Стали для сварки которых в качестве защитного газа используется углекислый газ

Обновлено: 17.04.2024

Защитные газы и их влияние на технологические свойства дуги

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы, активные газы и их смеси. Защитный газ выбирают с учетом способа сварки, свойств свариваемого металла, а также требований, предъявляемых к сварным швам.

Инертными называют газы, не способные к химическим реакциям и практически не растворимые в металлах. Поэтому их целесообразно применять при сварке химически активных металлов и сплавов на их основе (алюминий, алюминиевые и магниевые сплавы, легированные стали различных марок). При сварке ТИГ и МИГ/МАГ используются такие инертные газы как аргон (Ar), гелий (He) и их смеси.

Активными защитными газами называют газы, способные защищать зону сварки от доступа воздуха и вместе с тем химически реагирующие со свариваемым металлом или физически растворяющиеся в нем. При дуговой сварке сталей в качестве защитной среды применяют углекислый газ (СО2). Ввиду химической активности углекислого газа по отношению к вольфраму этот защитный газ используют только при сварке МИГ/МАГ.

К активным газам применяемым при МИГ/МАГ также относятся газовые смеси в состав которых входят аргон (Ar), кислород (О2), азот (N2), водород (H2). Готовые газовые смеси поставляются в баллонах, также они могут быть получены путем смешивания газов составляющих смесь.

Классификация способов сварки в защитных газах приведена на схеме ниже.

Классификая способов сварки в защитных газах

Свойства защитных газов

В таблице ниже приведены физические свойства защитных газов.

Краткая характеристика защитных газов

Аргон - наиболее часто применяемый инертный газ. Он тяжелее воздуха и не образует с ним взрывчатых смесей. Благодаря низкому потенциалу ионизации этот газ обеспечивает высокую стабильность горения дуги. Однако, в тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Будучи тяжелее воздуха, аргон обеспечивает хорошую газовую защиту сварочной ванны (но только в нижнем положении сварки). Однако он может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что может вызвать кислородную недостаточность и удушье у электросварщика. В местах возможного накопления аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19%.

Аргон выпускается согласно ГОСТ 10157-79 двух сортов: высшего и первого. Высший сорт рекомендуется использовать при сварке ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов. Аргон первого сорта применяют для сварки сталей и чистого алюминия.

Гелий - бесцветный, неядовитый, негорючий и невзрывоопасный газ. Значительно легче воздуха и аргона, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении. Гелий используется реже, чем аргон, из-за дефицитности и высокой стоимости. Однако, из-за высокого потенциала ионизации, при одном и том же значении тока дуга в гелии выделяет в 1,5-2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительно повышает скорость сварки. Для сварки используется гелий трех сортов: марок А, Б и В (по ТУ 51-689-75). Применяют его в основном при сварке химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Часто используются смеси аргона и гелия, причем оптимальным составом считается смесь, содержащая 35-40% аргона и 60-65% гелия. В смеси в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность горения дуги, гелий – высокую степень проплавления.

При сварке меди используется азот, так как он к ней химически нейтрален, т.е. не образует с ней никаких химических соединений и в ней не растворяется.

Активные газы

Углекислый газ (двуокись углерода) - бесцветен, не ядовит, тяжелее воздуха. При нормальных условиях (760 мм рт. ст. и 0°С) плотность углекислого газа в 1,5 раза выше плотности воздуха. Углекислый газ хорошо растворяется в воде. Жидкая углекислота - бесцветная жидкость, плотность которой сильно изменяется с изменением температуры. Вследствие этого она поставляется по массе, а не по объему. При испарении 1 кг жидкой углекислоты в нормальных условиях образуется 509 л углекислого газа.

Двуокись углерода нетоксична и невзрывоопасна. Однако при концентрациях более 5% (92 г/м 3 ) двуокись углерода оказывает вредное влияние на здоровье человека. Так как двуокись углерода в 1,5 раз тяжелее воздуха она может накапливаться в слабопроветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать удушье. Помещения, где производится сварка с использованием двуокиси углерода, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией.

Основными примесями углекислого газа, отрицательно влияющими на процесс сварки и свойства швов, являются воздух (азот воздуха) и вода. Воздух скапливается над жидкой углекислотой в верхней части баллона, а вода – под углекислотой в нижней части баллона. Повышенное содержание воздуха и водяных паров в углекислоте может при сварке привести к образованию пор в швах, которые чаще всего появляются в начале и конце отбора газа из баллона. Чтобы снизить содержание влаги в поступающем на сварку углекислом газе до безопасного уровня, на его пути устанавливают осушитель. Для улавливания влаги осушитель заполнен хлористым кальцием, силикагелем или другими поглотителями влаги.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой углекислоты газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого рекомендуется подогревать выходящий из баллона углекислый газ. Для этого используют электрические подогреватели газа, которые устанавливаются перед редуктором.

Углекислый газ оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие. Из легирующих элементов ванны наиболее сильно окисляются алюминий, титан и цирконий, менее интенсивно - кремний, марганец, хром, ванадий и др.

Кислород - это бесцветный нетоксичный газ без запаха. Является сильным окислителем. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Поэтому объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В зависимости от содержания кислорода и примесей технический газообразный кислород изготовляют трех сортов. Содержание кислорода в первом сорте должно быть не менее 99,7 об. %, во втором - не менее 99,5 об. % и в третьем - не менее 99,2 об. %.

В сварочном производстве кислород широко применяют для газовой сварки и резки, а также при дуговой сварке как составную часть защитной газовой смеси. Кислород уменьшает поверхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток (перехода крупнокапельного переноса в мелкокапельный, см. Сварка плавящимся металлическим электродом в защитных газах (МIG/МАG)) уменьшается. Обычно содержание кислорода в смеси с аргоном не превышает 2-5%. В такой среде дуга горит стабильно. Перенос металла мелкокапельный с минимальным разбрызгиванием.

Азот - бесцветный газ, без запаха, не горит и не поддерживает горение. В сварочном производстве азот находит ограниченное применение. Азот не растворяется в расплавленной меди и не взаимодействует с ней, и поэтому может быть использован при сварке меди в качестве защитного газа. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить. Азот также применяется при плазменной резке и как компонент газовой смеси при сварке аустенитной нержавеющей стали.

Водород - не имеет цвета, запаха и является горючим газом. Водород редко используют в в качестве защитного газа. Так как смеси водорода с воздухом или кислородом взрывоопасны, при работе с ним необходимо соблюдать правила пожарной безопасности и специальные правила техники безопасности. При работе с водородом необходимо следить за герметичностью всех соединений, т.к. он образовывает с воздухом взрывчатые смеси в широких пределах.

Смеси защитных газов

Иногда является целесообразным употребление газовых смесей. За счет добавок активных газов к инертным удается повысить устойчивость дуги, увеличить глубину проплавления, улучшить формирование шва, уменьшить разбрызгивание, повысить плотность металла шва, улучшить перенос металла в дуге, повысить производительность сварки. Существенное значение при выборе состава защитного газа имеют экономические соображения.

Смесь аргона и гелия. Газовые смеси гелий-аргон применяются в основном для сварки цветных металлов: алюминий, медь, никелевых и магниевых сплавов, а также химически активных металлов. Оптимальным является соотношение 35 - 40% аргона и 60 - 65% гелия. Так в полной мере реализуются преимущества обоих газов: аргон обеспечивает стабильность дуги, гелий - высокую глубину проплавления.

Смеси аргона с кислородом или углекислым газом. Благодаря добавке окислительных газов обеспечивается существенное снижение поверхностного натяжения жидкого металла расплавляемой электродной проволоки, уменьшение размеров образующихся и отрывающихся от электрода капель. Расширяется диапазон токов при сохранении стабильного ведения процесса сварки. Обеспечивается лучшее формирование металла шва и меньшее разбрызгивание, лучшая форма провара и меньшее излучение дуги, по сравнению со сваркой в чистом аргоне, а также в чистом углекислом газе. При добавлении кислорода наблюдается снижение критического тока, при котором крупнокапельный перенос металла переходит в мелкокапельный.

В таблице ниже приводятся основные характеристики газовых смесей для сварки МИГ/МАГ.

Сварка углеродистых сталей в атмосфере защитных газов

Для сварки углеродистых сталей в качестве защитного газа используют углекислый газ, смеси инертного газа с кислородом или углекислым газом; реже инертные газы (аргон).

Сварку в атмосфере инертных газов вольфрамовым электродом применяют для металла толщиной до 2 мм. Часто для исключения присадочной проволоки сваривают соединения с отбортовкой кромок.

Сварку плавящимся электродом применяют для металла толщиной более 0,8 мм. Диаметр электродной проволоки выбирают, в зависимости от толщины свариваемого металла в пределах 0,5-3 мм.

В качестве защитного газа используют в основном аргон; для повышения стабильности горения дуги, улучшения формирования шва и понижения чувствительности процесса к пористости из-за водорода применяют аргон с добавкой кислорода (до 5%) или углекислого газа (до 10 %).

Сварку в атмосфере углекислого газа широко используют при изготовлении изделий из углеродистых сталей. В зависимости от толщины свариваемого металла применяют или неплавящийся - угольный или графитовый электрод (для толщин до 2 мм), или плавящийся электрод (для толщин свыше 0,8 мм).

Углекислый газ обеспечивает защиту металла в зоне сварки от воздуха, но в то же время окисляет защищаемый металл. Окисление жидкого металла происходит в результате непосредственного взаимодействия металла с углекислым газом:

Fe + СO 2 = FeO + СО,

а также с кислородом, образующимся в результате диссоциации углекислого газа:

2СO 2 = 2СО + O 2 ; 2Fe + 0 2 = 2FeO.

Роль непосредственного окисления металла углекислым газом с повышением температуры понижается, поскольку с повышением температуры степень термической диссоциации углекислого газа увеличивается. В результате в газовой смеси возрастает концентрация кислорода, которая, например, при температуре 3000 К достигает 20 %.

Окисление жидкого металла вызывает большие потери легирующих элементов из капель электродного металла, приводит к повышению содержания кислорода в металле сварочной ванны. В результате возрастает вероятность образования пор из-за выделения оксида углерода в процессе кристаллизации и снижаются механические свойства металла шва.

Образование пор из-за выделения оксида углерода при сварке углеродистых сталей предотвращается, если металл шва содержит до 0,12—0,14 % С, не ниже 0,17—0,20 % Si, не ниже 0,5— 0,8 % Мп. При этом металл шва характеризуется малой склонностью к образованию горячих трещин и достаточно высокими механическими свойствами. Увеличение содержания углерода приводит к повышению вероятности образования горячих трещин. Повышение содержания кремния сверх 0,45 % понижает пластические свойства металла шва и также увеличивает вероятность образования горячих трещин. Вероятность их образования снижается при повышении содержания марганца до 1,2 %.

В большинстве случаев при сварке низкоуглеродистых сталей беспористые швы указанного выше состава получают при применении кремнемарганцовистых электродных проволок Св-08Г2С и Св-08ГС, обеспечивающих малую загрязненность металла шва оксидными включениями. Содержание оксидных включений при сварке низкоуглеродистой стали проволокой Св-08ГС составляет 0,014 %, а проволокой Св-08Г2С 0,009 %. Меньшая загрязненность металла шва оксидными включениями при сварке низкоуглеродистой стали проволокой Св-08Г2С обусловлена более рациональным содержанием кремния и марганца в металле шва (0,23 % Si, 0,72 % Мn), при котором продукты раскисления формируются в гаде жидких силикатов.

Процесс дуговой сварки в атмосфере углекислого газа менее чувствителен к ржавчине на свариваемых кромках по сравнению со сваркой под флюсом. Это обусловлено оттеснением газовой струей влаги, испаряющейся при сварке из ржавчины, и окислительными свойствами газовой среды. Однако подобный эффект достигается при использовании углекислого газа с малым содержанием паров воды. Использование углекислого газа с повышенным содержанием паров воды может привести к образованию пор в швах и снижению пластических свойств металла шва. В подобных случаях необходима предварительная осушка газов. Обычно для этой цели используют поглотители (хлористый кальций, силикагель и др.).

На свойства металла шва (образование пор, механические свойства) большое влияние оказывают также загрязнения, имеющиеся на поверхности электродной проволоки: технологическая смазка (чаще всего мыло), антикоррозионная смазка (обычно нитрит натрия), ржавчина. Наиболее рациональный способ удаления поверхностных смазок - прокалка проволоки при температуре 150-250 °С в течение 1,5-2 ч. Ржавчину удаляют травлением или зачисткой перед прокалкой.

Образование пор при сварке в углекислом газе возможно при нарушении газовой защиты: при чрезмерном удлинении дуги, наличии сквозняков, значительных зазоров в соединениях. Нарушение защиты приводит к повышению содержания кислорода и азота в металле шва и образованию пористости.

Если по условиям сварки не обеспечивается достаточная защита зоны сварки углекислым газом, то для предотвращения образования пор и получения металла шва с высокими пластическими свойствами рационально использовать специальную проволоку, содержащую нитридообразующие элементы, Св-15ГСТЮЦА или Св-20ГСТЮА (проволока разработана для дуговой сварки без защиты). В подобных случаях возможно также применение порошковой проволоки, создающей дополнительную защиту расплавленного металла шлаком, поскольку сердечник порошковой проволоки содержит не только элементы-раскислители, но и шлакообразующие компоненты.

Для сварки в углекислом газе используют проволоки рутил-флюоритпого (ПП-АН4, ПП-АН9 и др.) и рутилового (ПП-АН8 и др.) типов. Применение порошковой проволоки взамен проволоки сплошного сечения позволяет также повысить устойчивость горения дуги, уменьшить разбрызгивание электродного металла, повысить пластические свойства металла и улучшить формирование швов. При применении порошковой проволоки необходимо иметь в виду, что увлажнение материала сердечника проволоки может привести к образованию пор. Прокалка проволоки при температуре 240-250 °С позволяет предотвратить развитие указанных дефектов. При этом обеспечивается также удаление с поверхности проволоки технологической смазки.

Сварку в атмосфере углекислого газа угольным или графитовым электродом выполняют на постоянном токе прямой полярности. При сварке на обратной полярности наблюдается науглероживание металла шва. Сварку плавящимся электродом выполняют на постоянном токе обратной полярности. При сварке на прямой полярности снижается стабильность горения дуги и повышается разбрызгивание электродного металла.

При сварке в углекислом газе наблюдается повышенное по сравнению с другими способами сварки разбрызгивание электродного металла (даже при сварке на обратной полярности при достаточной плотности тока). Некоторая часть капель расплавленного металла, вылетающих из зоны сварки, прилипает или сплавляется со свариваемой деталью, соплом горелки и токоподводящим мундштуком. Налипание капель на поверхность сопла и токоподводящего мундштука может нарушить равномерную подачу электродной проволоки, ухудшить газовую защиту, поэтому необходимо периодически очищать сопло и токоподводящий мундштук от рбрызг.

В некоторых случаях требуется удаление прилипших капель с поверхности изделия. Снижению разбрызгивания электродного металла способствуют параметры режима, уменьшающие размер капель: увеличение силы тока, снижение диаметра электродной проволоки, а также уменьшение длины дугового промежутка - уменьшение напряжения на дуге. Другим направлением является воздействие на величину поверхностного натяжения жидкого металла за счет введения активирующих добавок: щелочных и щелочно-земельных элементов (цезия, рубидия, калия, натрия, бария и др.), снижающих поверхностное натяжение.

Благодаря этому при сварке в углекислом газе па прямой полярности обеспечивается струйный перенос электродного металла. Активирующие добавки или вводят в состав проволоки, или наносят на ее поверхность. Для уменьшения прилипания капель к деталям горелки и поверхности свариваемого изделия иногда применяют противопригарные смазки, например, алюминиевую пудру, замешанную на жидком стекле, или смесь циркона с жидким стеклом и др.

Инертные и активные защитные газы, их смеси

Аргон (Ar) - бесцветный, без запаха, негорючий, неядовитый газ, почти в 1,5 раза тяжелее воздуха. В металлах нерастворим как в жидком, так и в твердом состояниях. Выпускается (ГОСТ 10157-79) двух сортов: высшего и первого.

В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.

В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.

Гелий (Не) - бесцветный газ, без запаха, неядовитый, значительно легче воздуха и аргона. Выпускается (ГОСТ 20461-75) двух сортов: высокой чистоты (до 99,985 %) и технический (99,8%).

Используется реже, чем аргон, из-за его дефицитности и высокой стоимости. Однако при одном и том же значении тока дуга в гелии выделяет в 1,5 - 2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительному увеличению скорости сварки.

Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.

Азот (N2) - газ без цвета, запаха п вкуса, неядовитый. Используется только для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. Выпускается (ГОСТ 9293-74) четырех сортов: высшего - 99,9% азота; 1-го - 99,5%; 2-го - 99,0%; 3-го - 97,0%.

Активные

Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие

Кислород (О2) - газ без цвета, запаха и вкуса. Негорючий, но активно поддерживающий горение. Технический газообразный кислород (ГОСТ5583-78) выпускается трех сортов: 1-й сорт - 99,7% кислорода; 2-й - 99,5%; 3-й - 99,2%. Применяется только как добавка к инертным и активным газам.

В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.

Газовые смеси

Сварочные смеси служат для улучшения процесса сварки и качества сварного шва

Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

Смесь аргона и углекислого газа. Рациональное соотношение - 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.

Смесь аргона, углекислого газа и кислорода - трехкомпонентная смесь обеспечивает высокую стабильность процесса и позволяет избежать пористости швов. Оптимальный состав: 75% аргона, 20% углекислого газа и 5% кислорода. Применяется при сварке углеродистых, нержавеющих и высоколегированных конструкционных сталей.

Выбор защитного газа для сварки

Работники авторемонтных мастерских, монтажники и другие специалисты по сварочным работам в ходе сварки нередко применяют природный газ и разнообразные газовые смеси. О том, какие бывают газы, об их особенностях и свойствах вы узнаете из нашей статьи. Мы приведем также рекомендации по выбору и использованию того или иного защитного газа при разных методах сварки и в зависимости от свариваемого материала.

Содержание

Для чего нужны защитные газы при сварке и резке

Защитный газ является немаловажным компонентом, обеспечивающим производительность и достойное качество сварочного процесса. Наименование защитного газа говорит само за себя, он нужен для защиты твердеющего расплавленного сварочного шва от окисления, а также от имеющейся в воздухе влаги и примесей, способных снизить устойчивость шва к коррозийным процессам, привести к возникновению пор и ослабить прочность шва, повлияв на геометрию сварного соединения. К тому же защитный газ охлаждает сварочный пистолет.

Какие типы газов для сварки и резки используются: их свойства и особенности применения

В качестве защитных газов, применяемых для сварки, используются инертные и активные газы, а также их смеси.

1. Инертные газы для сварки. Инертными именуются газы, которые не способны к химическим реакциям и практически не растворяются в металлах. Атомы таких газов наделены наружными электронными оболочками, заполненными электронами, чем и объясняется их химическая инертность. К ним относятся аргон, гелий и их смеси.

Аргон (Ar) — инертный газ, не вступающий в химические реакции с расплавленным металлом и иными газами в зоне горения дуги. К достоинствам этого инертного газа относится то, что он на 38% тяжелее воздуха, аргон вытесняет его из зоны сварки и надежно изолирует сварочную ванну от контакта с атмосферой. Чаще всего Ar применяется в качестве защитного газа в процессе аргонодуговой TIG сварки, MIG/MAG сварки. Примеры свариваемых металлов при помощи аргона и особенности применения приведены ниже в таблице 1.

Аргон как защитный газ востребован:

  • в строительстве и машиностроении (при сварке деталей из высоколегированной стали; оперативная резка металлов, включая и толстые листы тугоплавких металлов);
  • в горнодобывающей промышленности и металлургии (выплавка металлов; удаление газовых включений из жидкой стали).

Гелий (He) как и Ar является химически инертным, но отличается от него тем, что гораздо легче воздуха, что делает защиту сварочной ванны более сложным процессом, требующим больших затрат защитного газа. Гелий применяется как инертный защитный газ в ходе сварки нержавеющих сталей, цветных металлов и сплавов, активных и химически чистых материалов. Он обеспечивает повышенное проплавление, в связи с чем, иногда используется с целью проплавления толстых металлических листов или получения шва специальной формы. Но из-за повышенного расхода и высокой стоимости гелия в сравнении с аргоном сфера его применения достаточно ограничена.

Гелий (He) как защитный газ используется:

  • при сварке нержавеющих сталей, цветных металлов и сплавов, химически чистых и активных материалов.

1.1. Инертные газовые смеси включают обычно аргон и гелий. Имея большую плотность, чем гелий, такие смеси обеспечивают более надежную защиту металла сварочной ванны от воздуха.

Если необходимо сварить химически активные металлы часто применяют инертную смесь, содержащую 60—65 об. % He, 40-35 об. % Ar. Инертные газовые смеси заметно дороже чистого аргона, но обеспечивают более интенсивное выделение теплоты электрической дуги в месте сварки. Это является значимым при полуавтоматической сварке металлов, характеризующихся высокой теплопроводностью.

2. Активные газы для сварки. Это газы, обеспечивающие защиту сварки от доступа воздуха и при этом вступающие в химические реакции со свариваемым металлом или физически растворяющиеся в нем.

Углекислый газ (CO2) (двуокись углерода) является бесцветным не ядовитым газом, растворимым в воде, он тяжелее воздуха. Газ углекислый для сварки не должен иметь минеральных масел, глицерина, сероводорода, соляной, серной и азотной кислоты, спирта, эфиров, аммиака, органических кислот и воды. Из-за редкости сварочной углекислоты 1 сорта для сварки применяется сварочная углекислота 2 сорта и пищевая углекислота. Но, повышенное содержание водяных паров в такой углекислоте при сварке ведет к возникновению пор в швах и снижению пластических свойств сварного соединения.

В сварочном процессе может использоваться и твердая двуокись углерода, соответствующая ГОСТ 12162—66 двух марок — пищевая и техническая. При сварке низкоуглеродистых и низколегированных конструкционных сталей применяется так же газовая смесь углекислого газа с кислородом (СО2 + + О2). Используют смесь, которая включает 30 об. % кислорода. Смесь СО2 + О2 оказывает более интенсивное окисляющее действие на жидкий металл, в отличие от чистого углекислого газа.

Углекислый газ в качестве защитного применяется:

  • в строительстве и машиностроении (электросварка; процессы тонкой заточки, холодная посадка частей машин)

Кислород (O) включен в газовые смеси СО2 + О2 и Аr + О2. Это бесцветный газ, не имеющий запаха, поддерживающий горение. В случае охлаждения до температуры -183 гр. Цельсия кислород превращается в подвижную жидкость голубого цвета, а при температуре -219 гр. Цельсия замерзает. Кислород гарантирует очень широкий профиль сварного шва, характеризующийся неглубоким проплавлением, а также обеспечивает высокое тепловложение на металлической поверхности. Кислородо-аргонные смеси отличаются особым профилем проплавления сварочного шва, напоминающим «шляпку гвоздя».

Кислород как защитный газ бывает необходим:

  • в строительстве и машиностроении (кислородно-ацетиленовая газорезка и газосварка металлов, наплавка и напыление металлов, плазменный раскрой металлов)

Водород (H) не имеет цвета, запаха и является горючим газом. Водород не подходит для мартенситных или ферритных сталей из-за образования трещин, он может использоваться в концентрации от 30 до 40% с целью плазменной резки нержавеющей стали - для повышения мощности и уменьшения шлака.

  • Водород нашел применение при атомно-водородной сварке.

Азот (N) - газ без цвета и запаха, который не горит и не поддерживает горение. В соответствии с ГОСТом 9293—59, азот бывает четырех сортов: электровакуумный, газообразный газообразный 1-го сорта, газообразный 2-го сорта и жидкий. Включение азота в этих сортах должно быть соответственно не менее об.%: 99,5; 99,9; 99 и 96. Главной примесью в каждом из них является кислород.

Азот в качестве защитного газа чаще всего используется:

2.1. Смеси инертных и активных газов все чаще используются в процессе сварки плавящимся электродом сталей различных классов по причине их технологических преимуществ. К ним относятся:

  • высокая стабильность дуги, благоприятный характер переноса электродного металла через дугу,
  • меньшая, если сравнивать с активными газами степень химического воздействия на металлическую поверхность сварочной ванны.

Добавка к аргону незначительного количества кислорода либо иного окислительного газа существенно увеличивает устойчивость горения дуги, и улучшает качество образования сварных соединений. Кислород в атмосфере дуги обеспечивает мелкокапельный перенос электродного металла.

Выбор газа для определенного типа свариваемого металла

Какой газ используется при сварке того или иного металла, один из самых часто встречаемых вопросов новичков в сварке на тематических форумах. Примеры применения разнообразных защитных газов и газовых смесей для сварки различных металлов приведены в таблице.

Грамотно определив тип защитного газа, вы обеспечите оперативность и качество сварки, а также гарантируете отличное сварное соединение и глубину проплавления, повысите надежность созданного шва и качество детали. Выбор подходящего защитного газа и его качество значительно влияют на расход сварочных материалов, труд исполнителя сварки и на исправление дефектов и итоговую обработку сварочного соединения.

Если у Вас имеются какие-либо вопросы по теме, рекомендуем найти самую актуальную информацию на нашем сайте, или напрямую обратиться к консультантам компании Тиберис.

Что лучше для сварки полуавтоматом — углекислота или аргон

Что лучше для сварки полуавтоматом фото

При выполнении сварки полуавтоматом (сварка MIG/MAG) дуга горит между изделием и проволокой. Проволока подается непрерывно с катушки, а сварщик манипулирует горелкой. Непрерывная подача проволоки позволяет прокладывать швы большой длины. На проволоку через токосъемный наконечник подается напряжение. Из сопла горелки параллельно на сварочную ванну подается защитный газ. Полуавтоматическая сварка характеризуется удобством и повышенной производительностью — одна из рук сварщика свободна, поскольку не нужно периодически менять электроды.

Защитный газ, применяемый при сварке, обеспечивает защиту сварочной ванны и дуги от атмосферных газов. Это повышает качество шва, увеличивая его плотность, глубину провара и улучшает микроструктуру металла. Дополнительно защитный газ охлаждает шов после сварки.

В качестве защитных газов при сварке полуавтоматом может использоваться углекислый газ или газ аргон. Углекислый газ — более дешевый вариант, поэтому у сварщиков с небольшим опытом работы может возникнуть вопрос: что лучше для полуавтоматической сварки и можно ли заменить один из этих газов другим.

Углекислота (CO2) и ее применение

Углекислота (двуокись углерода) — бесцветный активный газ, растворимый в воде, не ядовит, взаимодействует с кислородом. Углекислый газ тяжелее воздуха, благодаря чему он надежно изолирует расплавленный металл от контакта с ним. Это единственный активный газ, который используют при сварке как защитный в чистом виде, то есть не добавляя к нему инертный газ.

Углекислота широко применяется при полуавтоматической cварке методом MAG. Этот вариант защиты привлекателен невысокой ценой, но для него характерна не особо высокая стабильность дуги и повышенное разбрызгивание металла.

Углекислоту применяют при сварке деталей из углеродистых и низколегированных сталей. Использование углекислоты позволяет получить хороший тепловой эффект, который необходим при работе с заготовками из металла большой толщины. Из-за невысокой стабильности дуги использовать углекислоту рекомендуется только при сварке на короткой дуге.

Чаще всего углекислоту в чистом виде применяют в строительстве, в машиностроении при кузовном ремонте, холодной посадке деталей машины, и т.п.

Результат сварки углекислотой и аргоном фото

Аргон (Ar) — область применения

Инертный газ аргон остается пассивным ко всем веществам. Не имеет цвета и запаха. Аргон тяжелее воздуха, поэтому аналогично углекислоте эффективно вытесняет его из сварочной ванны, обеспечивая надежную защиту. Он существенно дороже углекислоты.

Ar в чистом виде применяется в качестве защитного газа в процессе аргонодуговой TIG сварки. При полуавтоматической MIG/MAG сварке аргон используется для защиты при работе с легированными сталями, медью, алюминием, тугоплавкими металлами или входит в состав защитных газовых смесей.

Аргон как защитный газ применяется в машиностроении и в строительстве для сварки деталей из высоколегированной стали, для оперативной резки металлов, в том числе и толстых листов тугоплавких металлов.

Таким образом, на вопрос, поставленный в заголовке статьи, нельзя дать однозначного ответа. Все зависит от поставленной задачи, однако при полуавтоматической сварке использование углекислого газа можно назвать предпочтительным с точки зрения себестоимости при работе с определенными материалами.

Аргонодуговая (TIG) сварка выполняется инверторным сварочным аппаратом. Дуга образуется между изделием и вольфрамовым электродом. Аргонодуговая сварка медленнее полуавтоматической, но ее можно применять для сварки очень тонких металлов и получать аккуратные швы. Если при MAG сварке можно использовать и углекислоту, и аргон, то TIG сварка требует применения аргона. Это связано с тем, что углекислота — активный газ и под действием высокой температуры распадается на кислород и оксид углерода. Кислород насыщает сварочную ванну. При полуавтоматической сварке этот эффект нейтрализуется добавлением в сварочную проволоку раскислителей.

Читайте также: