Сварка нержавейки электродом гост

Обновлено: 20.09.2024

ГОСТ 10052-75

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЭЛЕКТРОДЫ ПОКРЫТЫЕ
МЕТАЛЛИЧЕСКИЕ ДЛЯ РУЧНОЙ ДУГОВОЙ
СВАРКИ ВЫСОКОЛЕГИРОВАННЫХ
СТАЛЕЙ С ОСОБЫМИ СВОЙСТВАМИ

ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва

ЭЛЕКТРОДЫ ПОКРЫТЫЕ МЕТАЛЛИЧЕСКИЕ
ДЛЯ РУЧНОЙ ДУГОВОЙ СВАРКИ
ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ С ОСОБЫМИ
СВОЙСТВАМИ

Metal covered electrodes, for manual arc welding of high-alloyed steels
with special properties. Types

ГОСТ
10052-75

Дата введения 01.01.77

1. Настоящий стандарт распространяется на металлические покрытые электроды для ручной дуговой сварки коррозионностойких, жаропрочных и жаростойких высоколегированных сталей мартенситного, мартенсито-ферритного, ферритного, аустенитоферритного и аустенитного классов.

(Измененная редакция, Изм. № 1).

2. Настоящий стандарт устанавливает следующие основные типы электродов:

Э-12Х13, Э-06Х13Н, Э-10Х17Т, Э-12Х11НМФ, Э-12Х11НВМФ, Э-14Х11НВМФ, Э-10Х16Н4Б, Э-08Х24Н6ТАФМ, Э-04Х20Н9, Э-07Х20Н9, Э-02Х21Н10Г2, Э-06Х22Н9, Э-08Х16Н8М2, Э-08Х17Н8М2, Э-06Х19Н11Г2М2, Э-02Х20Н14Г2М2, Э-02Х19Н9Б, Э-08Х19Н10Г2Б, Э-08Х20Н9Г2Б, Э-10Х17Н13С4, Э-08Х19Н10Г2МБ, Э-09Х19Н10Г2М2Б, Э-08Х19Н9Ф2С2, Э-08Х19Н9Ф2Г2СМ, Э-09Х16Н8Г3М3Ф, Э-09Х19Н11Г3М2Ф, Э-07Х19Н11М3Г2Ф, Э-08Х24Н12Г3СТ, Э-10Х25Н13Г2, Э-12Х24Н14С2, Э-10Х25Н13Г2Б, Э-10Х28Н12Г2, Э-03Х15Н9АГ4, Э-10Х20Н9Г6С, Э-28Х24Н16Г6, Э-02Х19Н15Г4АМ3В2, Э-02Х19Н18Г5АМ3, Э-11Х15Н25М6АГ2, Э-09Х15Н25М6Г2Ф, Э-27Х15Н35В3Г2Б2Т, Э-04Х16Н35Г6М7Б, Э-06Х25Н40М7Г2, Э-08Н60Г7М7Т, Э-08Х25Н60М10Г2, Э-02Х20Н60М15В3, Э-04Х10Н60М24, Э-08Х14Н65М15В4Г2, Э-10Х20Н70Г2М2В, Э-10Х20Н70Г2М2Б2В.

3. Химический состав наплавленного металла и механические свойства металла шва и наплавленного металла при нормальной температуре должны соответствовать указанным в табл. 1.

4. Содержание ферритной фазы в наплавленном металле должно соответствовать указанным в табл. 2.

Химический состав наплавленного металла, %

Механические свойства металла шва и наплавленного металла

временное сопротивление разрыву s в, кгс/мм 2

относительное удлинение δ5, %

ударная вязкость a н, кгс · м/см 2

Вольфрам 0,80 - 1,30

Вольфрам 0,90 - 1,40

0,70 - 1,30, но не менее 8 С

Вольфрам 1,50 - 2,30

Вольфрам 2,40 - 3,50 Титан 0,05 - 0,25

Вольфрам 2,50 - 4,20 Железо до 3,00

Вольфрам 3,50 - 4,50

Вольфрам 0,10 - 0,30

1. Обозначения типов электродов состоят из индекса Э (электроды для дуговой сварки) и следующих за ним цифр и букв. Две цифры, следующие за индексом, указывают среднее содержание углерода в наплавленном металле в сотых долях процента. Химические элементы, содержащиеся в наплавленном металле, обозначены следующими буквами: А - азот; Б - ниобий; В - вольфрам; Г - марганец; Д - медь; М - молибден; Н - никель; С - кремний; Т - титан; Ф - ванадий, X - хром. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, среднее содержание которых в наплавленном металле составляет менее 1,50 %, цифры не проставлены. При среднем содержании в наплавленном металле кремния до 0,8 % и марганца до 1,6 % буквы С и Г не проставлены.

2. Показатели механических свойств металла шва и наплавленного металла для электродов типов Э-12Х13, Э-10Х17Т, Э-12Х11НМФ, Э-12Х11ВМФ, Э14Х11НВМФ, Э-10Х16Н4Б, Э-08Х246ТАФМ приведены после термической обработки по режимам, регламентированным стандартами или техническими условиями на электроды конкретных марок, а для электродов остальных типов - в состоянии после сварки (без термической обработки).

3. Для электродов типов Э-08Х24Н6ТАФМ и Э-11Х15Н25М6АГ2 определение содержания азота в наплавленном металле не является обязательным.

4. Для электродов типов Э-03Х15Н9АГ4, Э-02Х19Н15Г4АМ3ВГ и Э-02Х19Н18Г5АМ3 приведенные в таблице нормы по содержанию азота являются факультативными.

5. Допускается увеличение содержания углерода на 0,01 % для электродов типов Э-07Х19Н11М3Г2Ф, Э-1Х15Н25М6АГ2 и марганца на 0,2 % для электродов типа Э-10Х25Н13Г2.

Сварка нержавейки электродом гост


ПРОЕКТ ПРОИЗВОДСТВА РАБОТ
(типовой)

СВАРКА НЕРЖАВЕЮЩЕЙ СТАЛИ

Данный проект производства работ на сварку нержавеющей стали разработан в соответствии с типовой структурой и содержанием проекта производства работ рекомендуемыми в МДС 12-81.2007. В документе приводятся сведения о нержавеющей стали, сварочных материалах и сварочном оборудовании, а также основные положения об организации и технологии работ, правила и приёмы выполнения технологических операций, требования к качеству сварочных работ, указания по технике безопасности работ.

Настоящий проект производства работ может являться основой для составления индивидуальных ППР сварных конструкций, разрабатываемых с учетом требований проектной документации на строительство и местных условий производства работ.

Документ предназначен для проектных и строительных организаций, а также может быть использован отдельными бригадами, специализирующимися на выполнении работ по сварке нержавеющей стали, и быть полезен при лицензировании сварочных работ.

Документ разработан сотрудниками ''Центрального научно-исследовательского и проектно-экспериментального института организации, механизации и технической помощи строительству'' (ЦНИИОМТП) (отв. исполнитель Корытов Ю.А.).

Введение

В новом строительстве, при модернизации и ремонте зданий и сооружений всё шире применяется сварка нержавеющей стали. Это обусловлено назначением и особенностями зданий и сооружений, совершенствованием технологии сварки, относительным удешевлением нержавеющей стали и сварочных материалов, широким выпуском сварочного оборудования.

Стальные конструкции подвержены коррозии - ржавеют и разрушаются под воздействием окружающей среды. В зависимости от характера окружающей среды коррозия может быть атмосферной, подводной и почвенной, а также вызванной блуждающими токами. Санитарно-техническое оборудование (трубы, радиаторы, арматура) жилых, общественных и промышленных зданий ржавеет под воздействием горячей и холодной воды. Дымовые трубы котельных разрушаются от дымогарных газов. Пролётные строения мостов, фермы, конструкции парников и теплиц подвержены атмосферной коррозии (кислотные дожди, находящиеся в атмосфере углекислый и сернистый газы и образующие с влагой воздуха электролит). Конструкции, находящиеся в речной (детали гидротурбин, плотин, шлюзов и т.п.) и морской воде (платформы, причалы и т.п.) подвержены подводной коррозии. Почвенная коррозия протекает при взаимодействии конструкций с почвой (подземные трубы, каркасы подземных сооружений, резервуары, баки и т.п.).

Вызывающие коррозию конструкций блуждающие токи возникают при близком расположении подземных кабелей, токонесущих рельсовых путей. В результате коррозии безвозвратно теряется до 12% производства чёрных металлов. Одним из направлений защиты конструкций от коррозии является применение нержавеющей стали.

Сварка нержавеющей стали - процесс в целом более сложный (неустойчивый), чем обычной углеродистой или низколегированной стали, применяемой в строительстве. Нержавеющая сталь хуже поддаётся сварке, при этом чаще возникают дефекты сварочного шва и основного металла. Требуется применение особых сварочных материалов, режимов и приёмов сварки.

Сварка нержавеющей стали производится в основном тремя способами, которые и приведены в настоящем проекте: ручная сварка плавящимся покрытым электродом, ручная сварка неплавящимся (вольфрамовым) электродом в среде аргона и полуавтоматическая аргонная сварка. Сварка с применением флюса и лазерная применяются в строительстве реже и здесь не рассматриваются.

Состав и содержание проекта производства работ выдержаны в соответствии с рекомендациями, приведенными в МДС 12-81.2007.

Проект производства работ содержит нормы и правила, которые обеспечивают качество сварочных работ на уровне современных требований. Вместе с тем положения проекта составлены так, что позволяют выбирать способ сварки, корректировать режимы и приёмы сварки с учётом конкретных конструкций и местных условий.

1. Область применения

Проект производства работ распространяется на сварку нержавеющей стали в конструкциях при новом строительстве, модернизации и ремонте жилых, общественных, производственных зданий, а также сооружений различного назначения (сельскохозяйственных, приусадебных, дачных, садово-огородных).

Проект производства работ может быть использован также при лицензировании организаций, выполняющих сварочные работы.

2. Нержавеющая сталь и её свариваемость

Нержавеющая сталь - это сталь с содержанием главного легирующего элемента - хрома более 12%, который и обуславливает её коррозионную стойкость. По химическому составу нержавеющая сталь чаще применяется хромистая, хромоникелевая и хромомарганцовистая. По структуре нержавеющая сталь подразделяется на мартенситную, ферритную и аустенитную.

Ниже приведены наиболее применяемые марки нержавеющей стали с важнейшей технологической характеристикой - свариваемостью стали. Мартенситная сталь марки 2Х13 сваривается удовлетворительно, после сварки необходим отпуск при 740-780 °С с охлаждением на воздухе. Стали марок 3Х13 и 4Х13 свариваются плохо, при сварке необходимо применять меры по предотвращению трещин: нагрев перед сваркой до 200-300°, а сразу после сварки - отпуск по тому же режиму, что и для стали 2Х13. Сталь 1Х17Н2 хорошо сваривается всеми видами сварки, для сварки применяют проволоку из сплава ЭН400 с обмазкой НЖ1.

Ферритная сталь ОХ17Т хорошо сваривается с применением электродов из аустенитной стали Х18Н9Т электродуговой и полуавтоматической аргонодуговой сваркой. Сталь Х25Т хорошо сваривается электродуговым способом с применением электродов из стали Х25Н13 с обмазкой Э3Б и Х25Н5Б с обмазкой Э40. При сварке каждый последующий шов выполняют после охлаждения предыдущего до 70-150° и обивки шлака для предотвращения трещин в основном металле в зоне термического влияния.

Стальные изделия из нержавеющей стали - заготовки для сварных конструкций получают главным образом прокаткой (полосовая сталь и различные профили), волочением (трубы малого диаметра, проволока) и прессованием (фасонные профили).

Наиболее применяемая прокатная сталь - листовая, равнобокие и неравнобокие уголки и швеллер. Прокатная листовая сталь применяется чаще толщиной от 0,5 до 4 мм, трубы - диаметром 40-50 мм. Фасонные профили применяют в виде разнообразных скобяных изделий, деталей - заготовок, необходимых для комплектации оконных блоков, санитарно-технических кабин, сварки баков, резервуаров и т.п.

3. Общие положения

3.1 Сварка нержавеющей стали выполняется по проекту (рабочему чертежу), в котором указаны марка нержавеющей стали, расположение сварных швов, марка электрода (электродной проволоки), требования к защитному газу.

Способ сварки (ручная плавящимся электродом, ручная сварка неплавящимся (вольфрамовым) электродом, полуавтоматическая аргонная) определяется назначением и характером металлоконструкции, маркой стали и указывается в проекте, при этом организация, выполняющая сварку, может применить способ, более совершенный.

3.2 Сварочные материалы (нержавеющая сталь, электроды, проволока, защитный газ) должны соответствовать проекту (рабочему чертежу) и иметь сертификаты. В случае отсутствия сертификата пригодность сварочных материалов следует определить в строительной лаборатории на соответствие их качества требованиям проекта, стандартов и технических условий.

3.3 Сварка на открытом воздухе производится при условии применения укрытия рабочего места от атмосферных осадков и ветра.

Сварка малогабаритных конструкций производится в помещениях, исключающих сквозняки.

Сварка выполняется при положительной температуре окружающего воздуха.

3.4 Положение свариваемой конструкции должно обеспечить расположение сварочного шва в нижнем положении, удобные и безопасные условия для работы сварщика. Вертикальный и потолочный швы выполняются, если конструкция не может быть установлена в нужное положение, если это предусмотрено строительным процессом. Для установки крупногабаритных конструкций применяют кантователи, манипуляторы, позиционеры и другие приспособления.

3.5 Для уменьшения в конструкциях сварочных остаточных напряжений выполняют (по возможности) в первую очередь стыковые, затем угловые и тавровые соединения.

Ручную сварку вертикальных швов выполняют электродами диаметром до 4 мм, потолочных - до 3 мм. Полуавтоматическую сварку в среде аргона выполняют сварочной проволокой диаметром не более 1,6 мм, вертикальных и потолочных швов - проволокой диаметром 0,6-1,2 мм.

3.6 Режим термической обработки стали до (предварительный нагрев) и после (отпуск) сварки зависит от марки стали (химического состава и структуры), указывается в сертификате на сталь. Для наиболее применяемых марок стали режим термической обработки приведён в разделе 2.

3.7 При многослойной сварке каждый предыдущий слой очищают от шлака и брызг металла. Перед наложением шва с обратной стороны для стыковых соединений при ручной сварке или при двусторонней ручной или полуавтоматической сварке корень шва удалить и зачистить.

3.8 Процесс сварки должен быть непрерывным. В случае перерыва сварка возобновляется только после зачистки конца шва длиной не менее 50 мм и кратера. Кратер должен быть полностью перекрыт швом.

3.9 При ремонте конструкций с трещиной предварительно выполняют Y-образную (при толщине металла до 12 мм) или Х-образную разделку кромок трещины под сварку и сверление в концах трещины отверстий-ловителей. В случае обнаружения трещины в сварном шве сварной шов удаляют по длине, превышающей окончания трещины на 60-100 мм, и заваривают вновь.

3.10 Для выполнения отдельных швов закреплённая деталь должна освобождаться от закрепления после полного остывания швов. Не следует осуществлять сварку деталей в закрепленном состоянии, если это не предусмотрено проектом.

Варианты сварки нержавеющей стали, госты, методы

фото сварка нержавейки

Сварку нержавеющей стали на практике выполняют с помощью таких методов:
При толщине материала более чем 1,5 мм используют метод ручной дуговой сварки;
Для сварки тонких листов и труб используют метод дуговой сварки вольфрамовым электродом в инертном газе, такая сварка в среде активных газов отличается своей высокой производительностью;
Для листов с толщиной 0,8 мм применяется импульсивная дуговая сварка с плавящимся электродом в инертном газе;
Листы толщиной менее чем 0,8 – 3,0 мм подвергаются сварке с дугой со струйным переносом металла;
Такой тип сварки как плазменный, применяется для широкого диапазона толщины листов и на сегодня становится популярным методом сварки нержавеющей стали;
Для металлов толщиной более 10 мм применяют дуговую сварку под флюсом.

ГОСТ 14771-76 Дуговая сварка в защитном газе.
Настоящий стандарт устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых дуговой сваркой в защитном газе.

Так же следует отметить такие методы сварки как: точечная, роликовая, лазерная, высокочастотная, сварка сопротивления и другие.

Итак, следующий этап это обработка сварных швов. Поверхность сварного соединения нержавеющей стали образует пористый оксидный слой, который в своем составе содержит хром. Этот слой способствует значительному ослаблению стойкости к воздействию коррозии. Поверхность оксидного слоя возникает из стали, после чего под оксидным слоем образуется т.н. с низким содержанием хрома. Когда есть необходимость увеличить стойкость сварного соединения к коррозии, то оксидный слой и слой с низким содержанием хрома необходимо удалить. Этот процесс осуществляется с помощью термообработки, в данном случае термообработка способна выполнять растворение внутри стальной конструкции, благодаря этому процессу сглаживаются все возможные отличия присадочных материалов. Необходимо знать то, что разрешается использовать только те принадлежности, которые предназначены для обработки нержавейки, это могут быть: ленты и круги для шлифовки, щетки для обработки нержавеющего проката, дроби из нержавеющей стали.

Обработка сварных швов

Эффективным методом обработки сварных швов является травление. Если правильно выполнить метод травления, то это позволит качественно устранить оксидный слой и зону с низким содержанием хрома. Обработка по этому методу выполнения путем покрытия, погружения или наружного нанесения пасты, все зависит от условий. В основном, при травлении используют смешанные кислоты (азотная кислота/плавиковая кислота) в пропорциях 8 – 20% азотной кислоты и 0,5 – 5% плавиковой кислоты, с добавлением H2O (вода). Время травления зависит не только от концентрации кислот, но и от температуры, сорта проката и толщины окалины (кислотоупорный прокат по сравнению с нержавеющим прокатом требует продолжительной обработки). После метода травления конструкция становится стойкой к воздействию коррозии.

Мы ознакомились с основными методами сварки нержавейки и теперь можно смело поговорить о специальных требованиях по сварке при изготовлении нержавейки. При подготовке вышеперечисленных сплавов и сталей, нужно учитывать специальные требования и основные особенности:

Сварные конструкции МКК и основного металла в зоне около шва, могут подвергшейся сварке до температуры 450 – 650 градусов;
Если образуются кристаллизационные трещины, то это является следствием образования аустенитной структуры металла шва;
Охрупчивание может происходить в температурных диапазонах от 350 – 550 градусов из-за высокого содержания феррита и в диапазонах 550 – 850 градусов, при возникновении стигматизации.
Например, охрупчивание сварных швов может возникнуть в процессе штамповки горячих днищ, в случае если сварка происходит с применением присадочных материалов, которые дают чрезмерное содержание феррита. Для того чтобы избежать охрупчивания сварочных соединений в процессе обработки, следует ограничить содержание феррита в пределах 8 – 10%.
Усиленное коробление сварных конструкций, несет за собой следствие низкой теплопроводности и коэффициент термического расширения, который больше в 1,5 раз в сравнении с углекислыми сталями;

Увеличение длины прихваток и уменьшение расстояния между ними в сравнении с соединениями низколегированных сталей, сварных соединений и из-за большого коэффициента линейного расширения;
Если в структуре металла шва есть наличие феррита, то при температуре ниже 100 градусов снижается его пластичность и охрупчивание;

Чтобы увеличить стойкость сварных соединений к воздействию коррозии необходимо:

Использовать стали и присадочные материалы, содержащие минимальное количество углерода;
Добавлять в легированную сталь другие вспомогательные элементы (титан, ниобий, никель);
Применять стабилизирующий отжиг от 870 до 900 градусов, выдерживать от двух до трех часов и охлаждать на воздухе.

Уменьшить перегрев нержавеющей стали и обеспечить оптимальные механические свойства для стойкости к внешним факторам можно благодаря сварке соединений на максимально высокой скорости. Каждый последующий проход сварки нужно выполнять после охлаждения и тщательной зачистки конструкции.

Повышение коррозийной стойкости сварных соединений

Если вы будите соблюдать следующие требования, то сможете обеспечить повышение коррозийной стойкости сварных соединений:

Все внешние швы заваривают в последнюю очередь, а в случаях двусторонней сварки выполняется третий облицовочный шов, который обращен к внешней среде. Если такая возможность отсутствует, то следует принимать все необходимые меры чтобы уменьшить нагрев металла первого слоя. Чтобы не допускать нагревания металла сварку следует вести на максимально высокой скорости с применением минимальных токов. Для того чтобы устранить горячие трещины при сварке, нужно применить присадочные материалы, которые образуют сварные швы, эти швы обладают аустенитно-ферритной структурой и содержат ферритную фазу более 2%.

Если необходимо предотвратить горячие трещины в соединениях толщиной 10 мм и более, то рекомендуется сделать следующее:

Что нужно знать, чтобы уменьшить сварочные деформации:
Рекомендуется производить процесс сварки на скоростных режимах, с короткой дугой и с минимальными токами;
Для ручной сварки следует разделить швы на отдельные участки и выполнять сварки в последовательности, для того чтобы обеспечить минимальное коробление;
Чтобы избежать трещин в зоне термического влияния, необходимо обвить шлак при температуре 100 -150 градусов;
Метод ручной дуговой сварки нержавеющей стали выполняют на короткой дуге без использования поперечных колебаний электрода. Нержавеющая фурнитура нержавейка для ограждений.

Как осуществляется сварка нержавеющей стали, какие методики доступны

В нашем понимании закрепилась мысль, что сварка нержавеющей стали имеет определенные нюансы, однако этот процесс вполне выполним, даже в домашних условиях. Под нержавейкой понимают материал с антикоррозийными свойствами, которые проявляются, благодаря добавлению в состав хрома. В результате реакции хрома с кислородом образуется своеобразный оксидный барьер, защищающий сталь от окисления.

Рабочий процесс

Зачастую вместе с хромом в составе нержавейки присутствуют такие элементы, как никель, молибден или титан. Эти элементы называются вспомогательными, от их наличия и количества зависят физико-химические свойства полученного сплава. Именно об этих свойствах должен знать сварщик, готовясь к проведению сварочных работ.

Сталь, традиционно именуемая нержавейкой, может иметь разные составы и, как следствие, по-разному реагировать на ведение сварки. Прежде всего, следует отметить, что материал можно разделить на несколько видов.

Аустенитная сталь характерна тем, что в своем составе имеет достаточно много хрома. В долевом соотношении его количество составляет 18%. Также в такой нержавейке содержится до 10% никеля. Примером может служить пищевая нержавейка, маркируемая по ГОСТ, как 08Х18Н10. В другой классификации она имеет название AISI 304. Применяется эта сталь, как при строительстве, так и в производстве посуды. К физическим свойствам можно отнести отсутствие магнитных свойств, пластичность, прочность и химическую стойкость.

Виды стали

Мартенситная нержавейка, благодаря своей специфической внутренней структуре, выделяется в особый класс. Она отличается низким содержанием углерода, который составляет всего 0,12% общего количества вещества. В составе мартенситной стали содержится 13% хрома. В отличие от предыдущего вида, данный материал прочен, но хрупок. Может использоваться в качестве сырья для производства режущих инструментов, а также крепежной фурнитуры при условии эксплуатации в неагрессивных средах. Подлежит дополнительной обработке. Так, при воздействии температуры нержавейка приобретает вязкость. Обозначается, как AISI 410 или 12х13, согласно ГОСТ.

Среднее положение по содержанию хрома занимает ферритная сталь. После ее закалки наблюдается повышенная устойчивость к внешним факторам агрессивной среды. Считается, что этот сплав наиболее трудно поддается сварке. Обозначается подобная сталь по ГОСТ 12х17 или AISI 430. Число 12 указывает на процентное содержание хрома.

Проблемы

Основная сложность сварочных работ обусловлена тем, что нержавеющая сталь считается высоколегированной. Компоненты, входящие в его состав, оказывают непосредственное влияние на результат работы. Ведущая роль здесь отводится хрому. В некоторых материалах его процентное соотношение может достигать 30. Тем не менее, от хрома невозможно «отказаться», так как именно он, наряду с никелем, титаном, молибденом и марганцем, придает металлу антикоррозийные свойства. Приходится учитывать ряд особенностей сплава.

  • Нержавеющая сталь обладает высоким коэффициентом температурного расширения. Если сварка ведется без выдержки нужного зазора, особенно при значительной толщине заготовок, могут наблюдаться трещины. Они возникают в процессе остывания, когда металл начинает «стягиваться».
  • Низкая теплопроводность не позволяет быстро распределяться теплу, как в случае сварки низкоуглеродистых сталей. В результате этого наблюдаются локальные зоны высокой температуры, что приводит к проплавлению заготовок насквозь, особенно если их толщина невелика. Причем снижение силы тока никак не влияет на ситуацию.
  • Наблюдается такое явление, как межкристаллическая коррозия. Она вызвана появлением в структуре металла прослоек, содержащих железо и карбид хрома. Прогрессировать коррозия начинает после нагрева детали до 500°C градусов. Чтобы этого избежать, приходится с большой степенью точности настраивать параметры сварки, а сформированный шов необходимо сразу охлаждать. Самый простой способ – охлаждение в воде, однако он приемлем только для аустенитной нержавейки.

Межкристаллическая коррозия

Не стоит забывать про еще один фактор, значительно усложняющий сварочный процесс. Высокое электрическое сопротивление и низкая теплопроводность материала приводит к тому, что при использовании хромоникелевых электродов наблюдается сильное нагревание последних. Выходом из данной ситуации является подбор электродов не только по диаметру, но и по длине.

Подготовительные работы

Сваривать детали из нержавеющей стали можно как обычным инвертором, так и с помощью аргонно-дугового сварочного аппарата. Какой бы способ сварки ни выбрал мастер, в любом случае необходимо провести подготовительные работы.

  • Первым делом заготовки следует очистить от пыли и грязи. Посторонние частицы на поверхности металла становятся причиной некачественного и неровного шва.
  • Если работа ведется с заготовками, имеющими относительно небольшую толщину (до 1,5 мм), то кромки прижимаются друг к другу вплотную. Для этого рекомендуется воспользоваться струбцинами.
  • При толщине металла более 4 мм приходится разделывать кромки. Обычно их обтачивают напильником или шлифовальной машиной под углом 45° градусов. Такая своеобразная канавка позволяет добиться проваривания по всей толщине. Чем больше толщина заготовки, тем больший угол следует создать на кромках.
  • Если тонкие листы нержавейки скрепляются плотно, то массивные заготовки требуют зазора между кромками. Имеющимися приспособлениями выставляется зазор в 2 мм. Он должен оставаться постоянным в течение всего процесса.
  • Когда толщина металла превышает 7 мм, требуется его предварительный прогрев.

Итоговый результат

Способы

Различают несколько технологий, по которым ведется сварка нержавейки. Они зависят от имеющегося в наличии сварочного аппарата. Аргонодуговая сварка (сварка в режиме TIG) осуществляется инверторами, предназначенными для работы в среде аргона. Сварка ведется неплавящимся вольфрамовым электродом. В зону контакта электрода подается аргон через специальную горелку.

Классический режим сварки подразумевает применение плавящихся покрытых электродов. Сварочные инверторы, работающие в режиме MMA, считаются самыми доступными и недорогими. Ручная дуговая сварка применима для нержавейки только с условием использования специальных электродов.

Сварка в полуавтоматическом режиме (MIG/MAG) требует наличие проволоки из нержавеющей стали. Инверторный полуавтомат оснащен механизмом подачи проволоки, а также горелкой, через которую поступает защитный газ в зону формирования шва.

Технологии сварки нержавейки

Холодная сварка принципиально отличается от представленных выше способов. Материал не нужно нагревать и плавить. Соединение деталей осуществляется под воздействием высокого давления.

Можно говорить лишь о статистике, которая показывает, что некоторые способы нашли свое применение в промышленности и в домашних условиях, а другие, наоборот, в силу технологичности не стали массовыми. Однако выбор зависит не от популярности, а от конкретных условий сварки и требований к полученному результату.

Сварка аргоном

Чтобы вести данный вид работ, необходимо иметь в наличии инвертор AC/DC TIG, предназначенный для ведения аргонодуговой сварки постоянным и переменным током. Сварка производится в ручном режиме с помощью неплавящихся вольфрамовых электродов. Так как подобные инверторы можно встретить у любого начинающего мастера, то данный вид сварки нержавейки доступен в домашних условиях. При этом результат получается достаточно качественным. Обычно к подобному способу прибегают при сваривании нержавеющих труб при монтаже магистралей для жидкостей или газов.

Можно выделить основные нюансы аргоновой сварки.

  • Дугу необходимо поджигать бесконтактным способом, во избежание попадания вольфрама с электрода в зону расплавленного металла. Часто мастера зажигают дугу на стороне, а впоследствии ее постепенно перемещают в зону формирования будущего шва.
  • Как было указано выше, допустима сварка постоянным и переменным током.
  • В зависимости от толщины детали выбирается режим сварки. Под ним подразумеваются такие параметры, как диаметр вольфрамового электрода, присадка, показатели сварного тока, скорость подачи аргона и скорость формирования шва.
  • В качестве присадки используется проволока из легированной стали. Степень ее легирования должна быть выше, нежели у самого материала.
  • Не допускается ведение колебательных движений электродом, это может привести к нарушению зоны сварки и окислению металла.

Сварка аргоном

Важным моментом является окончание сварки, так как на данном этапе можно существенно сэкономить вольфрамовый электрод. После наложения шва необходимо в течение некоторого времени продолжить подачу аргона. В результате того, что раскаленный электрод защищен газом, он не окисляется. Если обеспечить подачу присадки, то скорость сварки существенно увеличится, к тому же автоматизация повышает точность и эстетичность шва.

Ручная дуговая

В силу распространенности инверторов MMA такой режим работы считается традиционным. Если сварщик обладает достаточным опытом ведения работ покрытыми электродами, то технология сварки нержавейки ничем не будет отличаться от работ с черными металлами. Отметим, что при этом качество шва оставляет желать лучшего. При выборе электродов необходимо основываться на том, что все расходные материалы для нержавеющей стали делятся на два вида.

  1. Электроды с рутиловым покрытием предназначены для выполнения работ постоянным током с обратной полярностью. Имеет место разбрызгивание металлов, что является одним из недостатков сварки в режиме MMA.
  2. Электроды с покрытием из карбоната магния и кальция выбираются только для определенных сплавов.

Ручная дуговая сварка

Более подробное описание по подбору расходных материалов для каждого типа нержавейки прописаны в ГОСТ 10052-75.

Полуавтоматическая

Если использовать полуавтомат, работающий в режиме MIG/MAG, то в этом случае также можно сваривать нержавейку. По качеству и эстетике результата данный режим считается приоритетным, независимо от толщины заготовок. Источником тока служит инверторный полуавтомат, но подойдет и любой альтернативный выпрямитель тока.

Масса подается на одну из привариваемых деталей, а плюсовым электродом служит специальная горелка. Эта горелка выполняет одновременно две функции: обеспечивает подачу защитного газа и представляет собой электрод. Присадочная проволока подается встроенным устройством. Современные инверторные полуавтоматы снабжены удобным механизмом, позволяющим загружать проволоку в готовых бобинах.

Полуавтоматическая сварка

Проволока для полуавтоматической сварки нержавейки также состоит из нержавеющей стали. Ее диаметр, как и прочие параметры, определяются толщиной заготовок.

Например, при толщине листа металла в 1,5 мм рекомендуется использовать проволоку диаметром 1 мм при силе тока в 80 – 100 А. Скорость подачи проволоки составляет 160 м/час. Если же толщина металла достигает 5 мм, то диаметра проволоки увеличивается до 1,6 мм, а сила тока – до 300 А.

В промышленности зачастую требования к сварному шву повышены, так как он должен противостоять агрессивному воздействию среды, поэтому применяют порошковую проволоку. Она представляет собой трубку, внутри которой размещен флюс. Это дает дополнительную защиту в зоне сварки. По себестоимости работы с полуавтоматической сваркой несколько выше, чем работы в режиме ММА, причем описанный метод требует от сварщика определенного навыка.

Холодная

Данный метод характерен тем, что не требует нагрева деталей и применения специального оборудования. В качестве скрепляющего материала используется двухкомпонентный клей. Состав сохраняет прочность и целостность после застывания. Место сварки не боится влаги, поэтому технология применяется при заделывании течи в емкостях.

Алгоритм работ достаточно прост. Необходимо зачистить и обезжирить поверхности, а затем нанести царапины. Клей отрезается в необходимом количестве. Состав следует размять в руке, слегка разогрев его и перемешав компоненты. После застывания шов можно обрабатывать.

Холодная сварка

Важная особенность такого способа заключается в том, что клеем можно заделывать отверстия, однако шов не способен выдерживать сильные нагрузки. Не рекомендуется использовать холодную сварку, как способ соединения деталей. Популярность таких работ обусловлена малыми затратами и относительной простотой их проведения.

Читайте также: