Сварочный инвертор негуляева схема

Обновлено: 04.10.2024

чить максимальную мощность в дуге с параметрами 150А и 22-24В, необходимо подключить к выходу аппарата эквивалентную нагрузку, это 0,14 - 0,16 Ом, и подби - рая частоту настроить резонанс, именно на этой нагрузке аппарат будет иметь максимальную мощность и максимальный КПД, и тогда даже при режиме короткого замыкания (КЗ), несмотря на то, что во внешней цепи будет протекать ток превы - шающий резонансный, напряжение упад¸т практически до нуля, сответственно

и мощность уменьшится, и транзисторы не войдут в режим перегрузки! И ещ¸,

резонансная схема работает в синусоиде и наростание тока происходит тоже

по синусоидальному закону, тоесть dI/dt не превышает допустимых режимов для

транзисторов, и не требуются снабберы (RC цепочки) для защиты транзисторов

от динамических перегрузок, или что более понятно от слишком крутых фронтов,

их просто не будет вообще! Как видим вроде вс¸ красиво и кажется, что схема

защиты от перегрузки по току не нужна вообще, или нужна только в процессе

настройки, не обольщайтесь, ведь регулировка тока осуществляется изменением

частоты, и есть маленький участок на АЧХ, когда при КЗ возникает резонанс, в этом месте ток через транзисторы может превысить допустимый ток для них, и транзисторы естественно сгорят. И хотя специально попасть именно в этот режим достаточно сложно, но по закону подлости вполне возможно! Вот в этот момент и понадобится

Вольт - амперная характеристика резонансного моста сразу имеет падающий вид, и

естественно нет необходимости искуственно е¸ формировать! Хотя при необходи -

мости угол наклона ВАХ легко регулируется резонансным дросселем. И ещ¸ одно

свойство, не рассказать о котором я не могу, и узнав о нем Вы навсегда забудете

схемы с силовым переключением, которые в изобилии имеются в интернете, это

чудесное свойство - возможность работы нескольких резонансных схем на одну

нагрузку с максимальным КПД! Практически это дает возможность создавать свароч-

ные (или любые другие) инверторы неограниченной мощности! Можно создавать

блочные конструкции, где каждый блок будет иметь возможность самостоятельной работы, это повысит надежность всей конструкции и даст возможность легко заменять блоки при выходе их из строя, а можно одним драйвером запустить несколько силовых

блоков и они все будут работать синфазно. Так сварочный аппарат, построенный мной

по такому принципу, легко отда¸т в дугу 300 ампер, при весе без корпуса 5 кГ! И это

только двойной набор, наращивать же мощность можно безгранично!

Это было легкое отклонение от основной темы, но я надеюсь оно дало возможность

понять и оценить все прелести схемы полного резонансного моста. Теперь верн¸мся к

Настраивается так: подключаем ЗГ к мосту, учитывая фазы (транзисторы работают

по диагонали), пода¸м питание 12-25В, во вторичную обмотку силового трансформатора

Тр1 включаем лампочку на100Вт 12-24В, изменяя частоту ЗГ добиваемся наиболее яркого свечения лампочки, в нашем случае это 30-35кГц, это частота резонанса, далее я попы - таюсь подробно рассказать о том, как работает полный резонансный мост.

Транзисторы в резонансном мосте (как и в линейном) работают по

диагонали, это выглядит так, одновременно открыты левый верхний

Т4 и правый нижний Т2, в это время правый верхний Т3 и левый ниж -

ний Т1 закрыты. Или наоборот! В работе резонансного моста можно выделить четыре фазы. Рассмотрим, что и как происходит если

частота переключения транзисторов совпадает с резонансной часто -

той цепочки Др.1- Срез.- Тр.1. Допустим в первой фазе открываются

транзисторы Т3, Т1, время нахождения их в открытом состоянии

зада¸тся драйвером ЗГ, и при резонансной частоте 33кГц, составляет

14 мкс. В это время ток протекает через Срез. - Др.1 - Тр.1. Ток в этой

цепи сначала возрастает от нуля до

по мере зарядки конденсатора Срез.

ный последовательно с конденсатором резонансный дроссель Др.1 формирует синусоидальные фронты. Если последовательно с резо -

нансной цепочкой включить резистор, и к нему подключить

граф можно увидеть форму тока, напоминающую полупериод

иды. Во второй фазе, длящейся 2 мкс, затворы транзисторов Т1, Т3 соеденены с земл¸й, через резистор 56 Ом и обмотку импульсного

трансформатора Тр.3, это так называемое “м¸ртвое время”. За это

емкости затворов транзисторов Т1,

транзисторы закрываются. Как видно

выше сказанного, мо

мент перехода из открытого состояния в закрытое, у тразисторов

совпадает с нул¸м тока, ведь конденсатор Срез. уже зарядился и ток

через него уже не теч¸т. Наступает третья фаза - открываются транзис - торы Т2,Т4. Время нахождения их в открытом состоянии 14 мкс, за это время конденсатор Срез., полностью перезаряжается, образуя второй полуперид синусоиды. Напряжение до которого перезаряжается Срез.,

зависит от сопротивления нагрузки во вторичной обмотке Тр.1, и чем

сопротивление нагрузки меньше, тем больше напряжение на Срез.

При нагрузке 0,15 Ом, напряжение на резонансном конденсаторе может

достигать значения 3кВ. Четв¸ртая фаза начинается, как и вторая, в тот

момент, когда коллекторный ток транзисторов Т2,Т4 уменьшается до

нуля. Эта фаза также длится 2 мкс. Транзисторы закрываются. Далее вс¸ повторяется. Вторая и четв¸ртая фазы работы, необходимы для

того, чтобы транзисторы в плечах моста успели закрыться до того, как откроется следующая пара, если время второй и четвертой фаз, будет меньше времени необходимого для полного закрытия выбранных тран -

зисторов, возникнет импульс сквозного тока, практически КЗ по высоко - му напряжению, при этом последствия легко предсказуемы, обычно выгорает полностью плечо (верхний и нижний транзисторы), плюс сило - вой мостик, плюс пробки у соседа! :-))). Для транзисторов, примен¸нных

в моей схеме, “мертвое время” должно быть не менее 1,2 мкс, но учиты -

вая разброс параметров, я сознательно увеличил его до 2 мкс.

Следует помнить ещ¸ одну весьма важную вещь, все элементы резонансного моста оказывают влияние на частоту резонанса и при замене любого из них, будь

то конденсатор, дроссель, трансформатор или транзисторы, для получения

максимального КПД, необходимо заново настроить резонансную частоту! На схеме я прив¸л величины индуктивностей, но это не значит, что поставив дроссель

или трасформатор другой конструкции, имеющий такую индуктивность, Вы полу -

чите обещанные параметры. Лучше сделать, как я рекомендую. Будет дешевле!

Как работает резонансный мост, в общих чертах, вроде стало понятно, теперь

разберемся какую, и достаточно важную функцию выполняет резонансный дрос - сель Др.1

Если при первой регулировке резонанс окажется намного ниже чем 30 кГц, не пугайтесь! Просто ферритовый сердечник Др1., немного другой, это легко

корректируется увеличением немагнитного зазора, ниже подробно описан процесс настройки и нюансы конструкции резонансного дросселя Др.1.

Самым важным элементом резонансной схемы является резонансный дроссель Др.1, от качества его изготовления зависит мощность отдаваемая инвертором в нагрузку и частота резонанса всего преобразователя! В процес - се предварительной настройки закрепите дроссель так, чтобы его можно было снять и разобрать, для увеличения или уменьшения зазора. Вс¸ дело в том,

что ферритовые сердечники примен¸нные мной всегда разные, и каждый раз приходится подстраивать дроссель изменением толщины немагнитного зазора! В моей практике, чтобы получить идентичные выходные параметры, приходилось менять зазоры от 0,2 до 0,8мм! Начинать лучше с 0,1мм, нахо - дить резорнанс и одновременно замерять выходную мощность, если резо -

нансная частота ниже 20кГц, и выходной ток при этом не превышает 50-70А,

параметры можно только изменяя толщину зазора! Оптимальная частота резонанса для ферритов с проницаемостью 2000НМ лежит в диапазоне 30-35 кГц, но это не значит, что они не будут работать ниже или выше, просто потери будут немного другие. Сердечник дросселя нельзя стягивать металлической

скобой, в районе зазора металл скобы будет сильно нагреваться!

Дальше - резонансный конденсатор, не менее важная деталь! В первых

конструкциях я ставил К73 -16В, но их надо минимум 10 штук, и конструкция

получается достаточно громоздкая, хотя довольно над¸жная. Сейчас появились

импортные конденсаторы фирмы WIMA MKP10, 0,22x1000V - это специальные конденсаторы для больших токов, работают очень над¸жно, я их ставлю

всего 4 штуки, места практически не занимают и не греются вообще!

Соединяются в два блока по три параллельно, получается 0,225х2000В.

Работают нормально, почти не греются.

Ну вот вроде разобрались, можно переходить к дальнейшей настройке.

Меняем лампу на более мощную и на напряжение 110В, и вс¸ повторяем сначала, постепенно поднимая напряжение до 220 вольт. Если вс¸ работает, отключаем лампу,

подключаем силовые диоды и дроссель Др.2. К выходу аппарата подключаем реостат со-

противлением 1Ом х 1кВт и вс¸ повторяем сначала измеряя напряжение на нагрузке подгоняем частоту к резонансу, в этот момент на реостате будет максимальное напряжение, при изменение частоты в любую сторону, напряжение уменьшается!

Если вс¸ правильно собрано то максимальное напряжение на нагрузке будет около

40В. Сответственно ток в нагрузке около 40А. Не трудно посчитать мощность 40х40, получаем 1600Вт, далее уменьшая сопротивление нагрузки, частотозадающим

резистором подстраиваем резонанс, мах ток можно получить только на резонансной частоте, для этого подключаем вольтметр параллельно нагрузке и изменяя частоту

ЗГ находим мах напряжения. Расч¸т резонансных цепей подробно описан в (6).

В этот момент можно посмотреть форму напряжения на резонансном конденсаторе,

должна быть правильная синусоида амплитудой до 1000 вольт. При уменьшении

сопротивления нагрузки (увеличении мощности), амплитуда увеличивается до 3кВ, но форма напряжения должна оставаться синусоидальной! Это важно, если возникает треугольник, это значит, что пробита ¸мкость или замкнула обмотка

резонансного дросселя, и то и другое не желательно! При номиналах указанных на схеме резонанс будет около 30-35кгц (сильно зависит от проницаемости феррита).

Ещ¸ одна важная деталь, для получения максимального тока в дуге, нужно настраивать резонанс при максимальной нагрузке, в нашем случае, для получения тока в дуге 150А, нагрузка при настройке должна быть 0,14ом! (Это

важно!). Напряжение на нагрузке, при настройке мах тока должно быть 22 -24В, это нормальное напряжение горения дуги! Соответственно мощность в дуге будет

150х24=3600Вт, этого достаточно для нормольного горения электрода диаметром

3-3,6мм. Сварить можно практически любую железку, я сваривал рельсы!

Регулировка выходного тока осуществляется изменением частоты ЗГ.

При повышении частоты происходит следующее, во первых: изменяется отноше-

ние длительности импульса к паузе (ступеньке); во вторых: преобразователь

выходит из резонанса; и дроссель из резонансного превращается в дроссель рассеяния, тоесть его сопротивление напрямую становится зависимым от частоты, чем больше частота - тем больше индуктивное сопротивление дросселя.

Естественно вс¸ это приводит к уменьшению тока через выходной трансформатор, в нашем случае изменение частоты с 30кГц до 57 кГц,

вызывает изменение тока в дуге от 160А до 25А,т.е. в 6 раз! Если частоту менять

автоматически то можно управлять током дуги в процессе сварки, на этом принципе реализован режим “горячий старт”, его суть в том, что при любых значениях свароч- ного тока, первые 0,3с ток будет максимальный! Это да¸т возможность легко зажигать и поддерживать дугу на малых токах. Режим тепловой защиты также организован на автоматическом увеличении частоты при достижении критической

температуры, что естественно вызывает плавное уменьшение сварочного тока до

минимального значения без резкого выключения! Это важно, так как не образуется

кратер, как от резкого прерывания дуги!

Но в общем то без этих примочек можно и обойтись, вс¸ работает достаточно

устойчиво, и если работать без фанатизма то аппарат не нагревается более 45

градусов С, и дуга при любых режимах зажигается легко.

Далее рассмотрим схему защиты от перегрузки по току, как было сказано выше она нужна только в момент настройки и в момент совпадения режима КЗ с резонансом, если в этом режиме залипнет электрод! Как видно она собрана на 561ЛА7, схема представляет собой своеобразную линию задержки, задержка на

включение 4мкс, на выключение 20мс, задержка на включение необходима для зажигания дуги в любом режиме, даже когда режим КЗ совпадает с резонансом!

Схема защиты настроена на мах ток в первичной цепи, около 30А, во время настройки лучше уменьшить ток защиты до 10-15А, для этого в схеме защиты вместо резистора 6к поставить 15к. Если вс¸ работает попытаться зажечь дугу на какой -

Ниже я попытаюсь объяснить почему приведенная схема защиты не эффектив - на в момент штатной работы, дело в том, что максимальный ток протекающий в первичной обмотке силового трансформатора полностью зависит только от конструкции резонансного дросселя, точнее от зазора в магнитном сердечнике этого дросселя, и чтобы мы не делали во вторичной обмотке, ток в первичной не может превысить максимальный ток резонансной цепочки! Отсюда вывод -

защита настроенная на максимальный ток в первичной обмотке силового тр-ра

может сработать только в момент резонананса, но зачем она нам в этот момент нужна? Только чтобы не перегрузить транзисторы в момент, когда режим КЗ совпадает с резонансом, и естественно на тот случай, если допустить, что сгорит одновременно резононсная цепочка и силовой трансформатор, то конечно такая

защита необходима, собственно для этого я е¸ и включил в схему с самого начала,

когда проводил эксперименты с разными транзисторами и различными конструкциями дросселей, трансформаторов, конденсаторов. И зная пытливый ум наших людей, которые не поверят тому, что написано, и будут мотать свои тр - ры, дроссели, ставить

все подряд конденсаторы, я е¸ оставил, думаю не напрасно! :-))) Есть ещ¸ один важный

нюанс, как бы Вы не настраивали защиту, условие одно, на 9 ножку микросхемы Uc3825, не должно приходить плавно возрастающее напряжение, только быстрый фронт от 0,до +3(5)В, понимание этого, мне стоило нескольких силовых транзисторов!

È ещ¸ один совет:

- начинать настройку лучше, если в резонансном дросселе не будет зазора, это сразу

ограничит ток КЗ в выходной обмотке на уровне 40 - 60А, а потом постепенно увеличивать зазор и соответственно выходной ток! Не забывая каждый раз подстраивать резонанс, с

увеличением зазора он будет уходить в сторону увеличения частоты!

Ниже приведены схемы температурной защиты рис.2, горячего старта и стабилизатора

горения дуги рис.3, хотя в последних разработках я их не ставлю и в качестве термозащиты приклеиваю на диоды и в обмотку силового трансформатора

термовыключатели на 80 -100 С, соединяю их все последовательно, и выключаю

дополнительным релле высокое напряжение, просто и над¸жно! А дуга, при 62В на ХХ, зажигается достаточно легко и мягко, но включение схемы “горячего старта” позволяет избежать режима КЗ - резонанс! О н¸м говорилось выше.

Сварочный инвертор негуляева схема

молодец, хорошо изложил спасибо,котику привет помогал как никак.

Появилось время, продолжил ковыряться. Сделал корпус из старого корпуса системного блока компьютера, уменьшив его в размерах. Большеват наверное, но для первого варианта сойдет.

Пока ковырялся пришла мысль. Может не возиться с настройкой резонанса, то бишь вообще исключить резонансный дроссель из схемы и так как он планировался из такого же феррита, что и силовой трансформатор, то объединить феррит и сделать более мощный трансформатор. А вы как думаете?

Я блок питания на 12 вольт делать не буду. Так как в заначке есть уже готовый заводского изготовления импульсный на 2 ампера и 12 вольт.

Привет всем. Собрал 4 резонансника, пятый в стадии завершения. На первом попалил 8 пар транзисторов и 4 диода, а потом посидел сделал доработки в схеме и настройке и заработало.Правда во втором пытался поставить самодельный бп, но потом от этой идеи отказался

Если не секрет, что за доработки?

Как у вас дела с изготовлением?
У меня пока две основные проблемы.

Нет личного осциллографа, на работе валяется один, но можно взять только втихаря он типа эталонный (проходит поверку постоянно) и все на него молятся, а пользоваться не дают.

А вторая проблема — нечем мотать трансформатор и дроссель. Сидел парился с лицендратом, набрал для дросселя, а он зараза в один слой не влезает.

Доработал регулировку тока (дабы защитится от пропадания контакта в переменном резисторе),на выходе обязательно ставлю по два 150EBU04 т.к. ток у меня на выходе 210-220А( при частом КЗ вылетают)и настраиваю немного по другому(если нужно настройку опишу позже).БП использую заводской 12В 5А(других у меня нет в наличии)(ГЛАВНОЕ чтобы частота БП не совпадала с частотой сварочника и не была кратной иначе смерть аппарату!Ферриты для силового транса E65 или 3хШ16Х20 дроссель Ш20Х28 или 2хШ16Х20 кол-во витков тоже.Мотал и дроссель и транс проводом 2мм.Во втором и третьем вариантах сварочника все ферриты были Ш16х20 нагрева не заметил при резке электродом 5ка

Что-то я не понял, как частота БП может на что-то влиять, на выходе же у него «чистая» постоянка?

Про настройку всегда интересно:) Опишите пожалуйста ваш способ.

Я так понял это касается бп без ШИМ, но каким боком? Люди советуют и на практике заметил что под нагрузкой(нагружен сварочник на балласт) появляются нездоровые посторонние шумы в БП и силовом трансе. О настройке постараюсь в течении пару дней написать.

2. Настройка силовой части

2.1 Регулятором тока выставим максимальную длительность управляющих импульсов (чтоб на 8 ноге было 4 вольта)
2.2 Настроим ЗГ на частоту 45 КГц
2.3 Вместо силового трансформатора последовательно с резонансной цепочкой включим лампочку на 100ватт 36 вольт
2.4 Подключаем силовую часть к ЛАТРу
2.5 Медленно поднимаем напряжение до 40-50 вольт, если лампочка не горит или горит тускло, крутим резистор частоты ЗГ до максимальной яркости лампочки. Зазор в рез. дросселе при этом должен быть 0.4 — 0.5 мм
2.6 Если все прошло нормально, то меняем лампочку на 100Вт 110В, и повышаем питающее напряжение до 220В, подкручивая частоту, если будет уходить
2.7 Отключаем лампочку, подключаем силовой трансформатор нагруженной лампочкой 100вт 36в
2.8 Весь процесс настройки начинаем заново как в п. 2.5, 2.6

3.Настройка максимального тока на выходе

3.1 Отключаем лампу и подключаем силовые диоды. Подключаем силовую часть напрямую в 220В, без ЛАТРа. Через секунду должно сработать запускающее реле, и на выходе появится 46-50В.
3.2 Чтоб убедиться что все работает нормально, подключить на выход лампочку 100Вт 36В, при этом чтоб все работало устойчиво. Смотрим, чтоб не было посторонних звуков, свечение было ровное , плавно регулировалось токозадающим резистором от максимума до минимума
3.3 Если все именно так, то меняем лампу на реостат 1 Ом 5КВт и продолжаем настройку
3.4 Кратковременно подключая нагрузку 1 Ом, подстраиваем частоту до того момента, когда вольтметр на балластнике покажет максимум напряжения, и при вращении частотозадающим резистором в любую сторону, напряжение будет уменьшаться
3.5 Проделываем тоже самое, что и в п.3.4 при балласте 0.5 и 0.25 Ом. При нагрузке 0,25 Ом должно получиться 26-28 Вольт, и при дальнейшем уменьшении сопротивления нагрузки напряжение должно понижаться.
3.7 Подбираем зазор в дросселе от 0,1 до 1,5 мм, чтоб при нагрузке 0.2-0.25 Ом был максимальный ток

Валерий,смотрел вашу страничку в «Моем мире». Очень здорово все делаете. Я вижу, что у вас уже практически все готово. Варить не пробовали? А с чем связано изготовление второго БП и моста, перемотка дросселя и трансформатора? Почему решили использовать управление(генератор) на TL494?

Здравствуйте. Я готов к сварочным работам.Если на нагрузке 0,2ома с рабочими концами я имел на выходе постоянное напряжение 25 вольт,то ток = 125А.Меня такой ток устраивает.В отношении 2 БП-захотелось иметь блок питания более точно отслеживающего выход.Я первоначально планировал разместить блоки вертикально,а позднее переиграл на горизонтальное размещение,соответственно и размеры платы изменились.Вот так появился 2 БП.
В 1 мостике IGBT транзисторы крепились к радиатору через прокладки.На втором я распилил радиатор и закрепил транзисторы без прокладок.
Кроме того я развернул транзисторы и установил защитный диод и ёмкость.
В отношении дросселя.Первоначальную наладку я делал при напряжении 30 вольт. резонанс на частоте 23Кгц.а надо повыше.Поэкспериментировал -убавил виток у дросселя-частота возросла не 2,5Кгц. Перемотал и закрепил по методу Скифа.На дросселе 10 витков.
Трансформатор перемотал может быть зря-Показалось сечение маленьким.
На 494 настраивать проще-не надо вгонять в диапазон 3-4 вольта.Не надо подбирать С для мёртвого времени.

Занимаюсь высадкой рассады под плёнки и мечтаю взяться за держак и испытать резонансник при огородном-пониженном напряжении.

Завтра буду давить сачка-надо подготовиться к празднику-запастись продуктами и посмотрю РЕН-ТВ У Прокопенко день космических историй- люблю его передачи.

Тоже смотрел космические истории по РЕН-ТВ:) У меня на участке электричество пока только от бензогенератора, боюсь он не потянет сварку на максимальном токе.

Переделал дроссель. Нашел провод обычный монтажный 3.5 мм в диаметре, снял ПВХ изоляцию и намотал с воздушным зазором 11 витков. Скрепил нитью как у Skif’a и покрыл лаком.

Ждем результатов ваших испытаний на «огородном» напряжении.

У меня 13 выдача пенсии.Приехал,получил.Загрузил фото с первыми сварными работами.Завтра снова в огород

Дела в сваркостроении у меня плохи:) Точнее руки не доходят. Ковыряюсь с очередной версией проекта дома. Вот-вот строительный сезон начнется, планирую начать строить.

Здравствуйте.Дело большое и серьёзное.Успехов вам.

admin , Валерий , ну как ваши дела с инверторами ??

Прошло куча времени. Коробка дома стоит. Идут внутренние работы и отделка.

По весне потребуется сварка:) У меня появился доступ к осциллографу по этому работу над сварочником возобновил.

Сварочный инвертор - это просто! (часть первая)

Мы все знаем - сварка это тяжеленный аппарат, длинные, толстые, запутанные провода, чумазый сварщик! Но оказывается в этом мире всё меняется, и даже нашу страну какимто боком затронул технический прогресс!

В продаже уже несколько лет есть импортные сварочные инверторы, но их цена немного кусается! Аппарат среднего класса, способный отдать в дугу 120 -160 ампер, весит от 4 до 7 кг, и стоит от 500 до 1000 долларов! А обыкновенный сварочный трансформатор, такого же класса, стоит 150 долларов, правда весит не менее 30 кг!

От автора
Идею написать эту книгу подкинул мой товарищ, профессиональный разработчик РЭА, несколько лет назад мы вместе работали в АН Украины, потом дороги наши разошлись, я уехал работать за границу, он занялся евроремонтами, или попросту строительными работами. И вот однажды он мне звонит и рассказывает красивую сказку о том, как он, будучи прорабом, вызвал сварщика, и тот прибыл на стройку в костюме и с дипломатом, и на вопрос - где же его сварочный аппарат, открыл кейс. Там было всё! Аппарат, кабеля, маска, перчатки! Сварив без особого напряжения все металлоконструкции и получив причитающийся гонорар, он с достоинством удалился! У моего товарища и всей его бригады был шок! Мы все знаем - сварка это тяжеленный аппарат, длинные, толстые, запутанные провода, чумазый сварщик! Но оказывается в этом мире всё меняется, и даже нашу страну какимто боком затронул технический прогресс! В продаже уже несколько лет есть импортные сварочные инверторы, но их цена немного кусается! Аппарат среднего класса, способный отдать в дугу 120 -160 ампер, весит от 4 до 7 кг, и стоит от 500 до 1000 долларов! А обыкновенный сварочный трансформатор, такого же класса, стоит 150 долларов, правда весит не менее 30 кг!

Я его выслушал и у меня сразу возникла мысль сделать недорогой сварочный инвертор для своих нужд, ведь необходимость в сварочных работах возникает довольно часто, если есть дача, машина и гараж. Но для того, чтобы что - то сделать нужно знать как! И первые мои поиски информации не дали результата, интернет приводит множество пионерс -ких конструкций, авторы которых пытались повторить схемы импортных сварочников, я перепробовал все доступные схемы, выводы были весьма неутешительные, куча сгоревших транзисторов и косые взгляды соседей, ведь благодаря мне, несколько раз вырубалось электричество во всём доме! На попытки повторения чужих конструкций ушло два месяца! Подсчитав расходы, я сказал себе - хватит! И углубился в теорию, перелистав справочники по импульсной технике, перерыв груды документа -ции на транзисторы, я понял где и почему были совершены ошибки, почему горели мощные высоковольтные транзисторы, которые не должны гореть, почему взрыва -лись конденсаторы, сгорали силовые диоды! На это ушёл ещё месяц! Итого - три месяца поисков, анализа и опытов! И вот первая дуга! Результат превзошёл все мои ожидания! Учтя все ошибки, собрав в единое целое все наработки, отбросив догмы разработчиков импульсной техники, мною был создан замечательный аппарат, надёжный, легкий, из доступных деталей (при его создании использовались детали имеющиеся на радиорынке), не дорогой (на его создание ушло менее 100$)!

И теперь, зная по себе, как это всё трудно даётся, при практически полном отсутствии правдивой и написанной доступным языком информации по силовой электронике, я пишу эту книгу. Надеюсь она многим поможет не постичь того горького разочарования, которое возникает, когда смотришь как горят дорогие транзисторы, а с ними тают надежды! У меня нет опыта написания книг, поэтому прошу простить возможные ошибки, я старался написать книгу так, чтобы любой радиолюбитель, знающий с какой стороны держать паяльник, мог собрать и без проблем настроить мощный сварочный инвертор! Надеюсь эта книга даст толчёк к творчеству, и будет полезна не только любителям но и матёрым профи! Хватит спать, пора брать в руки паяльник!
Автор, разработчик, инженер электронщик В.Ю. Негуляев, Киев, 2005 г.

1. Немного теории и основные требования к сварочному инвертору.

В связи с тем, что данное пособие не является технологической картой, то я не привожу ни разводку печатных плат, ни конструкцию радиаторов, ни порядок размещения деталей в корпусе, ни конструкцию самого корпуса! Всё это не имеет значения и никак не влияет на работу аппарата! Важно только, что на транзисторах (на всех вместе, а не на одном) моста выделяется около 50 ватт, и на силовых диодах тоже около 100 ватт, итого около 150 ватт! Как Вы распорядитесь этим теплом меня мало волнует, хоть в стакан с дистилированной водой их опустите (шутка :-)) ), главное не разогревайте их выше 120 градусов С. Ну вот с конструкцией разобрались, теперь немного теории и можно приступать к настройке.
Что такое сварочный аппарат - это мощный блок питания способный работать в режиме образования и продолжительного горения дугового разряда на выходе! Это достаточно тяжёлый режим и не всякий блок питания может в нём работать! При касании концом электрода свариваемого металла происходит короткое замыкание сварочной цепи, это самый критический режим работы блока питания(БП), так как для разогрева, расплавления и испарения холодного электрода требуется энергии гораздо больше, чем для простого горения дуги, т.е. БП, должен иметь запас по мощности достаточный для стабильного поджига дуги, при использовании электрода максимально допустимого для данного аппарата диаметра! В нашем случае это 4мм. Электрод типа АНО-21 диаметром 3мм стабильно горит при токах 110-130 ампер, но если для БП это максимальный ток, то дугу зажечь будет весьма проблематично! Для стабильного и легкого зажигания дуги необходимо ещё 50-60 ампер, это в нашем случае 180-190 ампер! И хотя режим поджига кратковременный, его должен выдерживать БП. Идём дальше, дуга загорелась, но по законам физики вольт-амперная характеристика (ВАХ) электрической дуги в воздухе, при атмосферном давлении, при сварке покрытым электродом имеет падающий вид, т.е. Чем больше ток в дуге, тем меньше на ней напряжение, и только при токах больше 80А напряжение дуги стабилизируется, и остается постоянным при увеличении тока! Исходя из этого можно сообразить, что для лёгкого поджига и устойчивого горения дуги ВАХ БП должна дважды пересекаться с ВАХ дуги! В противном случае дуга будет не устойчивой со всеми вытекающими последствиями, как то непровар, пористый шёв, прожёги! Теперь можно кратко сформулировать требования к БП;
а) учитывая КПД (около 80-85%) мощность БП должна быть не менее 5 кВт;
б) должен иметь плавную регулировку выходного тока;
в) на малых токах легко зажигать дугу, иметь систему горячего поджига;
г) иметь защиту от перегрузки при залипании электрода;
д) выходное напряжение на хх не ниже 45В;
е) полная гальваническая развязка от сети 220В;
ж) падающая вольт-амперная характеристика.
Вот собственно и всё! Всем этим требованиям отвечает разработанный мной аппарат, технические характеристики и электрическая схема которого приведены ниже.

2. Технические характеристики сварочного выпрямителя инверторного типа

Напряжение питающей сети 220 + 5% В
Сварочный ток 30 - 160 А
Номинальная мощность в дуге 3,5 кВА
Напряжение холостого хода при 15 витках в первичной обмотке 62 В
ПВ (5 мин.),% При мах токе 30 %
ПВ при токе 100А 100 % (приведенный ПВ относится только к моему аппарату, и полностью зависит от охлаждения, чем мощнее будет вентилятор, тем больше ПВ) Максимальный потребляемый
ток от сети (измерен по постоянке) 18 А
КПД 90%
Вес вместе с кабелями 5 кг
Диаметр электрода 0,8 - 4 мм


Выпрямитель предназначен для ручной дуговой сварки и сварки в защитном газе на постоянном токе. Высокое качество выполнения сварных швов обеспечивается дополнительными функциями, выполняемыми в автоматическом режиме: при РДС
- Горячий старт: с момента зажигания дуги в течение 0,3 секунд сварочный ток максимальный
- Стабилизация горения дуги: в момент отрыва капли от электрода сварочный ток автоматически увеличивается;
- При коротком замыкании и залипании электрода автоматически включается защита от перегрузки, после отрыва электрода все параметры востанавливаются через 1с.
- При перегреве инвертора сварочный ток плавно уменьшается до 30А, и остаётся таким до полного охлаждения, затем автоматически возвращается на установленное значение.
Полная гальваническая развязка обеспечивает 100% защиту сварщика от поражения электрическим током.

3. Принципиальная схема резонансного сварочного инвертора

Силовой блок, блок раскачки, блок защиты.
Др.1 - резонансный дроссель, 12 витков на 2хШ16х20, провод ПЭТВ-2, диаметр 2,24, зазор 0,6мм, L=88mkH Др.2 - выходной дроссель, 6,5 витков на 2хШ16х20, провод ПЭВ2, 4x2,24, зазор Змм, L=10mkH Тр. 1 - силовой трансформатор, первичная обмотка 14-15 витков ПЭТВ-2, диаметром 2,24, вторичная 4х(3+3) тем же проводом, 2хШ20Х28, 2000НМ, L=3,5mH Тр.2 - токовый трансформатор, 40 витков на феритовом колечке К20х12х6,2000НМ, провод МГТФ - 0,3. Тр.З - задающий трансформатор, 6x35 витков на феритовом колечке К28х16х9,2000НМ, провод МГТФ - 0,3. Тр.4 - понижающий трансформатор 220-15-1 . T1-T4 на радиаторе, силовые диоды на радиаторе, входной мост на 35А, на радиаторе. * Все времязадающие конденсаторы плёночные с минимальным TKE! 0,25хЗ,2кВ набираются из Юштук 0,1x1,6кВ типа К73-16В последовательно-параллельно. При подключении Тр.З обратить внимание на фазы, транзисторы T1-T4 работают по диагонали! Выходные диоды 150EBU04 , RC- цепочки параллельно диодам обязательны! При таких моточных данных диоды работают с перегрузкой, лучше их ставить по два параллельно, центральный один марки 70CRU04.

4. Выбор силовых транзисторов

Силовые транзисторы - это сердце резонансного инвертора! От правильного выбора силовых транзисторов зависит надёжность работы всего аппарата. Техни -ческий прогресс не стоит на месте, на рынке появляется множество новых полупроводниковых приборов, и разобраться в этом разнообразии довольно сложно. Поэтому в этой главе я постараюсь кратко изложить основные принципы выбора силовых ключей, при построении мощного резонансного инвертора. Первое, с чего нужно начинать, это приблизительное определение мощности буду -щего преобразователя. Я не буду давать отвлечённых расчётов, и сразу перейду к нашему сварочному инвертору. Если мы хотим получить в дуге 160 ампер при напряжении 24 вольта, то перемножив эти величины мы получим полезную мощность которую наш инвертор обязан отдать и при этом не сгореть. 24 вольта это среднее напряжение горения электрической дуги длинной 6 - 7 мм, в действи -тельности длинна дуги всё время меняется, и соответственно меняется напряже -ние на ней, меняется также и ток. Но для нашего расчёта это не очень важно! Так вот перемножив эти величины получаем 3840 Вт, ориентировочно прикинув КПД преобразователя 85%, можно получить мощность которую должны перекачивать через себя транзисторы, это примерно 4517 Вт. Зная общую мощность можно подсчитать ток, который должны будут коммутировать эти транзисторы. Если мы делаем аппарат для работы от сети 220 вольт, то просто разделив общую мощность на напряжение сети, можно получить ток, который аппарат будет потреблять от сети. Это приблизительно 20 ампер! Мне присылают много писем с вопросами, можно ли сделать сварочный аппарат, чтобы он мог работать от 12 вольтового автомобильного аккумулятора? Я думаю эти простые расчёты помогут всем любителям их задавать. Я предвижу вопрос, почему я разделил общую мощность на 220 вольт, а не на 310, которые получаются после выпрямления и фильтрации сетевого напряжения, всё очень просто, для того, чтобы при токе величиной 20 ампер поддерживать 310 вольт, нам понадобится ёмкость фильтра величиной 20000 микрофарад! А мы ставим не более 1000 мкФ. С величиной тока вроде разобрались, но это не должен быть максимальный ток выбранных нами транзисторов! Сейчас в справочных данных многих фирм приво -дится два параметра максимального тока, первый при 20 градусах Цельсия, а второй при 100! Так вот при больших токах протекающих через транзистор, на нём выделяется тепло, но скорость его отвода радиатором не достаточно высока и кристалл может нагреться до критической температуры, а чем сильнее он будет нагреваться, тем меньше будет его максимально допустимый ток, и в конечном итоге это может привести к разрушению силового ключа. Обычно такое разрушение выглядит как маленький взрыв, в отличии от пробоя по напряже -нию, когда транзистор просто тихо сгорает. Отсюда делаем вывод, для рабочего тока величиной 20 ампер необходимо выбирать такие транзисторы у которых рабочий ток будет не ниже 20 ампер при 100 градусах Цельсия! Это сразу сужает район наших поисков до нескольких десятков силовых транзисторов.
Естественно определившись с током нельзя забывать и о рабочем напряжении, в мостовой схеме на транзисторах напряжение не превышает напряжение питания, или проще говоря не может быть больше 310 вольт, при питании от сети 220 вольт. Исходя из этого выбираем транзисторы с допустимым напряжением не ниже 400 вольт. Многие могут сказать, что мы поставим сразу на 1200, это мол будет надёжнее, но это не совсем так, транзисторы одного вида, но на разные напряжения могут очень сильно отличаться! Приведу пример: IGBT транзисторы фирмы IR типа IRG4PC50UD - 600В - 55А, а такие же транзисторы на 1200 вольт IRG4PH50UD - 1200В - 45А, и это ещё не все отличия, при равных токах на этих транзисторах различное падение напряжения, на первом 1,65В, а на втором 2,75В! А при токах в 20 ампер это лишние ватты потерь, мало того, это мощность которая выделяется в виде тепла, её необходимо отвести, значит нужно увеличивать радиатор почти в два раза! А это дополни -тельный не только вес, но и объём! И всё это необходимо помнить при выборе силовых транзисторов, но и это ещё только первый прикид! Следующий этап, это подбор транзисторов по рабочей частоте, в нашем случае параметры транзисторов должны сохраняться как минимум до частоты 100 кГц! Есть один маленький секрет, не все фирмы дают параметры граничной частоты для работы в резонансном режиме, обычно только для силового переключения, а это частоты, как минимум в 4 - 5 раз ниже, чем граничная частота при использовании этого же самого транзистора в резонансном режиме. Это немного расширяет район наших поисков, но и с такими параметрами имеется несколько десятков транзисторов разных фирм. Самые доступные из них, и по цене и по наличию в продаже это транзисторы фирмы IR. В основном это IGBT но есть и хорошие полевые транзисторы с допустимым напряжением 500 вольт, они хорошо работают в подобных схемах, но не очень удобны в крепеже, нет отверстия в корпусе. Я не буду рассматривать параметры включения и выключе -ния этих транзисторов, хотя это тоже очень важные параметры, коротко скажу, что для нормальной работы IGBT транзисторов необходима пауза между закрытием и открытием, чтобы завершились все процессы внутри транзистора, не менее 1,2 микросекунды! Для MOSFET транзисторов, это время не может быть менее 0,5 микросекунды! Вот собственно все требования к транзисторам, и если все они будут выполнены, то Вы получите надёжный сварочный аппарат! Исходя из всего выше изложенного - лучший выбор это транзисторы фирмы IR типа IRG4PC50UD, IRG4PH50UD, полевые транзисторы IRFPS37N50A, IRFPS40N50, IRFPS43N50K. Эти транзисторы были опробованы и показали свою надёжность и долговечность при работе в резонансном сварочном инверторе. Для маломощных преобразователей, мощность которых не превышает 2,5 кВт можно смело использовать IRFP460.

Негуляев В.Ю. - Сварочный инвертор - это просто

достоинством удалился! У моего товарища и всей его бригады был шок! Мы все знаем - сварка это тяжеленный аппарат, длинные, толстые, запутанные провода, чумазый сварщик! Но оказывается в этом мире вс¸ меняется, и даже нашу страну

какимто боком затронул технический прогресс! В продаже уже несколько лет есть импортные сварочные инверторы, но их цена немного кусается! Аппарат среднего класса, способный отдать в дугу 120 -160 ампер, весит от 4 до 7 кг, и стоит от 500 до 1000 долларов! А обыкновенный сварочный трансформатор, такого же класса, стоит 150 долларов, правда весит не менее 30 кг! Я его выслушал и у меня сразу возникла мысль сделать недорогой сварочный инвертор для своих нужд, ведь необходимость в сварочных работах возникает довольно часто, если есть дача,

машина и гараж. Но для того, чтобы что - то сделать нужно знать как! И первые

мои поиски информации не дали результата, интернет приводит множество пионерс - ких конструкций, авторы которых пытались повторить схемы импортных сварочников, я перепробовал все доступные схемы, выводы были весьма неутешительные, куча сгоревших транзисторов и косые взгляды соседей, ведь благодаря мне, несколько раз вырубалось электричество во вс¸м доме! На попытки повторения чужих конструкций ушло два месяца! Подсчитав расходы, я сказал себе - хватит! И углубился в теорию, перелистав справочники по импульсной технике, перерыв груды документа - ции на транзисторы, я понял где и почему были совершены ошибки, почему горели

мощные высоковольтные транзисторы, которые не должны гореть, почему взрыва -

лись конденсаторы, сгорали силовые диоды! На это уш¸л ещ¸ месяц! Итого - три месяца поисков, анализа и опытов! И вот первая дуга! Результат превзош¸л все мои ожидания! Учтя все ошибки, собрав в единое целое все наработки, отбросив догмы разработчиков импульсной техники, мною был создан замечательный аппарат, над¸жный, легкий, из доступных деталей (при его создании использовались детали

имеющиеся на радиорынке), не дорогой (на его создание ушло менее 100$)!

И теперь, зная по себе, как это вс¸ трудно да¸тся, при практически полном

отсутствии правдивой и написанной доступным языком информации по силовой

электронике, я пишу эту книгу. Надеюсь она многим поможет не постичь того

горького разочарования, которое возникает, когда смотришь как горят дорогие

транзисторы, а с ними тают надежды! У меня нет опыта написания книг, поэтому прошу простить возможные ошибки, я старался написать книгу так, чтобы любой

радиолюбитель, знающий с какой стороны держать паяльник, мог собрать и без проблем настроить мощный сварочный инвертор! Надеюсь эта книга даст толч¸к

к творчеству, и будет полезна не только любителям но и мат¸рым профи! Хватит

спать, пора брать в руки паяльник!

Автор, разработчик, инженер электронщик

В.Ю. Негуляев, Киев, 2005 г.

1. Немного теории и основные требования к сварочному инвертору.

Всвязи с тем, что данное пособие не является технологической картой, то я не

привожу ни разводку печатных плат, ни конструкцию радиаторов, ни порядок размещения деталей в корпусе, ни конструкцию самого корпуса! Вс¸ это не имеет значения

и никак не влияет на работу аппарата! Важно только, что на транзисторах (на всех

вместе, а не на одном) моста выделяется около 50 ватт, и на силовых диодах тоже около 100 ватт, итого около 150 ватт! Как Вы распорядитесь этим теплом меня мало волнует, хоть в стакан с дистилированной водой их опустите (шутка :-)) ), главное не

разогревайте их выше 120 градусов С. Ну вот с конструкцией разобрались, теперь

немного теории и можно приступать к настройке.

Что такое сварочный аппарат - это мощный блок питания способный работать

в режиме образования и продолжительного горения дугового разряда на выходе! Это достаточно тяж¸лый режим и не всякий блок питания может в н¸м работать!

При касании концом электрода свариваемого металла происходит короткое замыкание сварочной цепи, это самый критический режим работы блока питания(БП), так как

для разогрева, расплавления и испарения холодного электрода требуется энергии гораздо больше, чем для простого горения дуги, т.е. БП, должен иметь запас по

мощности достаточный для стабильного поджига дуги, при использовании электрода

максимально допустимого для данного аппарата диаметра! В нашем случае это 4мм. Электрод типа АНО-21 диаметром 3мм стабильно горит при токах 110-130 ампер, но

если для БП это максимальный ток, то дугу зажечь будет весьма проблематично! Для

стабильного и легкого зажигания дуги необходимо ещ¸ 50-60 ампер, это в нашем случае 180-190 ампер! И хотя режим поджига кратковременный, его должен выдерживать БП. Ид¸м дальше, дуга загорелась, но по законам физики вольт-амперная характеристика (ВАХ) электрической дуги в воздухе, при атмосферном давлении, при сварке покрытым электродом имеет падающий вид, т.е. Чем больше ток в дуге, тем меньше на ней напряжение, и только при токах больше 80А напряжение

дуги стабилизируется, и остается постоянным при увеличении тока! Исходя из этого можно сообразить, что для л¸гкого поджига и устойчивого горения дуги ВАХ БП должна дважды пересекаться с ВАХ дуги! В противном случае дуга будет не устойчивой со всеми вытекающими последствиями, как то непровар, пористый ш¸в, прож¸ги!

Теперь можно кратко сформулировать требования к БП; а) учитывая КПД (около 80-85%) мощность БП должна быть не менее 5 кВт; б) должен иметь плавную регулировку выходного тока;

в) на малых токах легко зажигать дугу, иметь систему горячего поджига; г) иметь защиту от перегрузки при залипании электрода;

д) выходное напряжение на хх не ниже 45В;

е) полная гальваническая развязка от сети 220В; ж) падающая вольт-амперная характеристика.

Вот собственно и вс¸! Всем этим требованиям отвечает разработанный мной аппарат, технические характеристики и электрическая схема которого приведены ниже.

Читайте также: