Снятие сварочных напряжений термической обработкой

Обновлено: 14.05.2024

Для уменьшения внутренних деформаций и напряжений применяют ряд технологических приёмов по технике и очерёдности выполнения швов и их расположению, по выбору правильной конструкции изделия, по выбору режимов ручной дуговой сварки (или другого способа сварки).

Остаточные напряжения

В металле напряжения возникают во время сварки и по завершению процесса. В последнем случае они формируются по мере охлаждения детали и называются остаточными. Такие напряжения практически во всех конструкционных материалах присутствуют в течение всего эксплуатационного периода. Они представляют наибольшую опасность для изделий, так как являются причиной изменения габаритов и формы деталей. Поэтому так важно снять напряжение в металле после сварки. Это позволит исключить вероятность изменения внешнего вида изделия и уменьшить степень снижения его эксплуатационных характеристик. Если же остаточные напряжения в материале слишком большие, то существует вероятность, что деталь невозможно будет использовать.

Формоизменение изделий, изготовленных с помощью сварки, происходит из-за перемещения соединенных элементов, так как в каждой точке металла появляются деформации. Существуют несколько видов изменения формы:

  • продольные укорочения, образующиеся в результате усадки в одноименном направлении;
  • изгиб плоскости;
  • поперечные укорочения; возникающие тоже в результате усадки в соответствующем направлении;
  • угловые деформации, когда выполняются тавровые и стоковые сочленения;
  • формоизменения балочных конструкций, происходящие из-за деформации поперечных и продольных сварочных швов (в редких случаях происходит закручивание балок).





Меры по предотвращению сварочных деформаций

Одним из способов устранения сварочных деформаций является сварка в кондукторах — специальных приспособлениях, позволяющих жёстко закрепить изделие. Кроме этого, часто применяют предварительную деформацию свариваемых деталей. Направление предварительной деформации должно быть противоположно ожидаемой деформации при сварке. Такая мера называется ещё методом предварительного изгиба.

Такой метод используют для предотвращения угловых деформаций при сварке угловых швов и при сварке нахлёсточных соединений. При сварке листового металла малой ширины, их выгибают в сторону, обратную от предполагаемой деформации.

В случае сварки листов большой ширины, их сварные кромки предварительно изгибают. Для предотвращения деформаций при сварке тавровых и двутавровых соединений, их закрепляют в приспособления, которые изгибают детали в сторону, обратную предполагаемой деформации.

Термообработка

Одним из вариантов снятия напряжения является высокотемпературный отпуск. Техническое мероприятие применяется во время сочленения углеродистых сплавов. Оно осуществляется за счет нагрева до 630-650 °C. После выдержки температуры, длящейся 2-3 минуты на 1 мм толщины стали, деталь охлаждается.


Снижение температуры изделия проводят медленно. Это позволяет избежать повторного образования напряжения. Скоростной параметр зависит от состава металла. Он уменьшается с увеличением в сплаве элементов, влияющих на его закалку.

Термообработка после сварки для устранения напряжений и деформаций

Отпуск после сварки для снятия напряжений

При сварке углеродистых конструкционных сталей выполняют общий высокотемпературный отпуск. Для этого сварное изделие нагревают до температуры 630-650°C, выдерживают при этой температуре и охлаждают. Время выдержки определяется из расчёта 2-3мин на миллиметр толщины металла.

Охлаждение сварного соединения должно происходить медленно, чтобы при остывании вновь не возникли внутренние напряжения. Скорость охлаждения стали определяется, в зависимости от её химического состава. Чем больше в составе стали присутствует элементов, способствующих закалке, тем меньше скорость охлаждения при отпуске после сварки. Часто сварное соединение охлаждают вместе с печью до температуры 300°C, а затем на обычном воздухе.

Отжиг для устранения внутренних напряжений

Отжиг для устранения напряжений и деформаций при сварке выполняется полный или низкотемпературный. При полном отжиге сварное изделие нагревают до температуры 800-950°C, выдерживают и охлаждают вместе с печью. После такого отпуска вязкость и пластичность сварного шва увеличивается, а твёрдость уменьшается.

При низкотемпературном отпуске сварное соединение нагревают до температуры 600-650°C и охлаждают вместе с печью. При таком отпуске, нагрев металла происходит до температур, ниже критических, поэтому, преобразований в кристаллической структуре металла не происходит.

Аргонодуговой прием

Смысл аргонодуговой обработки состоит в расплавление участка, находящегося между сварным швом и основным металлом. Процесс выполняется неплавящимся электродным стержнем в аргоновой среде. Такое воздействие позволяет избавиться от напряжений в переходной зоне. Однако в дальнейшем происходит кристаллизация, в результате которой они снова появляются. Величина вновь появившихся напряжений существенно меньше начальных значений. Разница достигает 70%.


Совет! Используя такой прием можно не только уменьшить напряжение, но и получить плавный переход на участке, расположенным между швом и металлом конструкции. Благодаря этому у металлоконструкции повышается прочностная характеристика.

Жаропрочные металлы

Этот тип сплавов отличает высокое (до 65%) содержание легирующих добавок, которые придают материалу устойчивость к высоким температурам.

Сложность сварки жаропрочных сталей таким образом, помимо обеспечения прочности шва, заключается в сохранении вышеупомянутых качеств.

Наиболее распространенная технология: сварка неплавким вольфрамовым электродом в среде инертных газов, гелия или аргона.

Аустенитные и нержавеющие сплавы сваривают также под флюсом. С целью сохранения мелкокристаллической структуры таких материалов, используют модификацию шва.

Для этого, применяют присадки с высоким содержанием легирующих компонентов (хром, молибден).

При использовании инверторных приборов используют соответствующие электроды либо проволоку.

Изделия из жаростойких металлов, обычно закаленные. Но поскольку околошовное пространство остывает медленно, каленый металл отпускается, теряя твердость. Чтобы этого не произошло после сварки теплоустойчивых сталей выполняют их закалку. Нагревая до 1000-1100 градусов и резко охлаждая.

Термическая правка

Этот метод подразумевает под собой нагрев сочленения при использовании газового пламени. Может также применяться электродуга, образующаяся от неплавящегося электродного стержня. Нагрев материала осуществляется до 750-850 °C. Затем происходит быстрое расширение сплава. Однако рядом расположенные слои не дают металлу расширяться. Из-за этого возникает пластическая деформация нагретой зоны. Когда происходит охлаждение, предварительно нагретый участок начинает сжиматься. В итоге деформация полностью или частично устраняется.

Зная, как снять напряжение металла после сварки, удастся уменьшить вероятность снижения прочности сварных конструкций. Это особенно важно в условиях, которые способствуют появлению хрупкого разрушения шва. Используя вышеописанные методы, удается избежать дефектов при эксплуатации сварной металлоконструкции.

Техника сварки, позволяющая избежать сварочных деформаций

Как избежать деформаций при сварке


Существуют разные варианты техники сварки, позволяющие уменьшить сварочные напряжения и поводки. При выполнении сварочных швов большой длины, используют обратноступенчатый способ сварки на проход (схема а) на рисунке слева). При выполнении многослойной сварки, наплавляются каскадные сварные швы, или горкой. Каждый из этих слоёв (кроме первого и последнего) проковывают.

Кроме этого, сварные швы выполняются таким образом, чтобы каждый последующий шов вызывал напряжения, противоположные напряжениям от предыдущего шва (схемы б) и в) на рисунке слева).

Последовательность сварки не должна препятствовать возможной свободной деформации сварной металлоконструкции. Например, при сварке листового настила из металлических полос, необходимо, в первую очередь, сваривать листы в каждом слое настила, а затем сваривать слои между собой (см. рисунок справа).

При сварке вязких материалов, применяют способы сварки, позволяющие снизить остаточные напряжения. К таким способам относятся закрепление свариваемой детали в специальных приспособлениях. В таких приспособлениях свариваемые детали собирают, сваривают и остужают.

Кроме этого, применяют различные приёмы, позволяющие быстро отводить тепло от сварного изделия, например, при охлаждении под струёй воды, или отвод теплоты с помощью медных подкладок.

Если свариваемый металл склонен к формированию закалочных структур, то резкое охлаждение сварного шва и зоны термического влияния приводит к возникновению внутренних напряжений и образованию холодных трещин в металле.

Для того, чтобы уменьшить перепад температур в металле, пред сваркой выполняют предварительный подогрев. Если сварочные работы ведутся при низких температурах, то подогрев обязателен даже если выполняется сварка низкоуглеродистых сталей.

Пережог

Это самый неисправимый брак. При нагреве металла или сплава обязательно нужно следить за температурой, временем и конца нагрева. Окалина растёт, если увеличено время нагрева, а при быстром или интенсивном нагреве могут появиться трещины.
Пережог сплава происходит вследствие диффузии кислорода на границах зёрен, где сразу образуются окислы, которые разъединяют зёрна при высокой температуре сплава и при этом сразу резко падает прочность. А пластичность в это время приходит к нулю. Этот брак сразу отправляется на переплавку.

Подготовка к проведению работ

Перед тем как сваривать нержавеющие элементы, их следует правильно подготовить к проведению работ. Основные моменты здесь заключаются в следующем:

  • Все кромки тщательно зачищают при помощи напильника, шлифовальной бумаги или болгарки.
  • Кромки также обрабатывают ацетоном, чтобы убрать все жирные налеты. Кроме того, данный раствор позволяет обеспечить стабильность электрической дуги, а сварное соединение будет иметь еще более высокое качество.
  • Располагая заготовки относительно друг друга, необходимо помнить об увеличенном зазоре, который не допустит деформации конечной детали.

Как осуществляется сварка нержавейки

Перед выполнением сварки нержавеющей стали необходимо ее подготовить. Очень важно уделить внимание кромкам свариваемых деталей – они должны быть зачищены до стального блеска. Также следует обезжирить поверхность с помощью растворителя, авиабензина или ацетона.

Для сваривания нержавейки можно применить одну из следующих технологий:

Ручная MMA-сварка, как правило, используют при отсутствии высоких требований к качеству шва. Основная сложность данной технологии заключается в правильном выборе электрода, который нужно подбирать в соответствии с маркой металла. Обычно для таких целей применяют электроды с основным покрытием, изготовленным из карбонатов магния и кальция, или рутиловым покрытием, созданным на основе двуокиси титана. Если в первом случае сваривание осуществляется исключительно обратнополярным постоянным током, то во втором допускается применение тока с переменной характеристикой.

Таблица подбора электродов для сварки нержавейки


Таблица для подбора электродов

TIG-сварка эффективна для сваривания тонких листов нержавейки. Чтобы добиться высокого качества шва, следует использовать присадочную проволоку с более высоким уровнем легирования, чем у основного металла. В качестве защитной среды зачастую применяется 100% аргон, однако в некоторых случаях для повышения стабильности дуги и увеличения скорости процесса аргон могут разбавлять гелием.

TIG сварка изделий из нержавейки

TIG сварка выхлопных систем

Аргонодуговая сварка нержавейки TIG с вольфрамовым электродом


Аргонодуговая сварка TIG с вольфрамовым электродом

Полуавтоматическая технология MIG/MAG является наиболее универсальной для сварки нержавеющей стали, так как позволяет работать с разными толщинами: для тонких листов подходит метод короткой дуги, для толстых – струйного переноса. С целью защиты шва обычно используют смесь аргона (98%) с диоксидом углерода (2%). Не рекомендуется увеличивать концентрацию углекислоты и, тем более, применять ее в чистом виде, поскольку это приводит к появлению металлических брызг и нарушению структуры шва. Подробнее о сравнении углекислого газа и сварочных смесей читайте в нашей статье.

Особенности работы с нержавеющей сталью

Приступая к сварочному процессу, необходимо учитывать несколько важных моментов, характерных для нержавейки:

  • Данный материал обладает меньшей теплопроводностью, чем обычное железо. Поэтому во избежание высокой концентрации тепла в районе шва с дальнейшим прожогом детали сварочный ток необходимо уменьшать на 20-30%.
  • Из-за повышенного электрического сопротивления металла электроды нагреваются гораздо сильнее, что приводит к их более быстрому износу.
  • Нержавеющая сталь отличается высоким коэффициентом линейного расширения. При сваривании деталей большой толщины важно выдерживать определенный зазор для нормальной усадки шва. В ином случае возможно появление трещин.
  • В режиме термообработки возникает вероятность снижения антикоррозионных свойств в месте соединения деталей. С целью предотвращения такой ситуации шов следует оперативно охлаждать. Для этого используют разные способы, например, подкладывают под место соединения медную пластину или снижают его температуру с помощью холодной воды.

Сваривание изделий из нержавейки это распространенная задача на производстве. Как показывает практика, попытки сэкономить на качестве защитных газов приводят к уменьшению надежности и долговечности сварного соединения. Качество имеет первостепенное значение для всего результата работы. Например, здесь можно ознакомиться с защитными газовыми смесями, которые применяются для различных видов металлов, и их типовыми характеристиками.

Последствия напряжения сварного шва

Последствия напряжения различают и по характеру деформации — упругая поверхностная может быть устранена или постепенно сойдет сама в процессе остывания. Пластическая деформация шва необратима, устранить ее без переваривания практически невозможно, при этом изменяется структура металла и его прочностные свойства.

Равномерность распределения

При оценке деформации используется коэффициент неравномерности, который позволяет учесть направление сил напряжения и заранее принять профилактические меры. Например, неравномерность будет выраженной, если часть заготовки контактирует с массивными холодными тисками, фиксируется ими, а при остывании именно в этой зоне формируется зона наибольшего напряжения. Имеет значение и разница в габаритах деталей — больший размер связан с изменением динамики нагрева и остывания, при соединении с фрагментом меньшего размера возникает неравномерно распределенное усилие.


Какое бывает окисление у разных сталей?

Хромоникелевая сталь — её называют жаростойкой потому, что она практически не поддаётся окислению.

Легированная сталь — у неё образуется плотный, но тонкий слой окалины, который защищает от дальнейшего окисления и не даёт растрескиваться при ковке.

Углеродистая сталь — она теряет около 2–4 мм углерода с поверхности при нагреве. Это для металла очень плохо, так как он теряет прочность, твёрдость и сталь ухудшается в закаливании. А особенно очень пагубным является обезуглероживание для ковки небольших деталей с последующей закалкой. Чтобы не было трещин на высоколегированной и высокоуглеродистой стали, их надо нагревать медленно.

Обязательно нужно обращаться к диаграмме «железо-углерод», где определена температура для начала и конца ковки. Делать это надо для того, чтобы металл при нагреве не приобретал крупнозернистую структуру и не снижалась его пластичность.

Другие виды

При сварке нержавейки шов нередко, оказывается подверженным коррозии. Это вызвано как выгоранием части легирующих добавок, так и занесением в сварную зону излишнего содержания железа.

Чтобы этого избежать необходима пассивация сварных швов нержавеющей стали путем их зачистки, либо травления кислотой (как правило — азотной). В процессе пассивирования, на поверхности металла образуется прочная окисная пленка, которая становится его надежной защитой.

Явной приметой снижения уровня легирования, является значительное изменение цвета зоны как самого шва, так и прилегающего к ней металла.

Серьезные проблемы при выполнении неразъемных соединений создает сварка анодированной стали. Дело в том, что слой анодированного покрытия при создании шва неизбежно разрушается. Если после окончания сварочных работ не произвести его восстановление, изделие на стыке быстро начнет ржаветь.

К счастью, восстановление анодированного покрытия не представляет особых проблем, даже в домашних условиях. Для этого достаточно источника постоянного тока не менее 12 Вольт, а также пищевой соды и обычной поваренной соли.

Термообработка сварных соединений и альтернативные методы снятия остаточных напряжений в сварных соединениях

Термообработка сварных соединений и альтернативные методы снятия остаточных напряжений в сварных соединениях

Сварные конструкции, непосредственно после сварки, имеют достаточно высокую степень отклонений по «геометрии». Причина таких отклонений — наличие остаточных сварочных напряжений, неизбежно сопутствующих процессу сварки. Возникает необходимость дополнительной обработки.

Остаточные механические напряжения, действующие на металлоконструкции (судовые, строительные, мостовые, трубопроводы и т.п.), приводят к деградации металла и вызывают возникновение в них, в процессе эксплуатации, развитие дефектов. В местах концентраторов напряжений более интенсивно развиваются дефекты такие как КРН (коррозионные растрескивания под напряжениями), питтинги, интенсивное протекание коррозионных процессов и др.

В большинстве случаев именно в зоне сварного шва наблюдаются максимальные уровни остаточных напряжений. В поперечном к шву направлении обычно фиксируется их максимальный градиент (рис. 1). На базе, соответствующей ширине шва, значение напряжений может меняться от нулевого (на линии сплавления) до максимального, близкого к пределу текучести материала (в центре шва). По некоторым данным, градиент в поперечном направлении в сварном шве может достигать 200 МПа/мм.


Рис. 1. Характерное распределение продольных остаточных напряжений в зоне шва на пластине

Основной способ снятия остаточных сварочных напряжений — термическая обработка. Однако, в последние десятилетия, получил распространение способ снятия остаточных механических напряжений и стабилизации геометрических размеров металлоконструкций посредством возбуждения в сварной конструкции низкочастотных механических колебаний – метод НВО.

  • улучшить и стабилизировать структуру металла сварного шва и околошовной зоны;
  • уменьшить деформации, вызванные сваркой;
  • перераспределить (сгладить) пиковые показатели концентраторов напряжений в сварном соединении;
  • повысить долговечность зоны сварного соединения до уровня основного металла.

Вибрационной обработке подвергают сварные конструкции не только из углеродистых сталей, но и изготовленные из алюминиевых и титановых сплавов. Широко используют виброобработку чугунных и стальных отливок.

Малая энергоемкость систем виброобработки, относительно низкая стоимость технологического оборудования и простота его обслуживания позволяют эффективно применять виброобработку не только на крупных предприятиях, но и в условиях мелких и средних производств.

Преимущества метода низкочастотной виброобработки (НВО)

НВО — наиболее современный, надежный и эффективный технологический процесс, основанный на мировых достижениях науки и техники, и имеет следующие преимущества в сравнении с термообработкой (ТО):

  • затраты электроэнергии – на несколько порядков меньше, чем при ТО;
  • малая продолжительность процесса НВО (20…30 мин) по сравнению с ТО (2…3 суток);
  • стоимость оборудования НВО мала в сравнении с полученной годовой экономией электроэнергии и стоимостью термической печи;
  • расходы по обслуживанию и эксплуатации виброкомплекса весьма малы по сравнению с эксплуатацией термической печи;
  • после НВО обеспечивается сохранность внешнего вида изделий (покраска, покрытия, полировка и др.), а при ТО образуется окалина на поверхности изделия, качество поверхности снижается;
  • после НВО сохраняются прочностные характеристики металла (σв, σт), а при ТО происходит снижение этих характеристик;
  • возможность снятия остаточных напряжений в сварных конструкциях из разнородных материалов, где невозможно применить ТО — детали с поверхностями, подвергнутыми закалке ТВЧ, ТПЧ или стали группы Hardox;
  • возможность быстро выявить дефекты в сварных конструкциях и деталях (например, опасные трещины и другие дефекты), что позволит избежать аварий конструкций;
  • сокращение транспортных операций; сокращение непроизводственных расходов, так как отпадает необходимость перевозки деталей для ТО в другие цехи или на другие предприятия, где имеются термические печи соответствующих габаритов;
  • возможность снятия остаточных напряжений в сварных конструкциях очень больших габаритов, для которых нет термических печей таких размеров.

Многие предприятия судостроения, тяжелого машиностроения и атомного машиностроения РФ и зарубежных стран используют метод НВО для снижения остаточных напряжений, стабилизации размеров и обеспечения достаточно жестких допусков для изделий, к которым предъявляются высокие требования по точности.

Применяется способ НВО и для крупногабаритных конструкций. Заметим, что опыт наших партнеров, использующих оборудование от ООО «МАГНИТ плюс» – обработка металлоконструкции весом в 180 тонн.

Разработки ООО «МАГНИТ плюс»

ООО «МАГНИТ плюс» на протяжении многих лет занимается внедрением и поставками оборудования для контроля и снятия остаточных механических напряжений в металлоконструкциях.

В настоящее время для снятия остаточных сварочных напряжений в металлоконструкциях компания ООО «МАГНИТ плюс» предлагает:

  • установка низкочастотной виброобработки ВТУ-02МП;
  • технологический комплекс для упрочняющей обработки сварных соединений методом ударного деформирования на ультразвуковой частоте «ШМЕЛЬ».

Установка низкочастотной виброобработки ВТУ-02МП

Комплекс предназначен для возбуждения изменяемых низкочастотных колебаний в деталях, узлах и конструкциях после их изготовления способом сварки, механической обработки, литья и горячего деформирования, с целью снижения остаточных напряжений и стабилизации геометрической формы и линейных размеров.

Установка является мобильной и монтируется рядом с обрабатываемой конструкцией. Комплекс состоит из двух частей: вибровозбудитель и пульт управления.

Вибровозбудитель — это специализированный асинхронный двигатель. На валу двигателя с двух сторон закреплены два эксцентрика. При вращении двигателя, эксцентрик создает круговые колебания, которые передаются конструкции, на которой он установлен. Амплитуду колебаний (рабочее усилие) создаваемых эксцентриком можно изменять путем его регулировки.

Пульт управления предназначен для задания и индикации параметров работы вибровозбудителя. С помощью пульта производится запуск и останов вибровозбудителя, задание режима работы и скорость вращения вибровозбудителя.

К сварной конструкции, при помощи струбцин, крепится вибровозбудитель с регулируемым дисбалансом и после его включения, в металле, возникают низкочастотные колебания, которые снимают напряжения микроструктуры сварного шва и околошовной зоны.

Проведенный ООО «МАГНИТ плюс», в рамках оценки эффективности комплексной методики оценки и снижения уровня остаточных напряжений, эксперимент показал возможность достижения нулевого уровня остаточных напряжений.


Пример работы комплекса ВТУ-02МП

Снижение остаточных сварочных напряжений методом ультразвуковой ударной обработки. Технологический комплекс «ШМЕЛЬ»

Одной из актуальных задач современного промышленного производства остается поиск эффективных средств, обеспечивающих упрочнение сварочных швов. Качество сварки, это не только вопрос надежности на момент завершения сварочных работ, а также сроки безаварийного использования данного сварного соединения в течение всего периода эксплуатации конструкции в целом.

Среди методов, позволяющих повысить качество, надежность и ресурс сварных швов следует выделить ультразвуковую ударную обработку (УУО). Снижение остаточных механических напряжений ультразвуковой ударной обработкой происходит за счет образования сжимающих поверхностных напряжений.

Механизм ультразвуковой ударной обработки представлен на рисунке 2 зонами физического воздействия на сварочное соединение в поперечном разрезе поверхностного слоя обрабатываемого металла. Рисунок 2 отражает многочисленные исследования эффективности ультразвуковой ударной обработки.


Рисунок 2. Физические зоны влияния ультразвуковой ударной обработки

Эти результаты определяют ряд актуальных областей использования ультразвуковой ударной обработки в производстве, эксплуатации и ремонте сварных соединений (мостостроение, судостроение, машиностроение и другие отрасли). В этой схеме каждой физической зоне влияния ультразвуковой ударной обработки на свойства материала соответствуют определенные режимы обработки и определенная технология изготовления сварного соединения.
Работа технологического комплекса Шмель основана на ударном воздействии на обрабатываемый материал с целью его пластического деформирования. Ультразвуковая колебательная система размещена в корпусе, который обеспечивает возможность ее принудительного жидкостного охлаждения.
Ультразвуковой генератор, размещенный в блоке питания, осуществляет преобразование тока промышленной частоты 50 Гц в ток высокой частоты 26—28 кГц, соответствующего частоте ультразвука.

Внешний вид комплекса Шмель

Внешний вид комплекса Шмель

Энергия тока высокой частоты при помощи магнитострикционного преобразователя, расположенного в ударном инструменте, формирует колебания ультразвуковой частоты, которые через волновод и удлинитель переходят в иглу-ударник.

Какие именно преимущества способна дать ультразвуковая ударная обработка по сравнению с термическим снятием напряжений в металле?

  1. Высокая удельная энергоэффективность УУО: в масштабах серийного производства, УУО – это метод, способный дать ощутимый экономический эффект.
  2. УУО рассматривается как поверхностное пластическое деформирование (ППД), В поверхностном слое обрабатываемой поверхности формируются сжимающие остаточные напряжения, и благоприятный профиль шероховатости поверхности. Для деталей, изготовленных из высокопрочных материалов и имеющих повышенную чувствительность к концентраторам напряжения, что важно, ППД повышает сопротивление усталости и, соответственно, появлению усталостных трещин.
  3. УУО сварочного шва и околошовной зоны снижает развитие межкристаллитной коррозии границ зерен металла за счет их измельчения ударными импульсами ультразвука.

Эффективность ультразвуковой ударной обработки (УУО). Результаты измерений полей остаточных напряжений показали, что УУО в ряде случаев является приемлемой альтернативой высокому отпуску. УУО оказывает эффективное воздействие на перераспределение остаточных сварочных напряжений.

О ремонте труб. Из результатов проведённых работ установлено, что УУО производит в зоне ремонтного участка благоприятное перераспределение напряжений. На участке после УУО напряжения наплавленного участка, околошовной зоны и основного металла трубы были получены идентичны, близкие к равномерному распределению по всей площади, тогда как на участке без УУО наблюдались высокие концентраторы с большим уровнем градиентов.

В результате – практически однородное распределение остаточных напряжений. Металл в зоне, подвергнутой ремонтным сварочным работам, равномерно стабилизирован, что очень важно для надежной эксплуатации трубопровода.


Картограммы механических напряжений (РГМН и КМН)

  1. Ультразвуковая ударная обработка позволяет эффективно снизить уровень остаточных технологических напряжений в сварных конструкциях.
  2. Применение УУО позволяет, в ряде случаев, отказаться от послесварочной термической обработки.

Сканер механических напряжений «Stressvision Antistress»

Конечно, при проведении работ по снятию остаточных сварочных напряжений и упрочнению сварочного шва возникает задача по контролю уровня внутренних напряжений до обработки и после обработки. Видеть распределение напряжений на площади металлической конструкции важно для понимания общего напряженного состояния конструкции.

Для этих целей, компания ООО «МАГНИТ плюс» рекомендует обратить внимание на магнитоанизотропный метод. А именно на магнитоанизатропный сканер “Stressvision Antistress”. Данный прибор позволяет получить информацию о распределении напряженного состояния исследуемой области конструкции: в основном металле, сварном шве и околошовной зоне. Результаты документируются в виде картограмм разности главных механических напряжений (РГМН), градиентов РГМН и карт распределения коэффициента концентрации механических напряжений (КМН).


Магнитоанизатропный сканер «Stressvision Antistress»

Таким образом, показано, что имеются технологии и оборудование, позволяющие эффективно снимать остаточные напряжения в металлоконструкциях, что позволяет повысить надежность и срок службы металлоконструкций.

Сварочные напряжения и деформации

Образование напряжений и деформаций при сварке обычно связано с несоблюдением технологических требований. Такие соединения ненадежны, так как на швах могут появиться трещины, снижающие прочность. После деформации при сварке геометрические параметры могут измениться настолько, что конструкция будет непригодна для эксплуатации.

Определение сварочных напряжений и деформаций

Сварочные напряжения ― это воздействия, приложенные к поперечному сечению. По направленности они могут быть:

  • растягивающего действия;
  • изгибающего;
  • крутящего;
  • сжимающего;
  • срезающего.

Сварочные деформации ― это искажение формы под действием прилагаемых сил. Нарушения могут проявиться не сразу после завершения сварочных работ, а во время эксплуатации из-за увеличения нагрузки. В лучшем случае снизится антикоррозийная устойчивость, в худшем ― разрушится конструкция.

Наглядная картинка деформации сварного соединения при сварке и после остывания

Сварочные напряжения ― это воздействия, приложенные к поперечному сечению.

Сварочные деформации ― это искажение формы под действием прилагаемых сил.

Причины возникновения

Причины образования деформаций и напряжений при сварке подразделяются на основные и побочные категории. К первым относят те, которые возникают во время сварки, поэтому неизбежны. Вторые нужно предотвращать.

Основные причины возникают как следствие:

  1. Неравномерного нагрева сварочной зоны и прилегающих участков. Более горячий металл расширяется больше чем холодный, поэтому между слоями с разной температурой начинает концентрироваться напряженность. Ее величина определяется степенью нагревания и коэффициентом теплового расширения. Чем больше эти значения, тем выше вероятность нарушения геометрии конструкций.
  2. Усадки. Когда при охлаждении после сварки металл переходит из жидкой фазы в твердое состояние, объем уменьшается. Этот процесс сопровождается растягиванием прилегающих участков с образованием напряжений, направленных вдоль или поперек шва. Продольное воздействие изменяет длину соединения, а поперечное способствует образованию угловой деформации.
  3. Структурных изменений. При сварке высокоуглеродистой или легированной стали с большим нагревом происходит процесс закаливания с изменением объема и коэффициента теплового расширения. Это явление создает напряжения, приводящие к образованию трещин внутри и на поверхности швов. У сталей, в составе которых углерода меньше 0,35%, структурные изменения настолько малы, что не оказывают существенного влияния на качество сварных соединений.

К побочным причинам причисляют:

  • неправильный выбор электродов или режимов сварки, некачественная подготовка деталей перед сваркой, другие нарушения технологии;
  • неверный выбор вида швов или малое расстояние между ними, большое количество точек пересечения соединений и прочие конструктивные ошибки;
  • неопытность сварщиков.

Классификация напряжений и деформаций

В зависимости от причины образования напряжения называются тепловыми и структурными. Первые возникают во время нагрева/остывания, вторые возникают при структурной перестройке металла. При сварке легированных или высокоуглеродистых сортов стали они проявляются совместно.

Виды сварочных деформаций

По месту действия напряжения присутствуют в границах конструкции, зернах, кристаллической решетке металла. По виду напряженного состояния их называют:

  • линейными, с односторонним действием;
  • плоскостными, действующими по двум направлениям;
  • объемными, распространяющиеся по трем осям.

По направленности продольные напряжения действуют вдоль сварного соединения, а поперечные перпендикулярно.

Деформацию конструкции, которая происходит в процессе сварки, называют общей, а если изменяются размеры и форма только одной или нескольких деталей ― местной. По продолжительности существования действие временных сварочных деформаций проявляется только в процессе соединения деталей. После охлаждения геометрические параметры восстанавливаются. Остаточной называют сварочную деформацию, которая остается неизменной после устранения причины появления. Если геометрические параметры восстанавливаются после завершения сварки, деформации называются упругими, если нет ― пластичными.

Как предотвратить возникновение

Для снижения величины сварочных напряжений и деформаций при подготовке к работе специалисты рекомендуют:

  • при проектировании выполнять расчет деформаций для правильного формирования сечения сварочных швов, припусков для усадки;
  • располагать швы симметрично по отношению к осям узлов;
  • не проектировать соединения так, чтобы больше трех швов пересекались в одной точке;
  • прежде чем приступить к сварке, проверить, нет ли отклонений величины зазоров на стыках от расчетных величин;
  • не проводить швы через места концентрации напряжений.

Для уменьшения деформаций и напряжений во время работы применяют следующие приемы:

  • создавать на соединениях очаги дополнительной деформации с действием, противоположным сварке;
  • швы длиной больше 1 м разбивать на отрезки длиной 10 — 15 см и сваривать обратноступенчатым методом;
  • подкладывать под стыки медные или графитовые прокладки для снижения температуры сварочной зоны;
  • соседние швы сваривать так, чтобы деформации компенсировали друг друга;
  • для сварки деталей из вязкого металла применять технологии, которые обеспечивают снижение величины остаточных явлений;
  • делать размер швов меньше, если это допускается условиями эксплуатации;
  • по возможности выполнять соединения с меньшим числом проходов;
  • при наложении двухсторонних швов слои наплавлять попеременно с каждой стороны;
  • предварительно выгибать края заготовок в направлении, противоположном действию деформации, когда сварка завершится, они вернутся в исходное положение;
  • не делать много прихваток;
  • для ускорения сборки и снижения величины деформаций небольшие узлы сваривать в кондукторах.

Методы устранения напряжений

Для снятия напряжений пользуются отжигом и механической обработкой. Первый способ применяют в случаях, когда требуется обеспечить высокую точность размеров. Местный или общий отжиг проводят при нагреве до 550 — 680⁰C в три стадии: нагревание, выдержка, охлаждение.

Для механического снятия напряжений используют обработку проковкой, прокаткой, вибрацией, взрывом, чтобы создать нагрузку с противоположным знаком. Для горячей и холодной проковки используют пневматический молот. Обработку вибрацией проводят устройством, которое генерирует колебания с частотой в диапазоне 10 — 120 Гц.

Способы снятия напряжений, минимизации деформаций и правки выбирают в зависимости от размеров и формы деталей, сложности конструкции.

Методы устранения деформаций

Дефекты устраняют термическим с местным или общим нагревом, холодным механическим, термомеханическим способами. Для правки термическим методом с полным отжигом конструкцию закрепляют в устройстве, которое создает давление на искривленный участок, затем нагревают в печи.

Способ локального нагрева основан на сжимании металла при остывании. Для исправления дефектов искривленное место греют горелкой или сварочной дугой. Так как прилегающие участки остаются холодными, зона нагрева не может значительно расшириться. После охлаждения растянутый участок выпрямляется.

Термическим способом выправляют любые виды деформаций, однако при работе с тонкостенным металлом следует учитывать его особенности:

  • тепло при местном нагреве тонких стальных листов быстро распространяется по всей площади, поэтому величина усилия сжатия оказывается недостаточной для исправления дефекта;
  • температура локального нагрева тонкостенного металла не должна превышать 600 — 650⁰C, поскольку при увеличении температуры начнется образование пластических деформаций даже при отсутствии напряжения.

При механической правке растянутые участки деформируются внешними нагрузками в обратном направлении. Дефекты устраняют применением изгибания, вальцовки, растяжения, ковкой, прокаткой роликами.

Термомеханическую правку проводят с подогревом растянутого участка до 700 — 800⁰C и внешнего воздействия. Для выправления участков с большим растяжением сначала из избытков металла холодной рихтовкой формируют выступы в форме куполов. Затем по отдельности нагревают и резко охлаждают.

Способы снятия напряжений, минимизации деформаций и правки выбирают в зависимости от размеров и формы деталей, сложности конструкции. При этом учитывают эффективность метода, трудоемкость, величину финансовых затрат.

Термообработка сварных швов

При сварке структура металла шва и прилегающей зоны под действием высокой температуры изменяется. Это может привести к преждевременному разрушению деталей. Для устранения негативных последствий сильного нагрева после наложения швов выполняют термообработку сварных соединений.

Термообработка сварных соединений

Для чего нужна термообработка

При сварке в зоне нагрева происходят негативные изменения кристаллической решетки и свойств металла:

  1. Из-за перегрева в месте горения дуги структура становится крупнозернистой, что приводит к снижению пластичности. Процесс сопровождается выгоранием марганца и кремния, что также способствует преобразованию структуры. После остывания шов становится жестким, склонным к образованию трещин при изменении нагрузки во время эксплуатации. Например, к сварным соединениям технологических трубопроводов прилагаются дополнительные воздействия, возникающие при температурном расширении/сжатии.
  2. В зоне возле сварного соединения металл нагревается до температуры достаточной для закалки. Поэтому происходит снижение пластичности и стойкости к ударным нагрузкам.
  3. На более удаленных участках с умеренным нагревом происходит разупрочнение металла, но пластичность остается на прежнем уровне.
  4. Из-за неравномерности нагрева происходит образование внутренних напряжений, приводящих к деформации деталей с образованием трещин.

После проведения термообработки сварных швов и прилегающих участков восстанавливается структура и характеристики металла по прочности, пластичности, коррозионной стойкости. Термическую обработку сварных соединений для снятия напряжений в обязательном порядке выполняют при монтаже объемных конструкций из тонкостенного металла.

Термообработка защищает сварной шов от коррозии и улучшает механические свойства.

Особенности проведения

Термообработку выполняют поэтапно:

  • нагревают только шов или вместе с участками возле него;
  • поддерживают температуру в течение определенного времени;
  • планомерно охлаждают до температуры окружающей среды.

Температура термообработки зависит от выполняемых задач

В зависимости от решаемых задач термообработку после сварки выполняют при температуре от 600 до 1100⁰C. Разработано несколько методов обработки с разными графиками нагревания, временем выдерживания, охлаждения. Способ и оборудование выбирают в зависимости от марки металла, толщины и конфигурации деталей.

Термообработке должны подвергаться сварные швы трубопроводов большой протяженности, соединения на грузоподъемных механизмах, сосуды и емкости, работающие под давлением. Процедуру нельзя откладывать на срок больше трех суток. Для повышения стойкости к коррозии термообработку проводят сразу после завершения сварки.

Из достоинств отмечают:

  • увеличение надежности и долговечности сварных соединений;
  • возможность улучшения нужных параметров.

К недостаткам термообработки относят:

  1. Невозможность исправления брака при нарушении технологии термообработки. Соединение придется заново переваривать.
  2. Большую цену и габариты оборудования.
  3. Для выполнения термообработки нужен квалифицированный персонал.
  4. Повышенный расход энергоресурсов.

Продолжительность процесса

Длительность термической обработки сварных соединений зависит от вида и толщины металла. Хромомолибденовые марки стали и ее сплавы с включением ванадия нагревают радиационным или индукционным способом. Длительность процесса определяют по таблице:

Толщина,
см
Радиационный,
минуты
Индукционный,
минуты
До 2.04025
2.1 — 2.57040
2.6 — 3.010040
3.1 — 3.512060
3.6 — 4.514070
4.6 — 6.016090
6.1 — 8.0160110
8.1 — 101600140

Перед нагревом сварной шов очищают от шлака. Индукционным способом процедура выполняется быстрее, но расход электроэнергии больше.

Процесс нагрева при темрической обработке

Важно!

Длительность термической обработки сварных соединений зависит от вида и толщины металла.

Применяемое оборудование

Для термической обработки сварных швов применяют следующие виды оборудования:

  1. Индукционное. Принцип работы основан на нагреве металла вихревыми токами, создаваемыми индукционной катушкой (индуктором), подключенной к высокочастотному генератору. Нагреваемый участок предварительно накрывают асбестом. Поверх него гибким проводом наматывают витки катушки с шагом 2,5 см на расстоянии 25 см по обе стороны от стыка. В качестве индуктора также используют накладки с расположенными внутри проводами. Технология обеспечивает быстрый, равномерный нагрев участка соединения независимо от положения деталей.
  2. Радиационное. Нагрев осуществляется теплом от проводов из нихрома, по которым проходит электроток. Гибкие нагревательные элементы удобны для обработки соединений сложной формы. Радиационное оборудование эффективней индукционного при работе с металлами с низкими электромагнитными характеристиками.
  3. Газовое выгодно для применения, так как не нуждается в электроэнергии. Однако на нагрев уходит много времени. Поэтому оборудование используют на небольших конструкциях. Для обеспечения равномерного прогрева соединения работу выполняют двумя многопламенными ацетиленовыми горелками одновременно с обеих сторон.
  4. Для работы с деталями небольшого размера применяют муфельные печи. Их также используют на трубопроводах малого диаметра.

Виды термической обработки

Способ термообработки сварного шва выбирают в зависимости от поставленной цели:

  1. После термического отдыха уменьшается остаточное напряжение и количество водорода внутри шва. Процесс проводят при температуре до 300⁰C с выдержкой в течение 1,5 — 2 часов. Этим способом обрабатывают сварные соединения на толстостенных конструкциях, когда нет возможности применить другие виды.
  2. Отпуском за счет разрушения закалочных структур добиваются уменьшения напряжения на 90%, увеличения пластичности и стойкости к ударным нагрузкам. Нагрев до 600 — 700⁰C, выдержка до 3 часов. Метод применяют на перлитных сталях.
  3. Нормализацию выполняют при 800⁰C с выдержкой 20 — 40 минут на тонкостенных деталях. После завершения процесса структура становится мелкозернистой и однородной.
  4. Аустенизацию проводят на высоколегированных видах стали для снятия напряжений и восстановления пластичности. Нагрев до 1100⁰C, двухчасовая выдержка с последующим естественным охлаждением.
  5. Для отжига после сварки термообработку выполнят при 970⁰C с выдержкой в течение 3 часов и остыванием в естественных условиях. Используют при работе с высоколегированными сталями для улучшения стойкости к коррозии.

Температуру контролируют по изменению цвета меток, нанесенных на поверхность деталей термокарандашом или термокраской. Однако точность измерения этим способом невысока, поэтому чаще пользуются пирометрами и тепловизорами. Они могут быть ручными или встроенными в системы автоматического поддержания температуры на заданном уровне.

Если к качеству сварных соединений предъявляются высокие требования, выполнение термообработки обязательно. После ее проведения на швах не появятся трещины, разломы, коррозия. При использовании современного оборудования термообработка не займет много времени.

Читайте также: