объём аргона добавляется небольшое количество углекислого газа;
  • в указанных условиях обязателен выбор подходящего режима работы оборудования и инструмента.

Последний пункт требований предполагает, что сварочные операции в аргоне могут проводиться по технологии так называемой «короткой» дуги, методом струйного переноса или же в импульсном режиме.



Самым контролируемым из всех перечисленных считается случай, когда сварочный аппарат работает в импульсном режиме, а проволока подаётся к месту сварки небольшими порциями.

Благодаря этому удаётся уменьшить эффект разбрызгивания раскалённых частиц, а также сузить границы термической обработки сплавляемых заготовок нержавейки. К тому же данный подход позволяет снизить расход достаточно дорогой сварочной проволоки.

Ещё одним существенным достоинством этого метода является высокая скорость обработки шва и прилегающего к нему участка.

Что касается других технологий, то посредством струйного переноса, как правило, свариваются заготовки и оборудование со стенками значительной толщины, а так называемая «короткая» дуга больше годится для обработки тонких нержавеющих изделий.











Особенности сварки нержавеющей стали аргоном

К любому сплаву можно найти подход и приспособиться, если знать особенные приемы. Основы сварочной работы остаются прежними, нужно также подготовить материал и оборудование, создать электрическую дугу, вести ровный шов. Но из-за примесей в металле – хрома и никеля – есть трудности.

Правила, которые нужно запомнить:

  • снизьте привычный ток минимум на 20%;
  • между двумя свариваемыми элементами оставляйте зазор побольше;
  • не используйте легированные электроды, если других нет, то подойдут только небольшой длины;
  • не допускайте нагрева выше 500 градусов;
  • быстро охлаждайте детали.


В чем заключаются сложности

Легирующие добавки дают следующие нюансы:

  • Низкая теплопроводность. По этой причине заготовка полностью не прогревается, а высокая температура скапливается на месте соединения. Могут появиться прожоги или излишние наплавления.
  • Из-за линейного расширения возможна конечная усадка, которая будет приводить к деформациям и трещинам.
  • Высокое электрическое сопротивление стали при соединении с легированными электродами приводит к перегреву.
  • Возможность потери антикоррозийных свойств из-за повышенной температуры и образования новых химических элементов на поверхности, склонных к ржавлению.


Дополнительные рекомендации

Обзор особенностей сварки нержавейки в газовой среде следует сопроводить следующими дополнительными пояснениями:

  • важнейшим условием получения качественного сварного шва является тщательное обезжиривание поверхностей заготовок ацетоном или специальным (авиационным) бензином. Такая подготовка позволяет снизить показатель пористости структуры формируемого шва, а также повысить устойчивой самой сварочной дуги;
  • особое внимание должно уделяться работе с аустенитными сплавами нержавейки, технология сваривания которых предполагает предельную аккуратность и осторожность в обращении с заготовками;
  • для предотвращения попадания вольфрама с электродов в зону расплавленного металла дугу рекомендуется поджигать бесконтактным способом. В случае невозможности сделать это непосредственно на свариваемой заготовке нередко используется специальная угольная плита, с которой дуга после поджигания переносится в рабочую зону;
  • необходимо также внимательно следить за тем, чтобы показатель легирования присадочной проволоки не был ниже, чем у соединяемых элементов нержавейки (стыкуемых частей трубопроводов, например).

В заключении отметим, что при выборе наиболее подходящего способа сварки нержавейки, вначале рассматриваются варианты, чаще всего применяемые в данных условиях работы.

Но независимо от выбора того или иного решения по технологии, желательно исходить из конкретных требований к соединению. Это позволит сэкономить материалы и средства, не ухудшив качество работ.

Технология сварки нержавейки аргоном – важные особенности и тонкости

Сварка нержавейки, при которой пользуются аргоном как защитным газом, является одной из самых распространенных технологий получения качественных и надежных соединений деталей, изготовленных из такой стали.


Использование аргона при сварке нержавеющей стали позволяет получать сварные швы высокого качества

Нержавеющая сталь является металлом, который успешно противостоит коррозионным процессам. Таким его делают легирующие добавки, основной из которых является хром (в отдельных марках нержавейки он может составлять до 20%). В различные виды такой стали могут также добавляться в качестве легирующих элементов титан, никель, молибден и др. Эти добавки, кроме антикоррозионных свойств, наделяют нержавейку и рядом других необходимых физико-механических характеристик.

Нержавеющая сталь, кроме исключительных антикоррозионных свойств, обладает поверхностью привлекательного внешнего вида. Именно поэтому ее часто даже не покрывают краской. Отсюда возникают дополнительные требования к качеству сварного шва: он должен быть не только надежным, но и аккуратным.

Выполнять сварочные работы с нержавейкой и получать соединения, удовлетворяющие самым строгим требованиям, может только специалист, обладающий не только необходимыми знаниями технологии, но и достаточным опытом работы в данной области. Это значит, что для обучения приемам сварки нержавеющей стали в среде аргона недостаточно просто посмотреть видео такого процесса – необходимо еще получить практические уроки.

Режимы

Как варить аргоном новичку при сварке в домашних условиях, подскажут справочные таблицы. Полнота данных поможет определиться предварительно с основными настройками, подкорректировать режимы.

Остаётся проследить, чтобы горелка относительно заготовки находилась под углом более 800, наконечник электрода выступал из сопла на 3–5 мм, и удерживать его при возбуждении дуги в 2–3 мм над деталью.

Токовую нагрузку определяют:

  • диаметр электрода (проволоки);
  • типы и толщины металла;
  • полярность.

Сварку чёрного металла аргоном ведут с прямой полярностью. Газ подаётся равномерным потоком без пульсации.


Последовательность выполнения работ при аргоноводуговой сварке

Технология процесса изложена на примере сварки труб ручным сварочным аппаратом и урока для новичков от канала «Гори дуга».

Подготовка оснащения, защиты и свариваемых деталей. Для работы мастера рекомендуют использовать аппараты на основе инвертора с питанием от переменного тока 220В (промышленные модели с питанием 380В использовать в бытовых условиях не рекомендуется, даже при наличии соответствующего гнезда питания).

В качестве свариваемых деталей для начинающего мастера лучше выбрать черные или слаболегированные сплавы на основе железа. Принимая листы толщиной 2…3 мм, можно использовать зеленые (WP) электроды из чистого вольфрама, без легирующих добавок.

Предварительная подготовка деталей описана выше.


Выполнение фаски для лучшего сваривания шва


Установка держателя, фиксирующего два отрезка трубы относительно друг друга

Шов «прихватка». В некоторых случаях соединить детали сразу постоянным сплошным швом бывает сложно, поэтому мастера рекомендуют в этом случае выполнить «прихватку», то есть короткие швы в нескольких местах.


Выполнение точечных «прихваток»


Если точечное схватывание было выполнено не совсем удачно, лучше зачистить наплывы металла для получения более монолитного и ровного шва


Выполнение основного шва – разжигание дуги. Обратите внимание, сначала включается поддув, и только потом дуга


Выполнение основного шва с неплавящимся электродом и использование присадки


Вид готового шва


Швы крупным планом

На детальных фото и видео швов, полученных с помощью аргонодуговой сварки хорошо видно, что они состоят из множества «нашлепок» круглой формы. Это связано с тем, что импульсы нагрева подаются с определенным интервалом. Соответственно, металл расплавляется в конкретной точке, образуя наплыв, потом в следующей и так далее.

В чем заключаются сложности сварки нержавеющей стали

Сложность сварки нержавейки объясняется свойствами данного металла, которые ему придают легирующие добавки. По сравнению с низкоуглеродистой сталью, нержавейка имеет более низкую теплопроводность (в два раза ниже), что является негативным фактором для сварочных работ. Высокая температура из-за низкой теплопроводности металла будет концентрироваться в месте выполнения соединения и недостаточно активно отводиться от него. Это может стать причиной перегрева области соединения и даже прожога металла. Именно поэтому технология сварки нержавейки предусматривает снижение сварочного тока: его значение выбирается на 20% ниже, чем при сварке обычных сталей.


Дисплей сварочного полуавтомата с цифровой индикацией рабочего тока и напряжения

Еще одной характеристикой нержавеющей стали, которую обязательно следует учитывать при сварке, является повышенный коэффициент линейного расширения и, как следствие, значительная линейная усадка. Именно это свойство нержавейки приводит к тому, что детали из нее при выполнении сварочных работ подвергаются значительным деформациям, нередко приводящим к появлению трещин на их поверхности. Учитывая это, между соединяемыми заготовками следует оставлять больший зазор, который будет компенсировать деформационные процессы.

Читайте также: