Сварка полуавтоматом с аргоном или углекислотой

Обновлено: 13.05.2024

Сварка нержавейки полуавтоматическим аппаратом – распространенный метод создания неразъемных соединений. Ответственный процесс не из простых и для получения хорошего результата, лучше, чтобы его проводил квалифицированный специалист.

Материал, который не ржавеет

К низкоуглеродной стали добавляют различные легирующие добавки: хром – не менее12%, никель и др. Хром при взаимодействии с кислородом из воздуха, образует на поверхности очень тонкую окисную пленку, которая препятствует процессу ржавления и действию химически агрессивной среды. Поверхностный антикоррозионный слой восстанавливается при повреждении. Нержавеющая сталь имеет свои особенности:

  • Малая теплопроводность препятствует отводу тепла от места сварки. В результате происходит перегрев и прожог металла, выгорание легирующих элементов.
  • Низкая температура плавления снижает энергетические затраты.
  • Низкая электропроводимость ведет к снижению напряжения на металле заготовки, что является причиной перегрева и образования прожогов, особенно на тонких деталях
  • Большое тепловое расширение деформирует детали при нагревании.

Употребляемые расходники

Для работы с полуавтоматом потребуются основные материалы – проволока, газ или смесь газов.

Электрод заменяет проволока, которая с заданной скоростью автоматом продвигается к рабочей зоне. От грамотного выбора соответствующих материалов и настроек аппарата зависит качественное исполнение соединения.

Какой газ выбрать

Для защиты сварочной ванны от негативного влияния воздуха используют газ. Он улучшает сжигание проволоки и ее сцепление с обрабатываемой заготовкой, не вступая в реакцию с расплавленным металлом.

Различают два метода: MIG – сварка с защитой инертными газами: аргон, гелий; MAG – с активными газами: азот, кислород, оксид углерода.

Сварк полуавтоматом mig mag для начинающих

Основные используемые газы: аргон (Ar), углекислый газ (CO2) – углекислота, азот (N2) и их смеси.

В среде углекислого газа сварка нержавейки полуавтоматом часто встречающийся вариант, как экономически более доступный. В этом случае шов получается корявым из-за сильного разбрызгивания металла.

При использовании аргона получается надежный шов, который имеет красивую форму. Дороговизна газа предусматривает его использование для изделий, где немаловажен внешний вид соединения. Сварка нержавейки полуавтоматом с аргоном больше всего используется в промышленности.

Каждый газ в чистом виде имеет положительные и отрицательные качества. Поэтому для более эффективного процесса используют газовые смеси в различных пропорциях. Исходя из сложности работ, необходимого результата и материальных затрат, выбирают ту или иную газовую смесь.

Наиболее употребляемый состав Ar+CO2 в пропорциях 98% на 2%, 95% на 5% соответственно. Без повышенных требований к виду шва, допускается увеличение углекислоты до 32%. Процентное соотношение зависит от толщины материала, его типа и других параметров. Сварка нержавейки в такой защитной смеси способствует хорошему растеканию расплавленного металла, улучшает структуру шва.

Иногда к аргону добавляют 1-5% кислорода – Ar+O2. Это способствует уменьшению пористости обрабатываемой поверхности и мелкокапельному переносу металла, стабилизирует дугу.

Выбор проволоки

Сварочная проволока

При сварке проволока является как присадкой, так и вместе с расплавленным металлом заполняет шов. Используются два вида: порошковая и сплошного сечения с очень низким содержанием углерода и высоким – кремния, устойчивая к окисляющей среде.

Диаметр варьируется от 0,13 до 6-10мм. Для применения в быту обычно берут проволоку сечением 0,6 и 0,8мм, для производства, где работают с мощными полуавтоматичными системами – свыше 1,0мм.

Для сварки нержавейки полуавтоматом без газа используют порошковую (самозащитную) проволоку. Она представляет собой тонкую стальную трубку, заполненную флюсом. При плавлении верхнего слоя, флюс освобождается, а также предохраняет сварочную зону от окисления. Образуется много шлака, которые надо удалять.

Сплошная проволока используется для проведения процесса в газовой среде и под флюсом, при этом она должна быть идентичной обрабатываемому металлу, т.е. из нержавейки. Лучше брать проволоку с немного большим содержанием легирующих элементов, из-за их выгорания при высоких температурах.

Некоторые марки сварочной проволоки:

  1. 0,8х20н9г7т – содержит хром, никель и марганец;
  2. 0,6х19н9т – высокого качества, устойчивая к коррозии;
  3. 0,4х19н11м3 – хром-никелевая с добавлением кремния и молибдена для стойкости к межкристаллической коррозии.

Для уменьшения образования брызг от расплавленного металла используется проволока меньшего диаметра, чем электрод. Шов получается аккуратным, но при этом увеличивается ее расход.

Некоторые аппараты снабжены кабель-шлангом, внутри которого для доставки к сварочной зоне проходят изолированно друг от друга проволока, газ, ток – так называемый сварочный рукав.

Подготовительные работы

Перед тем, как варить полуавтоматом нержавейку, требуется провести тщательную подготовку:

  • Зачистить рабочие поверхности до блеска;
  • обезжирить детали ацетоном или каким-либо органическим растворителем;
  • при толщине металла более 4мм обработать торцы, чтобы между ними образовалось небольшое пространство для заполнения металлом;
  • прогревая детали до100, убрать лишнюю влагу;
  • нагреть металл до 200, чтобы снять внутреннее напряжение.

На производстве для удаления поверхностных загрязнений: нагара, следов от смазки, ржавчины детали и проволоку протравливают раствором соляной или серной кислоты. После этого промывают горячей и холодной водой и просушивают.

Расход газовой смеси при рабочем давлении 0,2 атмосферы с помощью редуктора устанавливается в пределах 6-12м3/мин. Несоблюдение этих показателей снижает качество шва.

Регулировка силы тока и напряжения зависят от мощности аппарата.

От этих параметров зависит глубина провара, длина дуги, форма шва. С увеличением силы тока – шире наплавленный шов, а глубина проварки уменьшается.

Некоторые настройки полуавтоматического сварочного аппарата:

Сварк полуавтоматом лист

После того как настроена аппаратура, а также учтены все рекомендации, можно приступать непосредственно к сварке.

Во избежание появления деформации и трещин, между деталями по всей длине оставляется зазор на расширение. Детали закрепляются в тисках или другим способом и прихватываются в нескольких местах.

В начале сварки нужно смотреть на шов. Если образуются поры, увеличить подачу газа до тех пор, пока они не будут появляться. Расход газа надо настраивать на экономный режим. Чтобы качество шва при этом не пострадало.

Начинать варить надо, отступив от края 5-6мм, чтобы не допустить образования трещин. Сопло горелки должно быть расположено под углом слегка назад по направлению шва и на высоте 10-12мм над сварочным стыком.

В случае наклона угла вперед увеличивается ширина шва, а проникновение сварочной дуги уменьшается, что хорошо для тонких листов.

Скорость сварки

Скорость, с которой электрическая дуга движется вдоль места сварки, контролируется сварщиком. Слишком высокая – может вызвать много брызг и расплавление металла, при этом защитный газ не успевает выйти и образуются поры. Недостаточная скорость – причина изменения проникновения сварочной дуги в свариваемые детали.

Варить надо короткой дугой – это, когда расстояние между концом проволоки и поверхностью расплавленного металла составляет 0,5-1,5мм. Проваренный таким способом, шов имеет правильные очертания, гладкую и выпуклую поверхность.

Другой способ сварки тонких деталей – сварка с отрывом, т.е. короткими замыканиями дугового промежутка. Нажать на курок – отпустить, и так постепенно заполнить ниточным швом (валиками) место соединения.

Если аппарат имеет импульсную функцию, то лучше работать на ней. Для расплавления металла используются импульсы, генерируемые коротким замыканием в сварочном аппарате.

При сварке тонкой (до3мм) нержавейки полуавтоматом сопло горелки вести вдоль шва, не допуская поперечных движений. В противном случае есть вероятность выхода расплавленного металла из зоны защитной среды. Лучше выполнять сварку тонких деталей в вертикальном положении, двигаясь сверху вниз.

Сварк полуавтоматом вериткальное положение

Если две заготовки различной толщины, то сопло держать на толстой. Мгновенным движением переместить горелку на тонкую заготовку и опять вернуться на толстую. Иначе произойдет пережог тонкого металла.

Чтобы избежать серьезных дефектов во время сварочных работ, стоит использовать керамические подкладки, которые представляют собой самоклеящуюся ленту. Они наиболее подходящие для работы с тонкими деталями, а также в неудобном пространственном положении.

Соединение нержавейки с черной сталью

Сварк полуавтоматом нижнее положение

Сварку таких материалов ведут при постоянном токе. Положение проволоки – строго перпендикулярное к рабочей зоне.

В составе проволоки из нержавейки должны содержаться марганец, а также никель, например, марки ESAB OK, Autrod. Специальная переходная проволока наплавляет буферный слой, который и соединяет детали.

Приваривая сталь Ст40 к нержавейке, можно использовать проволоку 08Г2С. Это упрочняет шов двух разнородных металлов после остывания. Самое главное в процессе – это, чтобы нержавейка не стала сильно текучей, а черный металл не остался твердым. Шов делается как можно шире и максимально глубоким.

Достоинства и недостатки

Сварк полуавтоматом полуавтоматом

Несомненные преимущества сварки нержавейки полуавтоматом:

  • Высокая производительность сочетана с качественным соединением;
  • незначительное выделение дыма, что сохраняет здоровье и окружающую среду;
  • небольшое разбрызгивание металла, вследствие автоматической подачи проволоки;
  • универсальность – можно сваривать различные по толщине заготовки, а также разнородные металлы.

Один существенный недостаток – громоздкий газовый баллон. Это дополнительные затраты на его приобретение и неудобное перемещение.

Распространение метода стало возможным с развитием технологий и автоматизации процессов. Применяется в основном в промышленности для крупномасштабного производства. Работа со сварочным полуавтоматом, хотя требует определенных знаний и умений, все же остается одним из популярных видов обработки металлов. Подробнее о том как работать сварочным полуавтоматом можете в нашей статье.

Что лучше для сварки полуавтоматом — углекислота или аргон

Что лучше для сварки полуавтоматом фото

При выполнении сварки полуавтоматом (сварка MIG/MAG) дуга горит между изделием и проволокой. Проволока подается непрерывно с катушки, а сварщик манипулирует горелкой. Непрерывная подача проволоки позволяет прокладывать швы большой длины. На проволоку через токосъемный наконечник подается напряжение. Из сопла горелки параллельно на сварочную ванну подается защитный газ. Полуавтоматическая сварка характеризуется удобством и повышенной производительностью — одна из рук сварщика свободна, поскольку не нужно периодически менять электроды.

Защитный газ, применяемый при сварке, обеспечивает защиту сварочной ванны и дуги от атмосферных газов. Это повышает качество шва, увеличивая его плотность, глубину провара и улучшает микроструктуру металла. Дополнительно защитный газ охлаждает шов после сварки.

В качестве защитных газов при сварке полуавтоматом может использоваться углекислый газ или газ аргон. Углекислый газ — более дешевый вариант, поэтому у сварщиков с небольшим опытом работы может возникнуть вопрос: что лучше для полуавтоматической сварки и можно ли заменить один из этих газов другим.

Углекислота (CO2) и ее применение

Углекислота (двуокись углерода) — бесцветный активный газ, растворимый в воде, не ядовит, взаимодействует с кислородом. Углекислый газ тяжелее воздуха, благодаря чему он надежно изолирует расплавленный металл от контакта с ним. Это единственный активный газ, который используют при сварке как защитный в чистом виде, то есть не добавляя к нему инертный газ.

Углекислота широко применяется при полуавтоматической cварке методом MAG. Этот вариант защиты привлекателен невысокой ценой, но для него характерна не особо высокая стабильность дуги и повышенное разбрызгивание металла.

Углекислоту применяют при сварке деталей из углеродистых и низколегированных сталей. Использование углекислоты позволяет получить хороший тепловой эффект, который необходим при работе с заготовками из металла большой толщины. Из-за невысокой стабильности дуги использовать углекислоту рекомендуется только при сварке на короткой дуге.

Чаще всего углекислоту в чистом виде применяют в строительстве, в машиностроении при кузовном ремонте, холодной посадке деталей машины, и т.п.

Результат сварки углекислотой и аргоном фото

Аргон (Ar) — область применения

Инертный газ аргон остается пассивным ко всем веществам. Не имеет цвета и запаха. Аргон тяжелее воздуха, поэтому аналогично углекислоте эффективно вытесняет его из сварочной ванны, обеспечивая надежную защиту. Он существенно дороже углекислоты.

Ar в чистом виде применяется в качестве защитного газа в процессе аргонодуговой TIG сварки. При полуавтоматической MIG/MAG сварке аргон используется для защиты при работе с легированными сталями, медью, алюминием, тугоплавкими металлами или входит в состав защитных газовых смесей.

Аргон как защитный газ применяется в машиностроении и в строительстве для сварки деталей из высоколегированной стали, для оперативной резки металлов, в том числе и толстых листов тугоплавких металлов.

Таким образом, на вопрос, поставленный в заголовке статьи, нельзя дать однозначного ответа. Все зависит от поставленной задачи, однако при полуавтоматической сварке использование углекислого газа можно назвать предпочтительным с точки зрения себестоимости при работе с определенными материалами.

Аргонодуговая (TIG) сварка выполняется инверторным сварочным аппаратом. Дуга образуется между изделием и вольфрамовым электродом. Аргонодуговая сварка медленнее полуавтоматической, но ее можно применять для сварки очень тонких металлов и получать аккуратные швы. Если при MAG сварке можно использовать и углекислоту, и аргон, то TIG сварка требует применения аргона. Это связано с тем, что углекислота — активный газ и под действием высокой температуры распадается на кислород и оксид углерода. Кислород насыщает сварочную ванну. При полуавтоматической сварке этот эффект нейтрализуется добавлением в сварочную проволоку раскислителей.

Что лучше для сварки полуавтоматом фото

Результат сварки углекислотой и аргоном фото

Что лучше: углекислота или сварочная смесь?

Защитные газы, применяемые при сварке, подаются к месту образования сварочного шва и обеспечивают защиту дуги и сварочной ванны от атмосферных газов. Это позволяет повысить качество соединения. К тому же защитные газы, влияя на состав шва, увеличивают его плотность и глубину провара, улучшают микроструктуру металла.

Углекислота или сварочная смесь фото

В сварочных работах используется два вида защитных газов: чистая углекислота без примесей и газовые смеси. Каждый из вариантов характеризуется своими особенностями, имеет свои достоинства и недостатки, свою область применения, которые необходимо учитывать при выборе.

От выбора защитного газа зависит и рабочий процесс, и результат работы. Следует помнить, что для разных видов сварки выбор защитного газа влияет на эффективность и качество работы. Именно выбор защитного газа сказывается на глубине плавления, пористости и надежности шва, выделении дыма и других характеристиках.

Применение углекислоты

Углекислота (двуокись углерода CO2) — единственное вещество, которое используют при сварке в чистом виде, то есть без добавления инертного газа. К тому же этот вариант защиты один из самых недорогих, поэтому он достаточно популярен в случаях, когда материальная сторона стоит на первом месте. Углекислота является наиболее часто применяемым из химически активных газов при MAG методе, используемом при сварке заготовок из не легированных, низколегированных и коррозионно-устойчивых сталей. Она позволяет получить значительный тепловой эффект, что необходимо при работе с металлическими заготовками большой толщины. Однако дуга при этом не особо стабильна, а это приводит к разбрызгиванию металла. Поэтому используют углекислоту в чистом виде только при работе на короткой дуге.

Чистый углекислый газ более плотный, чем воздух, подаваемый в зону сварки, вытесняет воздух, создавая защитную среду. Двуокись углерода можно использовать при ручной, полуавтоматической и автоматической сварке. Чаще всего ее применяют при полуавтоматической сварке.

Железо и углерод, входящие в состав стали свариваемых деталей, под действием углекислого газа при сварке в его среде окисляются. Поэтому при формировании шва для предотвращения окисления металла используют специальную присадочную проволоку, содержащую марганец и кремний. Расход углекислоты зависит от: толщины соединяемых металлических деталей, диаметра присадочной проволоки и параметров подаваемого на электрод тока.

Применение углекислоты фото

Применение сварочных смесей

Существенно повысить качество и эффективность сварочных работ позволяет применение сварочных защитных смесей, составленных в определенной пропорции. Применение правильно подобранной сварочной смеси не только повышает производительность, но и позволяет получить более качественные и надежные швы, благодаря таким особенностям:

  • повышение стабильности дуги;
  • возрастание скорости наплавления металла;
  • снижение разбрызгивания;
  • повышение пластичности и плотности шва;
  • уменьшение задымленности.

Для того, чтобы сделать выбор между углекислотой и определенной сварочной смесью, необходимо учесть сложность предстоящей сварочной работы, требуемое качество шва, целесообразность и возможность материальных затрат.

Применение сварочных смесей фото

Основные виды защитных газовых сварочных смесей

Основу защитных сварочных смесей составляет инертный газ аргон, который можно смешивать как с другими инертными газами, так и с газами активными. Наиболее распространенными являются следующие защитные сварочные смеси:

  • Аргон с углекислотой. Применяется для сварки заготовок из низкоуглеродистых и низколегированных сталей. Смесь облегчает перенос материала электрода, позволяет получить ровный и пластичный шов, снижает образования пор;
  • Аргон с кислородом (O2 до 5 %). Применяется для сварки изделий из низколегированных и легированных сталей. За счет снижения пористости металла повышается плотность шва, облегчается струйный перенос материала электрода. Позволяет применять присадочную проволоку более широкого ассортимента;
  • Аргон с водородом. Применяют при соединении заготовок из никелевых сплавов и нержавеющей стали методом TIG. Так же может использоваться как формовочный газ.
  • Аргон с гелием. В такой абсолютно инертной среде производят сварку деталей из алюминия, титана, меди, хромоникелевой стали методами MIG и TIG.
  • Аргон и активные газы. Такое сочетание обеспечивает двукратную экономию. Используется в ручной и автоматической MAG сварке легированных сталей.
  • Углекислота с кислородом. Применяется при сварке из углеродистых и низколегированных сталей. Обеспечивает формирование более ровного шва за счет снижения разбрызгивания металла. Существенное повышение температуры в зоне сварки позволяет повысить производительность работ. Однако повышенное окисление металла снижает прочностные характеристики соединения.
  • Универсальный защитный газ. Представляет собой аргон высокой частоты. Газ универсален в своем применении, но наибольшее распространение получил при сварке алюминия и других цветных металлов.

Способы смешивания газа

Для получения газовой защитной смеси используются два способе — производственный и непосредственно на рабочем месте.

При производственном методе получения смеси используются специальные газовые смесители, позволяющие смешивать 2–3 различных компонента. Получения заданного процентного соотношения обеспечивается подбором соответствующих диаметров расходных отверстий и тарировкой самого смесителя.

Простой способ смешивания, выполняемый на рабочем месте, использует ротаметр. Состав смеси аргона и-углекислоты или углекислоты и кислорода регулируется с помощью редукторов на газовых баллонах. Регулируя расход и контролируя показания ротаметра, добиваются требуемого соотношения используемых составляющих. Однако такой метод не позволяет обеспечивает максимальной точности, что сказывается на качестве шва.

Выводы: сварочная смесь или углекислота — что же лучше?

Основные различия между чистой углекислотой и сварочными смесями:

  • углекислоту можно использовать только при сварке ограниченного вида металлов — углеродистых и низколегированных сталей, а сварочные смеси имеют более широкую сферу применения — их применяют при сварке различных цветных металлов и сплавов;
  • углекислота — однородный газ, а сварочные смеси получают смешиванием в определенных пропорциях разных газов, для чего нужно специальное оборудование;
  • производительность сварки в защитной среде из сварочных смесей значительно выше, чем в среде углекислого газа.

Общее у этих защитных газовых сред — улучшение качества и повышение производительности сварочных работ.

Основной вывод: преимущества сварочных смесей перед углекислотой заключается в возможности работать с различными материалами, более высокая производительность и более высокое качество соединений. Однако использование углекислого газа предпочтительнее при работе с определенными материалами и полуавтоматической сварке.

Все что нужно знать о газах применяемые для сварки от А до Я

Хотите узнать какой газ используется для сварки полуавтоматом mig или mag, а может вам необходимо разобраться с газовой сваркой и с тем какие газы применяются. В статье мы подробно расскажем о том, где и какие газы используют и как их выбрать.

Какой газ нужен для сварки полуавтоматом

Risunok 1 gaz dla svarki

Полуавтоматическая или механизированная сварка чаще всего выполняется сплошной проволокой, а сварочную дугу и расплавленный металл защищает газ. Газ подается в зону сварки через сопло горелки.

Подробно о процессе полуавтоматической сварки вы можете прочитать в нашей статье — Как работать сварочным полуавтоматом — Mig и Mag для начинающих.

Чаще всего для сварки черной стали используется СО2 (углекислый газ или как его называю углекислота). Реже используются газовые смеси в них входит СО2, Аргон, Гелий иногда Азот и кислород.

От использования газа определяется название сварки mig – сварка с применением инертного газа аргона или гелия. MAG (МАГ) – с использованием активного газа – углекислого. Остановимся поподробнее на каждом из газов.

Разработка сварочной документации, техкарт на сварку и контроль сварных соеднинений.

Razreshit

Аргон

Risunok 2 gaz dla svarki

Как мы уже говорили полуавтоматическая (механизированная сварка аргоном) называется — маг.
Этот защитный газ применяется для сварки полуавтоматом чаще всего для ответственных конструкций из стали или алюминия. Для сварки используется аргон первого сорта в котором примесей чуть больше чем в аргоне высшего сорта, а именно содержится до 0,005-0,009% азота и до 0,001-0,002 % кислорода.

Газ аргон очень хорошо защищает сварочную ванну, дугу и зону термического влияния (нагретый участок). Он не растворяется в металле шва и не насыщает нагретый участок в околошовной зоне. Газ тяжелее воздуха в 1.4-1.5 раза, не имеет ни запаха не вкуса. Ar не горючий и не ядовитый, хотя некоторые молодые сварщики боятся применять аргон говоря что но вреден для здоровья. Это не так, сам газ не вреден и не полезен.

Аргон высшего сорта используют для сварки цветных металлов и сплавов таких как сплавы алюминия, титана, хромоникелевые сплавы и т.д. Содержание примесей азота и кислорода в нем минимальны для N – в районе 0,0055 — 0,006%, для О2 – до 0,0006-0,0007 %. Газ высшего сорта стоит дороже и применять его нужно только в тех случаях, когда это обосновано.

Гелий

Risunok 3 gaz dla svarki

Этот газ для полуавтомата в чистом виде применяется достаточно редко, потому как стоимость на He неоправданно высокая. Так еще гелий легче воздуха и из-за этого его расход гораздо больше, чем того же аргона. Гелий как и аргон не имеет не цвета ни запаха и тоже бывает двух сортов только называются они по другому.

Первый это высокой чистоты с содержанием гелия до 99,984-99,985%, второй это гелий технический его чистота в районе 99,7-99,8 %. При использовании гелия увеличивается глубина проплавление металла, так как из-за высокой степени ионизации дуга горит с выделением большего количества энергии (эффективнее в 1,4-2 раза по сравнению со сваркой в аргоне).

Применяют гелий при сварке активных (таких как магний, например) или химически чистых металлов (к примеру сплавы на основе алюминия и меди). Применение гелия очень распространено в США и Германии, а вот в странах СНГ применяется редко. Чаше идет в смесях и с аргоном или углекислым газом.

Углекислый газ СО2

Risunok 4 gaz dla svarki

Этот газ фаворит для полуавтоматической сварки «черных» (низкоуглеродистых, низколегированных и т.д.) сталей. Это обусловлено тем, что СО2 дешевый и найти его можно даже в отдаленных населённых пунктах.

Углекислый газ имеет слабый, еле уловимый запах (конечно если это хорошо очищенный газ, без конденсата). У газа нет цвета и вкуса, он сильный окислитель. СО2 хорошо растворяется в воде (его также используют в пищевой промышленности для газирования напитков). Иногда и сварщики на производстве используя шланг и пластиковую бутылку делают газировку.

Газ тяжелее воздуха, что хорошо для сварки так как расход газа будет не большой в сравнении с гелием. Единственное нужно обеспечивать хорошее проветривание помещения при длительном проведении сварки, так как газ может скапливаться особенно в низменностях (разных приямках и т.д.). В идеале, конечно, чтобы была вытяжка, но такие системы как правило только на крупных производствах. Двуокись углерода (СО2) уже бывает трех сортов: первый, второй и высший.

Больше всего примесей во втором сорте до 1,2%. Первый сорт содержит примесей не больше 0,4-0,5%, а высший до 0,1-0,2% и применяется уже для ответственных конструкций из стали.

Диоксид углерода (углекислота) набирает в себя влагу, что негативно скажется при сварке. Рекомендуем перед сваркой за час полтора поставить баллон вентилем вниз. Перед сваркой не переворачивая баллон открыть вентиль и выпустить немного газа с влагой. Также можно использовать специальное оборудование для просушки газа – осушитель.

В углекислоте сваривают различные стали с низким и средним содержанием углерода, можно применять при сварке коррозионностойких сталей и чугунов.

Risunok 5 gaz dla svarki

Для сварочного полуавтомата Азот используется весьма ограничено, этот газ как правило применяют при сварки меди. Потому что именно по отношению к меди азота является инертным газом. Для большинства же других металлов азот активный газ который растворяется в расплавленном металле тем самым образуя многочисленные дефекты в виде газовых пор. Выпускается 4 сортов: высшего в котором примеси не более 0,1 %. Азот же 1 сорта может содержать примеси до 0,5%, 2 сорта 0,9— 1% принеси. Что касается азота 3-сорта он может содержать до 3% различных примесей. Азот не имеет цвета, ни запаха, ни вкуса он не ядовитый. Для сварки представляется в баллонах чаще всего имеющих объем 40 л. Эти баллоны имеют окрас чёрного цвета, как и баллон углекислоты, с надписью жёлтым «Азот».

Кислород

Risunok 6 gaz dla svarki

Кислород является очень активным газом. Сам он не горит, но очень активно поддерживает горение. Для сварки, кислород в чистом виде не применим. Как правило кислород используется лишь в смеси с инертными газами. Кислород не имеет ни запаха, ни вкуса, ни цвета. Выпускают кислород 3 сортов : 1-сорт с содержанием чистого кислорода 99,7-99,8%; 2 сорт — 99,4% — 99,5% и 3 сорт с содержанием примеси до 0,8%. Более подробное использование кислорода рассмотрим в разделе про смеси газов.

Сварочная смесь для полуавтомата

Risunok 7 gaz dla svarki

Для полуавтоматической сварки чаще всего используются такие смеси газов как: смесь аргона и гелия, смесь аргона и углекислого газа, смесь аргона и кислорода, а также смесь аргона углекислоты и кислорода в различных процентных соотношениях.

Смесь аргона и кислорода

При содержании кислорода от 1% до 4% в смеси процесс сварки становятся очень стабильным, увеличивается текучесть металла, расплавленного в сварочной ванне. Перенос металла становится мелкокапельным, брызг становится очень мало, а шов получается ровным и красивым. При мелкокапельном переносе металла значительно сокращается расход сварочный проволоки, которая сильно тратиться на разбрызгивание.

Смесь аргона и гелия

Эту смесь используют для сварки активных, цветных металлов и сплавов таких как алюминия, титана и прочих. Данная смесь обеспечивает очень высокий уровень защиты расплавленного металла в сварочной ванне. Оптимальный состав для этой смеси 50% + 50%. Также можно встретить соотношение 60-65% гелия и 35— 40% аргона.

Смесь углекислого газа и кислорода

Подобные смеси на практике не очень часто используются. Оптимальный для них состав это 65-75% углекислого газа и 25-35 % кислорода. При использовании таких смесей, шов формируется несколько лучше чем если использовать чистую углекислоту. Применяется как правило подобной смеси для сварки чёрных стали (углеродистых конструкционных, а также некоторых легированных).

Смесь аргона и углекислого газа

Такая смесь чаще всего используется для сварки углеродистых, низко- и среднелегированных, стали аустенитного класса (нержавейки). Соотношение этой смеси 74— 80% аргона и 20— 26% СО2. При использовании этой смеси обеспечивается очень хорошая защита сварочный дуги и металла.

Также идет очень незначительное разбрызгивание металла. Сварочный шов получается мелкочешуйчатый, а процесс формирования шва стабильный. Эта смесь очень хорошо повышает производительность сварки так как наличие аргона увеличивает мощность сворачивай другие. Благодаря этому свойству процесс идет быстрее.

Расход газа при сварке полуавтоматом

Расход газа при полуавтоматической сварке зависит от нескольких факторов:

  1. наличие сквозняка;
  2. свойств газа;
  3. свойств свариваемого металл;
  4. тип соединения;
  5. толщины свариваемых деталей.

Наличие сквозняка— если в помещение есть сквозняк или работы ведутся на открытом воздухе, где есть ветер, газ будет сдувать. Чтобы предотвратить его сдувание нужно увеличивать расход газа. Именно поэтому при наличии сквозняков и работе на открытом воздухе расход газа значительно увеличивается.

Свойства газа— такие газы как гелий и его смеси который легче воздуха, улетучиваются и при их использовании расход достаточно высокий. Если необходимо сократить расход, то лучше выполнять сварку в среде гелия в закрытых камерах или с использованием козырьков.

Свойства свариваемого металла — для сварки цветных металлов, а также их сплавов для обеспечения качественной защиты, чтобы в сварочную ванну не попадали газы из атмосферы применяют параметры с высоким расходом газа.

Тип соединения— от типа сварного соединения напрямую зависит расход газа особенно это видно на соединениях, где необходимо подваливать корень шва или соединение с двусторонней разделкой кромок.

От толщины свариваемых деталей— чем больше толщина свариваемых деталей, тем больше сварочный ток и соответственно больше расход газа. Это необходимо чтобы защитить большую зону сварки, широкую ванну и сварочную дугу.

Область применения

Защитный газ используется как мы уже говорили в механизированной сварки для защиты сварочной дуги и расплава от попадания газов из воздуха. Он используется 80% случаев использования полуавтоматической сварки, 20% это сварка самозащитой порошковой проволокой.

Область применения весьма широка так как данный процесс несложен и очень производителен. Полуавтоматом варят как тонкий металл в автосервисах, потому что ручной сваркой тонкий металл варить очень проблематично. Его легко прожечь. Так и используют на производстве металлоконструкций и крупных изделий.

Там ситуация обратная, швы протяженные, а толщина металла большая. Она применяется там, потому что этот процесс очень производительный и варить длинные швы и толстый металл ручной сваркой получается дорого и долго.

По большей части отличие здесь будут лишь в использовании самих аппаратов. В автосервисе как правило используются дешевые модели, а на производстве применяются дорогостоящая профессиональное оборудование с синергетической системы управления обеспечивающие высокую производительность.

Какой газ используют для сварки полуавтоматом — критерии выбора

Risunok 9 gaz dla svarki

Поговорим о критериях выбора газа для полуавтоматической сварки более подробно. На выбор того или иного газа влияет несколько параметров таких как:

  • марка материала изделия;
  • ответственность соединения;
  • экономические показатели.

В большой части марка изделия и определяет использование тех или иных газов или их смесей.

Инертные газы подходит как правило для любых видов сталей, цветных металлов и их сплавов. Применение инертных газов для низкоуглеродистых и низколегированных сталей неоправданно, так эти газа стоят очень дорого.

Для углеродистых, низкоуглеродистой, конструкционных сталей используется углекислота (углекислый газ ), а также смеси СО2 с аргоном, СО2 + аргон +гелий.

При сварки нержавеющих сталей (сталей аустенитного класса), к примеру всем известная «медицинская» сталь – 12Х18Н10Т и близкие с ней свариваются в смеси углекислоты и аргона.

Для сварки цветных металлов таких как алюминий, титан, медь чаще всего используется аргон либо в чистом виде, либо смесь с Не. В чистом виде Не используется редко так как он очень дорогой.

Медь можно сваривать в среде азота. Для цветных металлов не используются смеси содержащей СО2 и кислород.

Ниже приведём таблицу, где наглядно покажем применение тех или иных газов и их смесей для различных видов металлов сплавов.

Газ Стали конструкционные (низкоуглеродистые) Легированные стали (низко-, средне-, высоко-) Титан, алюминий и их сплавы
Со2 (углекислый газ) Да Да, с ограничениями Нет
Ar (Аргон) Да (нецелесообразно) Да Да
Не (Гелий) Да (нецелесообразно) Да Да
Аr + Со2 Да Да Да
Аr+О2 Да Да, с ограничениями Нет
Со2+О2 Да Да, с ограничениями Нет
Аr+Со2+О2 Да Да, с ограничениями Нет
Ar+Не Да (нецелесообразно) Да Да

Какой газ нужен газовой сварки

Зачастую газовую сварку и газы которые в ней применяются путают с полуавтоматической и газами которые применяются для нее. Вкратце расскажем разницу. Газовая сварка выполняется за счёт сгорания горючего газа, а при полуавтоматической же газ используется для защиты, он не горит.

Ацетилен

Чаще всего именно ацетилен используют как сварочный газ для газовой сварки. Этот газ легче воздуха он бесцветный имеет слабый запах. При горении температура пламени ацетилена бывает в районе 2950— 3120 Градусов Цельсия. Ацетилена очень легко воспламеняется даже от статического разряда, потому баллоны с этим газом заполнены пористым веществом который пропитывают ацетоном.

Также его применяют для газовой резки, но реже. Чаще для этой цели используют пиролизный или природные газы о них поговорим далее.

Природные

Природные газы для сварки применяются гораздо реже нежели ацетилен ввиду их низкой температурой горения, а вот для резки применяются очень часто потому что стоят они недорого по сравнению с тем же ацетиленом. Применение природных газов более безопасно в отличие от ацетилена потому как они менее огнеопасны. Температура их горения значительно ниже, где-то в районе 2100— 2300 Градусов Цельсия.

Водород

Водород является альтернативой ацетилена при газовой сварки . Этот газ не имеет ни цвета, ни вкуса, также не имеет запах, он легче воздуха. Также водород обладает высокой текучестью и взрывоопасность при смеси с воздухом. Для сварки водород используется не в баллонах, а получают в специальных аппаратах для водородной сварки из воды под действием электрического тока.

Применение водорода вместо ацетилена обеспечивает более качественные ровный сварочный шов. Но несмотря на это преимущество данный способ редко применяется на практике. Так как есть целый ряд сложностей, возникающих в процессе сварки. Одно из них это появление большого количества шлака в процессе сварки, что требует введение дополнительных компонентов в расплав металла.

Также для работы аппарат водородный сварки требуется электричество, лишая данный способ автономности присущий газовой сварке. Грубо говоря — Если есть электричество зачем получать газ, можно просто заварить ручной сваркой.

Пиролизный

Получают этот газ на крупных нефтеперерабатывающих предприятиях как побочный продукт процессе нефтепереработки. После его получения газ требует определенную очистку и обработку для снижения его химической активности. Его свойства очень близки свойствам природных газов.

Используется для резки металлов, для сварки же достаточно редко ввиду опять же низкой температурой горение.

Влияние на процесс

Защитный газ применяемые для сварки оказывают огромное влияние как на сам процесс, так и на результат — качество сварного соединения. Неправильный выбор газов приведёт либо к многочисленным дефектом, либо к ненужному удорожанию процесса.

Приведём несколько примеров:

Применение аргона или гелия для сварки металлоконструкций из Ст3пс. Сварное соединение получится качественным, но затраты необоснованно высокими. Или же другой пример: сварка титанового сплава ВТ9 в среде углекислого газа. В этом случае финансовые затраты будут минимальны, но соединение будет однозначно бракованным и скорее всего даст трещину еще до того, как сварщик завершит работу.

Преимущества и недостатки газовой среды

Преимуществами при использовании газовой защиты является удешевление процесса так как не требуется использование дополнительных флюсов с газообразующими компонентами. Также это защищает соединение попадание шлаковых включений.

Основными недостатками является наличие громоздкого и не дешевого газового оборудования:

  • газовый баллон;
  • шланги;
  • редукторы и ротаметры;
  • смесители;
  • газовый подогреватели и осушители

Применять его в условиях монтажа достаточно проблематично. Также условиях монтажа использование газовой защиты осложняется тем, что ее сдувает порывами ветра или сквозняком. А из-за этого образуются дефекты, и дуга горит нестабильно.

Читайте также: