Технология аргонодуговой сварки труб

Обновлено: 20.09.2024

Ручная аргонодуговая сварка неплавящимся W-электродом применяется для неповоротных стыков труб из низкоуглеродистых, низколегированных и легированных (коррозионностойких) сталей. Диаметр свариваемых труб - менее 100 мм, толщина стенки - до 10 мм.

Выбор параметров режима

Сварочный ток выбирают: при однопроходной сварке - в зависимости от толщины стенки трубы, а при многопроходной - исходя из высоты валика, которая должна составлять 2 - 2,5 мм. Сварочный ток назначают из расчета 30 - 35 А на 1 мм диаметра электрода.

Напряжение на дуге должно быть минимальным, что соответствует сварке короткой дугой.

Скорость сварки регулируют так. чтобы гарантировались проплавление кромок и формирование требуемых размеров шва.

Расход защитного газа зависит от марки свариваемой стали и токового режима (от 8 до 14 л/мин).

Присадочная проволока диаметром 1,6-2 мм выбирается но марке свариваемой стали (см. статью Сварочные материалы).

Ориентировочные режимы

Диаметр W-электрода, мм

Диаметр присадка, мм

Сварочный ток, А

Напряжение на дуге, В

Расход газа, л/мин

Минимальные режимы по току в зависимости от марки W-электрода

Постоянный ток (А) полярности

Переменный ток, А

Сварку начинают сразу же после установки прихваток, которые при выполнении первого слоя нужно переплавить. В труднодоступных местах первый корневой шов можно выполнять без присадочной проволоки, если зазор и смешение кромок не превышают 0,5 мм, а притупление кромок не более 1 мм. Исключение составляют стыки труб из сталей 10 и 20, которые всегда нужно сваривать с присадкой.

Очередность наложения слоев при сварке одним сварщиком неповоротного стыка

Наложение слоев при сварке

Зажигать и гасить дугу следует на кромке трубы или на уже наложенном шве на расстоянии 20-25 мм от конца шва. Подачу аргона прекращают спустя 5-8 с после обрыва дуги.

При сварке высоколегированных сталей нужно соблюдать ряд условий:

  • минимальные токовые режимы;
  • короткая сварочная дуга;
  • максимальная скорость сварки без перерывов и повторного нагрева одного и того же участка металла;
  • избегать поперечных колебаний горелки;
  • присадочную проволоку следует подавать равномерно, чтобы не создавать брызг расплавленного металла, которые, попав на основной металл, могут вызвать впоследствии очаги коррозии

На толстостенных (более 10 мм) трубопроводах диаметром более 100 мм из низкоуглеродистых и низколегированных сталей корневой шов сваривают аргонодуговым способом без остающихся подкладных колец.

Сварку следует вести обратноступенчатым способом участками длиной не более 200 мм. Высота корневого шва должна быть не менее 3 мм. При этом необходимо обеспечить плавные переходы к поверхности трубы.

Направление и очередность укладки корневого слоя

Очередность укладки корневого слоя

Аргонодуговую сварку используют также, когда приваривают подкладное кольцо в трубах из углеродистых и низколегированных ст алей. Кольцо плотно, но без натяга, устанавливают в трубу, оставляя зазор между кольцом и внутренней поверхностью трубы не более 1 мм. Кольцо прихватывают снаружи угловым швом длиной 15-20 мм с катетом 2.5-3 мм к трубам диаметром до 200 мм в двух местах, а большего диаметра в трех-четырех местах.

Прихватку, независимо от марки стали трубы и подкладного кольца, выполняют с присадочной проволокой Св-08Г2С диаметром 1,6-2 мм. Подкладное кольцо приваривают однослойным угловым швом с катетом 3-4 мм с тем же присадком.

Прихватку и приварку подкладного кольца делают без предварительного подогрева независимо от марки стали и толщины стенки трубы. Исключение составляют трубы из стали 15Х1М1Ф с толщиной стенки более 10 мм - конец такой трубы подогревают до 250 - 300 °С.

Аргоновая сварка труб

Аргоновая сварка труб

Аргоновая сварка труб сегодня востребована как никогда, ведь данная технология основана на использовании наиболее доступного, а потому самого дешевого газа, являющегося продуктом массового производства. Кроме того, этот процесс позволяет соединить разные виды металлов и занимает не так много времени.

Правда, одно дело варить аргоном плоские поверхности и совсем другое – более сложные изделия в виде труб. Тут без определенных навыков и знания некоторых тонкостей не обойтись. Все нужно делать последовательно и в соответствии с правилами, иначе работа вряд ли будет выполнено удовлетворительно.

Суть аргоновой сварки

Выражение «сварка аргоном», которое можно услышать среди домашних умельцев, в действительности некорректно. Аргон – инертный газ, который не принимает непосредственного участия в соединении заготовок. Верной является формулировка «сварка в инертной среде». При этом работы проводятся в среде аргона или другого защитного газа, который препятствует негативному воздействию окружающей среды на сварную зону.

Если же вернуться к бытовому выражению, то аргоновая сварка представляет собой технологию, в которой сочетаются газовая и электрическая. Она позволяет соединять заготовки из любых материалов и размеров. Технология подходит для сварки чугунных, стальных, медных и др. деталей. Она одинаково хороша как для крупных стальных труб, так и для небольших бронзовых крючков для вешалки. Аргоновая сварка используется также для работы с изделиями из нержавеющей стали.

Суть аргоновой сварки

В процессе аргоновой сварки труб и других металлических деталей соединяемые края расплавляются под воздействием высокой температуры.

Для нагревания заготовок используется огонь, который не может гореть без кислорода. Вступая в химическую реакцию с металлом, кислород окисляет его. Чем быстрее происходит окисление, тем сложнее процесс сварки. Эта реакция относится к нежелательным, с которыми сталкиваются сварщики во время выполнения сварных работ.

При окислении внутри металла образуется множество воздушных пузырьков, снижающих качество шва. Алюминий же при большом количестве кислорода сгорает.

Аргон необходим для того, чтобы защитить зону сварки от воздействия окружающей среды, т. е. вытеснить из нее кислород. Поскольку газ тяжелее воздуха, то он вытесняет кислород из рабочей области.

Кроме аргона, для этой цели используют также гелий. Однако последний применяется реже, поскольку он интенсивнее расходуется и дороже стоит. Кроме того, работа с гелием требует использования защитной одежды.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Еще одним инертным газом, применяемым при сварке, является азот. Это наиболее редкий газ, с помощью которого сваривают медные изделия. Самым востребованным является аргон, именно он и дал разговорное название для этой технологии сварных работ.

Рекомендуем статьи по металлообработке

Плюсы и минусы аргоно-дуговой сварки

Далее расскажем о достоинствах и недостатках аргоновой сварки труб и других изделий, влияющих на качество шва, его прочность и другие параметры работы.

К достоинствам следует отнести:

  • Невысокую температуру нагрева, благодаря которой максимально сохраняются размеры и форма соединяемых заготовок.
  • Поскольку инертный газ плотнее и тяжелее воздуха, он вытесняет его из рабочей зоны, обеспечивая ее защиту.
  • Благодаря высокой тепловой мощности сварочной дуги соединение заготовок происходит за короткое время.
  • Аргоновая сварка труб и других заготовок очень проста в исполнении, может использоваться даже новичками.
  • Подходит для работы с различными видами металлов, которые нельзя сваривать с помощью других технологий.

Плюсы и минусы аргоно-дуговой сварки

Впрочем, у технологии есть и ряд недостатков:

  • Аргоновую сварку нельзя проводить при ветре и сильном сквозняке, поскольку в таких условиях часть газа улетучивается из рабочей зоны, тем самым снижая степень ее защиты и качество сварного шва. Работа с инертными газами выполняется в закрытых помещениях, оборудованных хорошей системой вентиляции.
  • Технология предполагает использование сварочного оборудования со сложной системой управления и настройки режимов работы.
  • При необходимости использования высокотемпературной дуги понадобится дополнительное охлаждение заготовок.

Области применения аргоно-дуговой сварки

Аргоновую сварку труб и других металлических заготовок используют в различных сферах промышленности, а также в бытовых условиях и на небольших производствах. В основном, технологию применяют для соединения деталей из цветных металлов и легированных сталей. Если предстоит работа с изделиями небольшой толщины, то сварка выполняется без использования присадок.

С помощью технологии сварки в среде защитного газа продлевают срок эксплуатации автомобильных запчастей, нарезают резьбу, латают трещины. Чтобы получить качественный сварной шов, сварщику требуется опыт, а также знания в области физико-химических свойств различных металлов.

Области применения аргоно-дуговой сварки

Технология аргоновой сварки труб и других изделий из металла позволяет получать высококачественный шов, поддерживать одинаковую глубину проплавления металла. Именно его используют при необходимости соединения неповоротных стыков труб. Для работы с заготовками из алюминиевых и титановых сплавов необходимы неплавящиеся электроды, для изделий из алюминия и нержавеющих сталей – плавящиеся.

Технология сварки труб вручную в аргоне

При помощи ручной аргоновой сварки труб формируют корень шва технологических трубопроводов, изготовленных из углеродистых, низко-, среднелегированных и легированных сталей, диаметр которых не превышает 100 мм, а толщина стенок – 10 мм.

Технологические трубопроводы из хромированных никелевых сплавов монтируют также с помощью сварки в защитной аргоновой среде. Если толщина стенок трубопровода не превышает 3 мм, то их сваривают только аргоно-дуговой технологией. Если же стенки трубы толще 3 мм, то аргоновую сварку применяют для формирования корня шва, дальнейшее соединение элементов трубопровода выполняется аргоно-дуговым способом с использованием присадочной проволоки, ручным методом с применением покрытых электродов или механизированными способами сварки.

Если расстояние между свариваемыми трубами не превышает 0,5 мм, использовать присадочную проволоку для их соединения не нужно, если превышает – присадочная проволока обязательна. Если аргоновая сварка труб выполняется в ветреную или дождливую погоду, необходимо работать в специальном укрытии.

Чтобы определить, под каким углом располагать электрод к свариваемой трубе, необходимо ориентироваться на качество защиты и конструктивные особенности горелки. При использовании горелок АГМ-2 и АГС-3 угол может варьироваться в пределах от 0° до 70°, при использовании других горелок (АР-3, МГ-3 и пр.) с канальной схемой истечения газов – от 0° до 25°.

Если в процессе аргоновой сварки труб используется присадочная проволока, то подается она в рабочую зону слева направо, в то время как горелка двигается навстречу проволоке, т. е. справа налево. При формировании корневого шва амплитуда колебаний горелки и присадки составляет от 2 до 4 мм. Если в дальнейшем накладываются еще швы, то горелку перемещают поперечными движениями, амплитуда колебаний которых варьируется от 6 до 8 мм. Оплавляемый конец присадки во время сварочных работ должен находиться в защитной газовой среде. Сама подача проволоки должна происходить плавно, без резких движений.

Технология сварки труб вручную в аргоне

При ручной аргоновой сварке труб и других металлических заготовок используют как можно более короткую электрическую дугу (около 1–3 мм), ток должен быть постоянным с обратной полярностью. Зажигают и гасят дугу на кромке или на шве соединяемых элементов на расстоянии 20–25 мм сзади кратера. Аргон начинает поступать в горелку за 15–20 секунд до того, как дуга активируется, подача инертного газа прекращается спустя 10–15 секунд после того, как дуга погашена. В эти периоды струю аргона необходимо направлять в зону начала сварки или на кратер.

При аргоновой сварке труб необходимо уделить пристальное внимание корню шва и заделке кратера. В последнем случае оптимально подходит дистанционное управление источником питания электрической дуги. Если нет возможности управлять дугой дистанционно, то в кратер вводят каплю расплавленного металла с присадки, одновременно быстро отводя горелку от области стыка, пока дуга естественным образом не оборвется.

Если сварочные работы выполняются без использования присадочной проволоки, то для заделки кратера горелку сначала быстро уводят в противоположную движению сторону, а потом также быстро возвращают обратно к кратеру. После того как корневой шов сформирован, необходимо проверить его качество. Если будут обнаружены трещины или другие дефекты, то этот участок удаляется с помощью узкого наждачного круга, после чего повторно заваривается с использованием присадки. При формировании корневого шва с применением расплавляемой вставки присадочную проволоку не используют, вставку расплавляют на всю глубину и по всему периметру сварного соединения.

Если свариваемый трубопровод имеет небольшой диаметр, то количество используемого для продувки аргона должно быть не более 3-4 л/мин. Чем больше диаметр и длина свариваемых труб, тем дольше время продувки. Чтобы сэкономить инертный газ, им заполняют не всю полость трубы, а только трубопровод в области сварного соединения, для чего используют специальные заглушки, ограничивающие зону продувки.

После того как заглушки установлены, инертный газ подают через специальный рукав и заполняют полость трубы. У этого способа есть определенные недостатки. Поскольку для продувки используется свыше 50 % аргона, который защищает рабочую зону, то защита обратной стороны формируемого шва стоит в два раза дороже, чем непосредственно сварка стыка. На увеличении стоимости продувки сказывается необходимость изготовления и установки заглушек. Если работа выполняется с замыкающими стыками, то инертным газом заполняется вся полость трубы.

Для устранения этих недостатков сварщики используют флюс. Паяльную пасту наносят при плюсовой температуре на обратную сторону сварного шва до его кристаллизации. Высыхает паста через 15–20 минут, сварщик контролирует процесс визуально, ориентируясь на ее цвет (сухая масса будет темно-серой).

Нагревают стыки с помощью:

  • гибких нагревательных элементов типа ГЭН;
  • комбинированных нагревательных элементов типа КЭН;
  • гибких индукторов из голого медного провода марки М или М1Т сечением 180–240 мм 2 с 8–12 витками;
  • газопламенными горелками.

После установки и крепления к месту стыка воронок из листового асбеста его прогревают одноплеменными универсальными горелками на нейтральном пламени. Их количество выбирается таким образом, чтобы равномерно прогреть свариваемый стык по всей окружности. Кольцевые многопламенные горелки располагают по обе стороны от места соединения заготовок.

Аргоновая сварка труб может выполняться в поворотном и неповоротном положениях. В первом случае ось трубопровода может быть расположена как вертикально, так и горизонтально. Во втором – шов формируется за два поворота. Если длина сваренных участков составляет более 200 мм, используется обратноступенчатый способ.

Аргоновую сварку труб диаметром менее 21,9 см из мартенситных и мартенситно-ферритных сталей выполняет один сварщик. Для работы с трубами большего диаметра необходимо два специалиста. Если диаметр трубы превышает 80 см, то сварку выполняют четыре сварщика, работающие поочередно.

Аргоновая сварка труб из мартенситно-ферритных сталей выполняется при температуре окружающей среды выше 0 °С, работать с трубами из стали 15ХМ можно при температуре воздуха выше +10 °С, при этом заготовки независимо от толщины стенок прогреваются до +250…+300 °С.

Перерыв между завершением сварочных работ и началом термообработки определяется в соответствии с требованиями проекта работ. При аргоновой сварке нельзя перегревать места соединения труб из аустенитной стали. При нагревании металла на расстоянии 20–25 мм от стыка до +100 °С либо делается перерыв в работе, либо стык охлаждается с помощью струи сжатого воздуха.

Если необходимо выполнить аргоновую сварку труб из разнородных сталей разной степени легирования, выбирают технологию и режимы работы, подходящие для сваривания более легированных металлов. При работе с трубами из разнородных сталей, принадлежащих к разным структурным классам, выбранная технология и режим сварки должны обеспечивать наименьшее проплавление основного металла.

Технология сварки труб вручную в аргоне

При работе с коррозионностойкими и жаропрочными сталями, в составе которых содержится 12 % хрома, а также с высокохромистыми хромоникелевыми сталями температура нагрева должна быть приближена к той, при которой сваривают однородные стали с содержанием хрома 12 %.

Аргоновая сварка труб из нержавейки

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Принцип аргонной сварки

Принцип аргонной сварки

Аргонодуговая сварка отличается от всех остальных видов тем, что в данном процессе используется электродуга с аргоном в качестве защитной среды. Инертный газ подается в первую очередь, чтобы защитить металлы на время обработки от контакта с кислородом. Из этой статьи вы узнаете основной принцип аргонной сварки, а также о том, в каких случаях его используют.

На чем основан принцип аргонной сварки

Сварка аргоном представляет собой технологию гибридного типа – благодаря ей удается соединять металлы, работа с которыми считается наиболее сложной. Принцип аргонной сварки отлично работает как с большими трубами, так и с крохотными бронзовыми статуэтками. Дело в том, что этот способ вобрал в себя лучшее из двух классических методов: дугового электрического и газового. В качестве самого распространенного примера работы с аргоном можно привести сварку нержавеющей стали.

На чем основан принцип аргонной сварки

Прежде чем приступать к обсуждению принципа действия аргонной сварки, необходимо понять физику данного процесса. Не секрет, что соединение металлических поверхностей невозможно без их нагрева. Но поскольку нагрев требует использования огня, задействуется и кислород, содержащийся в воздухе, который запускает реакцию окисления. Проблема в том, что сложные металлы или сплавы типа легированных сталей или цветных металлов сильно подвержены окислению.

Окисление опасно тем, что оно значительно снижает качество швов, – они становятся хрупкими и быстро приходят в негодность. Это происходит из-за образования в шве множества мельчайших пузырьков. Если говорить об алюминии, то он при нагревании в обычных условиях начинает гореть.

Принцип аргонной сварки используется, в первую очередь, чтобы защитить сварочную рабочую ванну от газов и примесей. В качестве защитной оболочки выступают инертные газы, это может быть не только аргон, но и гелий. Однако серьезный недостаток последнего состоит в его высокой цене и большом расходе. Например, при обработке нержавейки требуется в несколько раз больше гелия, чем аргона. Еще одна особенность использования гелия – с ним нельзя работать без защитной одежды, полностью закрывающей тело.

В связи с тем, что мы описали выше, гелий сегодня редко применяется в чистом виде, его используют в смесях для газовых лазеров. Другой инертный газ – азот. Он подходит исключительно для работы с медью. Поэтому основным и самым распространенным инертным компонентом, применяемым при гибридном подходе, работы является аргон.

Назовем основные качества аргона:

  • Гораздо тяжелее, чем воздух. Именно благодаря этому он легко занимает всю сварочную ванну, защищая зону плавления от других газов.
  • Инертен, поэтому не вступает в реакцию с другими элементами, но, что важнее всего, никак не взаимодействует со свариваемыми поверхностями – на этом и строится принцип аргонной технологии.

Однако принцип аргоновой сварки неидеален, ведь при работе с током обратной полярности этот газ превращается в электропроводную плазму. Мы не будем вдаваться в подробности, говоря о малоприятных последствиях этого свойства.

Основные качества аргона

В целом, у аргонной сварки мало минусов:

  • сложное оборудование, нуждающееся в точной настройке;
  • возможность работы только при наличии большого практического опыта.

Плюсов у этого принципа работы гораздо больше:

  • Шов получается высокого качества, так как в нем нет примесей.
  • Обработка металла в среде аргона предполагает умеренный нагрев металла, поэтому подходит для соединения заготовок даже очень сложных конструкций, при этом не происходит их деформации.
  • Данный принцип работы позволяет варить однородные и разнородные металлы и сплавы, с которыми не справляются все остальные методы.
  • Высокая скорость работы достигается благодаря использованию дуги с высоким температурным режимом.

Все обозначенные нами недостатки кажутся незначительными по сравнению с тем, какие возможности открывает аргонная сварка.

Аргонная сварка: принцип работы в зависимости от вида

Аргонная сварка: принцип работы в зависимости от вида

Аргонную сварку принято делить на виды исходя из степени механизации:

  • Ручная. В этом случае сварщик самостоятельно передвигает горелку и подает сварочную проволоку. При данном подходе могут применяться только неплавящиеся электроды из вольфрама.
  • Механизированная/полуавтоматическая методика, при которой проволоку подает машина, а сварщик работает непосредственно с горелкой. Чаще всего этот принцип используется при аргонной сварке нержавейки полуавтоматом. Еще один яркий пример – механизированная аргонодуговая сварка плавящимся электродом. Есть и новые, узкоспециализированные технологии в этой области. К ним относится обработка нержавейки полуавтоматом в среде углекислого газа.
  • Автоматическая аргонная сварка. Оператор дистанционно управляет автоматом: перемещает горелку и подает проволоку. Сегодня постепенно распространяются системы, которые могут работать даже без постоянного контроля человека. Чаще всего роботы выполняют сварку труб из нержавейки. Автоматическая аргонодуговая сварка с использованием неплавящегося электрода все чаще применяется в сфере промышленности.

На каком оборудовании осуществляется аргонная сварка

Принцип аргонной сварки требует использования разнообразного оборудования. Но в этом нет ничего страшного, ведь сегодня можно приобрести готовые наборы со всем необходимым, причем по доступной цене.

На каком оборудовании осуществляется аргонная сварка

Все оборудование делится на три вида:

  • Специализированное – для работы с заготовками одного типа.
  • Специальное – для промышленных предприятий, работающих с заготовками одного типоразмера.
  • Универсальное – для всех видов работ в аргоне, в том числе для соединения деталей из нержавеющей стали полуавтоматом.

Но нужно понимать, что принцип аргонной сварки совершенствуется. Так, чтобы обрабатывать листы металла с более толстыми краями и увеличить производительность, технология была доработана следующим образом:

  • Используется специальная горелка, позволяющая одновременно использовать несколько вольфрамовых электродов. Это необходимо, чтобы получать качественный шов, несмотря на высокую скорость работы.
  • Есть приспособление для нагревания проволоки.
  • Применяется пульсирующий ток – паузы в его поступлении нужны, чтобы металл успевал кристаллизоваться. Если синхронизировать движение дуги с импульсами тока, удается добиться эффективной плавки при любом положении в пространстве.

Горелка необходима для подачи электроэнергии и формирования газовой защиты, поэтому так важен ее грамотный подбор. Принцип аргонной сварки предполагает использование специальной горелки с неплавящимся вольфрамовым электродом, что очень важно, например, для сварки нержавейки.

Оборудование для аргонной сварки

Чтобы понимать принцип работы в среде аргона, важно представлять себе технические характеристики горелки:

  • допустимое значение сварочного тока/мощность;
  • тип охлаждения при сильных и слабых токах;
  • длину кабеля;
  • наличие в конструкции керамического сопла и фиксатора вольфрамового электрода;
  • универсальность, то есть возможность подключать горелку к разным системам.

Главным элементом аргоновой горелки является резервуар со штуцерами для охлаждающей жидкости. Вольфрамовый электрод подключен к электрическому кабелю аппарата, вокруг электрода идет подача инертного газа.

Как работает горелка?

  • Одновременно включаются сварочный аппарат, циркуляция охлаждающей жидкости, подача газа на горелку, в результате чего образуется защитное облако аргона.
  • Поджигается дуга, заготовки нагреваются до температуры плавления, присадочная проволока помещается в рабочую ванну.
  • Присадочная проволока и вольфрамовый электрод перемещаются вдоль шва.

1. Горелка с неплавящимся электродом.

Речь идет, преимущественно, о ручной аргонной сварке неплавящимся электродом. Такой способ является единственным возможным для обработки нержавеющей стали и химически активных металлов, то есть алюминия, титана и магния, при этом используется электрод из вольфрама.

Горелка с неплавящимся электродом

Горелка состоит из электрода, зафиксированного в токоподводящей цанге, керамического сопла, которое используется для направления аргоновой струи, системы охлаждения посредством воздуха либо воды. Диаметр электрода подбирается в соответствии с используемой силой тока.

Принцип работы при механизированной аргонной сварке несколько отличается, поэтому используется иная горелка. Она состоит из вольфрамового неплавящегося электрода с маховичком для подъема и опускания, токоподводящей сменной цанги с гайкой, позволяющей использовать разные по диаметру электроды.

Поскольку данный принцип работы дает возможность избежать появления брызг металла, вместе с керамическими соплами используются проницаемые для газа сетчатые линзы – они необходимы для образования равномерного потока газа. Отметим, что аргонная сварка неплавящимся электродом является одним из наиболее популярных подходов в непромышленных масштабах.

2. Горелка с плавящимся электродом.

Такой вариант работы обычно применяют при автоматической и полуавтоматической аргонной сварке. Дуга подается между концом сварочной проволоки и заготовкой. Могут использоваться жидкостные и воздушные системы охлаждения. Принцип выбора сопла мало отличается от применяемого в случае с неплавящимися электродами.

Принцип работы аргонной сварки инверторным способом

Аргонная сварка: принцип работы

Принцип работы аргонной сварки инверторным способом

На сегодняшний день инверторный способ является наиболее востребованным принципом аргонной сварки. Его используют как в промышленности, так и в домашних условиях. Инвертор представляет собой аппарат дуговой сварки, задача которого состоит в том, чтобы преобразовывать постоянный ток в переменный. Немаловажно, что это устройство легко подстраивается под скачки напряжения источника электричества.

Инверторный аппарат отличается небольшими размерами и весом, при этом надежен и отлично подходит для сварочных работ в любых условиях. Немаловажно, что он может использоваться для обучения новичков.

На самом деле, если сравнивать принцип инверторной аргонной сварки нержавейки и работу с другим оборудованием, то первый вариант оказывается проще и удобнее. Дело в том, что от сварщика требуется только двигать горелку вдоль шва. Радует и результат – шов получается тонким и ровным, но лишь при условии, что соблюдены все технологические требования. Работа возможна и без присадочной проволоки, если удается добиться очень плотного соединения краев заготовок.

Как выбрать режим работы, не нарушая основные принципы аргонной сварки

Качество сварного шва во многом зависит от выбора режима сварки.

Направление и полярность тока подбирают в соответствии с обрабатываемыми металлами. Так, большая часть сплавов на основе стали требует сварки полярным постоянным током: на этом основан принцип сварки нержавейки полуавтоматом и труб из нержавеющей стали. Для цветных металлов, алюминия, магния подходит переменный ток обратной полярности.

Как выбрать режим работы, не нарушая основные принципы аргонной сварки

Расход аргона зависит от скорости его подачи и внешних условий: если приходится работать на улице при сильном ветре, объем необходимого газа значительно увеличивается.

Может показаться странным, но в аргоновую газовую смесь добавляют до 5 % кислорода. В столь небольших количествах последний способствует очистке от вредных примесей, так как они вступают с ним в реакцию и просто сгорают.

Сварка алюминия по принципу аргонной сварки

Как мы уже говорили, невозможно сварить алюминий без использования аргонной среды. Дело в том, что при соприкосновении с кислородом, содержащимся в воздухе, на этом металле сразу же образуется оксидная пленка. И это становится действительно серьезной проблемой, поскольку, хотя алюминий является одним из самых сложных в обработке, его чаще всего используют для бытовых нужд.

Сварка алюминия по принципу аргонной сварки

Для плавления оксидной пленки требуется температура, значительно превышающая температуру плавления самого металла. Принцип аргонной сварки алюминия основан на том, что данный газ предупреждает процесс окисления, вытесняя кислород из сварочной рабочей ванны. В результате алюминиевая присадочная проволока легко плавится и получается качественный шов.

Принцип работы с данным металлом предполагает использование только переменного тока. Ток обратной полярности значительно поднимает температуру плавления за счет особой катодной очистки оксидной пленки. Высокая температура приводит к тому, что разрушается даже тугоплавкий вольфрам в электроде. Ток прямой полярности не позволяет пробить оксидную пленку, зато дуга получается стабильной и короткой. Как вы поняли, прочность и внешний вид шва зависят от переключения полярности.

Работа с постоянным током при аргонной обработке алюминия возможна, но только при условии использования чистого гелия в качестве инертного газа. Такой вариант обработки будет стоить гораздо дороже, а сам принцип работы более сложен с технической точки зрения.

Очень важно правильно подготовить алюминиевые заготовки, прежде чем приступать к процессу плавления. От этого непосредственно зависит качество будущего шва. Во время очистки нужно выполнить такие этапы:

  • обезжирить металл при помощи растворителя;
  • зачистить поверхность от оксидной пленки – зачистка может быть механической либо химической;
  • дать очищенным поверхностям полностью просохнуть.

Сварка меди по принципу аргонной сварки

Медь отличается от других металлов тем, что отлично противостоит ржавчине и устойчива в агрессивных средах. Поэтому для ее сварки требуется аргон высшего сорта либо в сочетании с гелием (причем аргона при этом должно быть больше). Используются плавящиеся или неплавящиеся вольфрамовые электроды, постоянный ток.

Сварка меди по принципу аргонной сварки

Предварительный нагрев до +800 °С используется в тех случаях, когда толщина медной заготовки превышает 4 мм. Присадочная проволока может быть из меди или медно-никелевого сплава. Дуга в этом случае должна обладать высокой устойчивостью.

Поскольку медь имеет высокую теплопроводность, кромки металла нужно обязательно разделывать. Если речь идет о листе до 12 мм толщиной, можно произвести только одностороннюю разделку, тогда как для более толстых кромок приходится проводить двустороннюю.

Аргонная сварка нержавейки

Аргонная сварка нержавейки

Нержавеющая сталь – материал достаточно сложный для сварочных работ. Однако применение сварки с аргонным охлаждением позволяет получить ровный и качественный шов, соединяющий детали из нержавейки. Начинать обучение данному процессу необходимо с ознакомления с различными характеристиками этого сложного для соединения сплава. Наша статья познакомит вас не только с тем, что такое аргонная сварка нержавейки, но также с особенностями и технологией работ.

Основы аргонной сварки нержавейки

Нержавеющие стали отличаются от обычных антикоррозийными свойствами, которые они получили за счет добавления в состав хрома (до 20 %), никеля, марганца, молибдена и иных компонентов. Эти примеси придают металлу различные свойства и эксплуатационные качества. Что в результате приводит к сложностям в аргонной сварке нержавейки.

Основными свойствами нержавеющих сталей являются:

  1. Теплопроводность – она в два раза меньше, чем у низкоуглеродистых сталей. Отток тепла из места аргонной сварки происходит очень медленно, в результате чего рабочая зона может перегреться, возможен пережог. Поэтому сила сварочного тока должна быть на 20 % меньше, чем при работе с иными сталями.
  2. Коэффициент линейного расширения нержавейки – высокий. Соответственно, изменение длины изделия при нагреве будет значительной, что может привести к его деформации или появлению трещин.

Для предотвращения этого необходимо делать достаточно большие зазоры между соединяемыми деталями, особенно крупными.

Важной особенностью нержавеющей стали является потеря антикоррозийных свойств в месте соединения при нагревании до температуры свыше +500 °С. Причина – в образовании на границе зерен карбидов, которые берут на себя роль анодов. Они и приводят к увеличению скорости межкристаллитной коррозии сплавов.

Для защиты нержавейки от перегрева в процессе сварочных работ используют метод охлаждения аргоном. А для хромоникелевых сплавов – технологию быстрого охлаждения шва.

Преимущества аргонной сварки нержавейки

Преимущества аргонной сварки нержавейки

При выборе варианта проведения сварочных работ по нержавеющей стали аргонная сварка имеет ряд преимуществ, которые обусловлены технологией, а именно:

  • Для получения ровного шва с равномерным проплавом на всю глубину необходимо защитить металл в процессе работы от воздействия воздуха. Это помогает сделать аргон, создающий специальную атмосферу вокруг места работы, вытесняющую N2 и O2.
  • Данный метод помогает соединить сложные по форме детали без изменения их конфигурации благодаря низкой теплопроводности нержавеющей стали. Прогреву подвергается только небольшая область около шва. С одной стороны это хорошо, но с другой – действовать надо очень осторожно, чтобы не произошел пережог.
  • Соединение происходит достаточно быстро, поскольку температура дуги высока.

Помимо достоинств, аргонная сварка имеет и недостатки. Для ее проведения необходимо сложное и дорогостоящее оборудование, а также определенный опыт работы, знание материала и процесса.

Как настроить аргонную сварку по нержавейке: нюансы подготовки

Как настроить аргонную сварку по нержавейке: нюансы подготовки

Важным этапом, влияющим на конечный результат, является процесс подготовки нержавейки для последующей аргонной сварки:

  1. Тщательно обработать края деталей металлической щеткой, наждачной бумагой или провести автоматическую шлифовку.
  2. Обезжирить ацетоном, спиртом или бензином.
  3. Расположить свариваемые детали с зазором на расширение.
  4. Подогреть края деталей до +200…+300 °С при проведении работ по тонкой нержавейке. Это поможет снизить напряженность металла и избежать трещин.

Следующий этап – подбор присадочного материала или проволоки. Легирующих добавок в ней должно быть больше, чем в предназначенной для сваривания нержавейке. Сечение же проволоки подбирается исходя из толщины соединяемых деталей.

Сечение проволоки подбирается исходя из толщины соединяемых деталей

Технология аргонной сварки неплавящимся электродом из вольфрама

Технология аргонной сварки неплавящимся электродом из вольфрама

С помощью вольфрамового электрода аргонной сваркой соединяют детали с тонкими стенками (тонкостенные). Метод этот называется TIG-сваркой.

Для работы применяют два вида аппаратов: постоянного или переменного тока. Через горелку со вставленным электродом из вольфрама подается аргон. Шов формируется за счет плавки присадочной проволоки, которую подают вручную. Горелку перемещают также вручную, держа строго под углом 70–80° к шву.

Движение горелки идет вдоль линии соединения, без поперечных перемещений. Таким образом формируется стабильная сварочная ванна, исключающая попадание атмосферного кислорода и взаимодействие его с металлом. Рекомендуется одновременная подача аргона как с лицевой, так и с изнаночной стороны шва. Несмотря на больший расход газа, качество соединения будет выше.

Электрод не должен соприкасаться с поверхностью нержавейки. Для разжигания дуги используют угольные или графитовые пластинки, а затем ее переносят на металл. Делается это для предотвращения оплавления электрода и отсутствия следов на сварочном шве.

Важным этапом работы является настройка сварочного аппарата. Покажем это на примере соединения деталей толщиной в 1 мм. Используется аппарат постоянного тока с прямой полярностью (на электрод подается «+», а на детали «-»). Выбирается ток от 30 до 50 А с напряжением до 28 В. Работа проводится со скоростью от 12 до 28 см в минуту. За это время израсходуется от 3 до 5 л аргона. Присадочная проволока выбирается с диаметром от 0,8 до 1,6 мм, в зависимости от различных условий.

Угол наклона горелки – от 70° до 80°, угол подачи проволоки – от 10° до 15°. Для улучшения качества шва, а также увеличения срока службы вольфрамового электрода, аргон перекрывают спустя 10–15 секунд после остановки работы. При этом охлаждение шва и электрода происходит быстрее, а расход аргона увеличивается незначительно.

Аргонная сварка нержавейки полуавтоматом

Аргонная сварка нержавейки полуавтоматом

Аргонная сварка полуавтоматом значительно упрощает процесс, увеличивает его скорость, а также повышает качество сварочного шва. Чаще полуавтомат используют для соединения деталей большой толщины.

Существует несколько особенностей проведения аргонной сварки нержавейки с помощью полуавтомата:

  • использование никельсодержащей проволоки;
  • расходование вместе с аргоном углекислого газа при соединении толстых деталей – кромки шва смачиваются газом, уменьшая нагрев, что ведет к смягчению всего процесса;
  • применение трех способов соединения: с короткой дугой, с технологией струйного переноса или импульсный метод.

Считается, что наибольший контроль процесса происходит при импульсной сварке, когда подача проволоки в рабочую зону происходит толчками. При этом снижается ее расход, что немаловажно по причине высокой стоимости. Сокращается площадь нагревания металла. Уменьшается его разбрызгивание.

Это приводит к снижению времени последующей окончательной обработки поверхностей рядом со сварочным швом, поскольку брызги расплавленного металла отсутствуют.

Применение двух других способов ограничивается толщиной соединяемой нержавейки. Струйный перенос используют для сваривания деталей большой толщины, короткая же дуга применяется к тонким изделиям.

Какое оборудование применяют для аргонной сварки нержавейки

Какое оборудование применяют для аргонной сварки нержавейки

Для аргонной сварки нержавейки необходимы:

  • Инверторный источник сварочного тока (сварочный инвертор) – является источником питания сварочной дуги, обеспечивающим ее стабильное горение. Его выбор зависит от объема работ и свойств металла. Специалисты советуют для нержавейки применять источник, функционирующий на выпрямленном токе.
  • Осциллятор – электронное устройство, поддерживающее и стабилизирующее сварочную дугу при использовании неплавящегося электрода из вольфрама.
  • Горелка и токопроводящий узел – включают форсунку для газа и неплавящийся электрод.
  • Аргон или его смеси с иными газами – подается из баллонов, где находится под давлением.
  • Неплавящиеся электроды – в настоящее время на рынке широко представлены электроды для аргонной сварки нержавейки, стойкой к коррозии. Выбор зависит от шва и свойства материала.
  • Присадочная проволока – выбирается в зависимости от марки нержавеющей стали.
  • Спецодежда – роба, рукавицы и маска. А также средства для обработки нержавейки – обезжириватель и металлическая щетка.

Настройка аппарата и тонкости аргонной сварки труб из нержавейки

Настройка аппарата и тонкости аргонной сварки труб из нержавейки

Создание трубопроводов из нержавейки требует соединения его частей. Особенностью таких сварочных работ является необходимость защиты шва газом внутри трубы.

Для этой цели используют метод заглушки одного конца соединяемой трубы подручными материалами:

  • бумагой;
  • поролоном;
  • резиной;
  • тканью или пр.

В заглушку вставляют трубку, необходимую для подачи аргона. После чего конструкция закрепляется скотчем. Аргон подают под небольшим давлением, которое определяется путем визуального осмотра. Главным критерием служит отсутствие расплавленного металла в выдуваемом из трубы воздухе.

Самодельная, но удобная конструкция поможет сделать сварочный шов ровным и качественным.

Для соединения нержавейки толщиной в 3 мм аппарат настраивают на ток в 65 А. Заварка кратера шва должна длиться 3 секунды. А подача аргона после завершения работы – 4 секунды.

Итоговые рекомендации специалистов по аргонной сварке нержавейки

Итоговые рекомендации специалистов по аргонной сварке нержавейки

Использование аргонной сварки для нержавейки требует опыта и знаний, которые можно получить у специалистов в данной области – профессиональных сварщиков.

Вот несколько их рекомендаций:

  1. Работать нужно, держа электрод на самом малом расстоянии от металла, но не прикасаясь к нему. При этом образуется минимально возможная дуга. Делается это для улучшения качества шва. Поскольку длинная дуга не будет прогревать шов по глубине, в результате чего он будет расширяться.
  2. Подавать проволоку необходимо ровно, стараясь держать ее в зоне действия аргона. Это поможет избежать окисления при ручной аргонной сварке.
  3. Оценить качество проплава можно по форме наплывов, появляющихся в результате плавки присадочной проволоки. Вытянутая вдоль шва форма говорит о хорошем качестве. А круговой или овальный наплыв расскажет о недостаточном или неполном проплавлении.
  4. Постепенно снижать величину тока, приближаясь к окончанию шва. Необходимо избегать резкого отрыва дуги для повышения уровня защиты горячего шва и, соответственно, его качества.

Метод аргонной сварки хоть и считается сложным, однако таковым не является. Он не намного труднее обычного. Его можно освоить в достаточно короткие сроки, а профессионализм придет с опытом. Стоимость же дополнительного оборудования с лихвой окупится возможностью, помимо нержавейки, варить медные, алюминиевые или бронзовые детали, а также их сплавы.

Сварка нержавейки аргоном: способы, технология


Сварка нержавейки аргоном необходима, когда речь идет о соединении тонких деталей. Для качественного шва важно использовать низкий уровень тока, правильно выставить зазор между деталями и своевременно охладить место стыка.

Аргон используется для изоляции свариваемой области от действия кислорода, иначе место соединения станет пористым, а сварной шов не будет надежным. И это еще не все нюансы процесса. Более подробно о сварке нержавейки аргоном читайте в нашем материале.

Оборудование и расходные материалы для сварки нержавейки аргоном

Чтобы выполнить ручную сварку нержавейки аргоном (TIG), потребуется оборудование: инвертор, осциллятор, баллон аргона, горелка, провода и шланги.

Из перечисленных компонентов расходными материалами являются проволока и газ аргон. В качестве присадки используют такой же металл, на котором выполняется шов. Обычно таким образом соединяют детали из металла типа 304, а в качестве присадки используют пруток Y308.

Оборудование и расходные материалы для сварки нержавейки аргоном

В процессе применяют разные виды защитных газов, но аргон среди прочих является основным видом для данной технологии, поэтому она носит название аргонодуговой сварки.

Чтобы рассчитать расход газа при выполнении сварного шва, нужно знать, каков материал соединяемых деталей. При обработке алюминиевых компонентов уходит до 20 литров газа в минуту, при соединении титановых деталей – до 50 литров, при стыковке частей из нержавеющей стали – только 8 литров в минуту.

С целью экономии аргона используют линзу, которую прикрепляют на горелку. Устройство работает за счет сеточки. Она также эффективно защищает сварочную ванну.

Линзы для горелок различаются по размерам, начиная с номера 4 по 10. Самую качественную защиту осуществляют элементы с большим номером. Маленькие линзы помогают выполнить работу в сложных условиях.

Для сварочных операций используют универсальные вольфрамовые электроды. Элемент выдвигается вперед на 10 мм при установленных линзах. В зависимости от параметров соединяемых деталей применяют разные диаметры неплавящегося стержня:

  • Сварка тонкой нержавейки до 1,6 мм аргоном производится с применением вольфрамового стержня диаметром 1 мм с силой сварочного тока 50 ампер.
  • При значительной толщине металла используют ток в 50 ампер и электрод диаметром 1,6 мм.

Технология сварки нержавеющей стали аргоном

Последовательность действий рабочего при сварке аргоном не отличается от привычной процедуры.

Технология сварки нержавеющей стали аргоном

Хотя особенности тоже существуют.

  • Движение вольфрамового электрода и присадочной проволоки осуществляется вдоль соединяющего шва. Нужно следить, чтобы материал неплавящегося стержня не выходил из защитного слоя газа аргона.
  • Для улучшения качества сварного шва аргоном защищают и обратную сторону металла, что увеличивает трафик газа.
  • К материалу соединяемых деталей не прикасаются вольфрамовым электродом. С этой целью розжиг дуги делают на графитовой или угольной пластине, потом переносят на свариваемые детали. Также сваривают детали бесконтактным способом при помощи осциллятора.
  • После окончания работы по соединению деталей нельзя сразу выключать газ, иначе вольфрамовый электрод будет окисляться, а сварочный шов быстро остынет. Нужно подождать 10–15 секунд, после чего выключать аргон.

Для улучшения качества и увеличения скорости работ, вы всегда можете воcпользоваться нашими верстаками собственного производства от компании VTM.

Присадочная проволока для сварки нержавейки аргоном

Нержавеющая сталь – это высоколегированный, устойчивый к коррозии материал. Его характерные свойства определяет добавление в него хрома (Cr). В процентном выражении в нержавейке содержится от 12 до 20 % химического элемента.

Присадочная проволока для сварки нержавейки аргоном

Проволоку сплошного сечения производят из стали с добавлением легирующих компонентов: никель (Ni), хром (Cr), молибден (Mo), ниобий (Nb), марганец (Mn), титан (Ti), железо (Fe). Именно они делают материал стойким к различным повреждениям и воздействию неблагоприятных факторов окружающей среды.

Для сварки нержавейки аргоном полуавтоматом используют стали с хромом, никелем, молибденом:

  • Хром. Химический компонент, который определяет свойства сплава. Он образует оксидную пленку, защищающую сталь от коррозионных воздействий. Благодаря хрому материал отличается прочностью, вязкостью, текучестью и ковкостью. Большое количество химического элемента делает металл хрупким в местах соединений. Это требует от сварщика грамотного выбора режима проведения работ и соблюдения всех правил выполнения швов.
  • Никель. Химический элемент увеличивает пластичность, вязкость и коррозионную устойчивость стали. Сварочные работы выполняются легко.
  • Молибден. Элемент улучшает характеристики металла: прочность, твердость, теплоустойчивость, способность переносить удары и высокие температуры. Сталь с добавлением молибдена сильно окисляется во время сварки и выгорает.

Дальше расскажем, какой пруток для сварки нержавейки аргоном выбрать.

Нержавеющая сварочная проволока ER308Lsi

Эта хромоникелевая проволока обладает коррозионной устойчивостью и предназначена для соединения деталей из нержавеющей стали с Cr – 18 %, Ni — 8 % и кремнием в составе в среде защитных газов.

Аналогами материала являются Св-04Х19Н9, Св-01Х18Н10, Св-06Х19Н9Т. Проволоку применяют в нефтяной, машиностроительной, химической и пищевой промышленности. Материал подходит для изготовления емкостей, бойлеров, труб.

Нержавеющая сварочная проволока ER309Lsi

Данная хромоникелевая проволока обладает коррозионной устойчивостью и используется для полуавтоматической сварки деталей из разных сталей с низкими легирующими свойствами.

Она также применяется для работ с металлами с содержанием Cr — 24 %, Ni — 13 % и большим количеством кремния при защите аргоном. При этом используется постоянный ток с обратной полярностью DC+.

Аналогами материала являются Св-07Х25Н13, Св-08Х25Н13БТЮ, Св-06Х25Н12ТЮ. Проволока используется на химическом и пищевом производствах, строительстве нефтехимических машин, в работе с сосудами под давлением, с оборудованием для газотранспортной сферы, с нефтепроводами.

Нержавеющая сварочная проволока ER316Lsi

Хромоникелевая проволока с антикоррозийными свойствами для полуавтоматических сварочных работ деталей из нержавеющей стали с содержанием Cr – 18 %, Ni — 8 %, Mo — 3 %. Металлы с такими компонентами очень устойчивы к разложению в кислотной и хлорсодержащей среде.

Аналогами проволоки являются Св-04Х19Н11М3, Св-06Х20Н11МЗТБ. Компонент применяется в нефтяной, химической, машиностроительной отраслях.

Нержавеющая сварочная проволока ER321Lsi

Хромоникелевая проволока с хорошей коррозионной устойчивостью предназначена для полуавтоматической сварки элементов из стали марок 08Х18Н10, 12Х18Н9Т, 08Х18Н10Т (304, 308, 321, 347) и других с использованием защитных газов (Ar) и постоянного тока DC.

Материал, легированный титаном, устойчив к межкристаллической коррозии и обеспечивает высокое качество сварного шва.

Аналогами проволоки являются Св-06Х19Н9Т, Св-12Х18Н10Т, Св-04Х19Н9. Она используется в нефтехимической и пищевой промышленности, в энергетической сфере.

Выбор нержавеющей сварочной проволоки

Выбор присадки для сварки нержавейки аргоном подводят с учетом:

  • химического содержания, который должен быть аналогичным составу соединяемых деталей;
  • внешнего вида поверхности, который отличается отсутствием трещин, расслоений, других включений;
  • плотности намотки проволоки без скрученных участков.

Выделяют четыре вида нержавеющей стали, разных по химическому наполнению:

Читайте также: