Технология igbt в сварочном инверторе что это такое

Обновлено: 04.10.2024

Сварочные инверторы всё более уверенно занимают нишу производственного сварочного оборудования, приходя на смену традиционной трансформаторной технике. В том, что этот тренд носит глобальный характер, сомневаться не приходится.

Инверторное оборудование объективно успешней справляется со стоящими перед ним задачами.

Преимущества инверторной техники

Превосходство сварочных инверторов над классическими преобразователями трансформаторного типа просматривается как в технологическом, так и в экономическом аспекте.

Если вкратце перечислить преимущества, приобретаемые при внедрении инвертора, получится примерно следующее:

  • более высокий коэффициент полезного действия, превышающий 90%, что предопределяет само устройство сварочного инвертора, характеризуемое отсутствием магнитных потерь в стальном сердечнике трансформатора, присущим «классике»;
  • способность работать в условиях изменения уровня питающего напряжения в широких пределах, не снижая при этом технологических параметров;
  • возможность очень точной установки тока сварки с цифровой индикацией его величины и жёстким поддержанием уровня в процессе сварки;
  • кардинально сниженные габаритные размеры и вес конструкции;
  • целый ряд совершенно новых возможностей, присущих только инверторным аппаратам, вот только некоторые из них.


К новым возможностям относится наличие специфических функций, среди которых hot start, anti sticking, arc force, и других, делающих процесс сварки доступным даже новичку. Есть возможность использования электродов, предназначенных для сварки, как переменным, так и постоянным током.

Что касается обычно называемых недостатков, присущих данному виду оборудования, то в первую очередь, речь идёт о сравнительно высокой цене этих приборов.

По этому поводу можно сказать следующее. Вспомните, как изменялись цены компьютерных и мобильных новинок буквально в течение нескольких лет. Дальнейшее совершенствование технологии и увеличение массовости производства неизбежно приведут к значительному снижению цен на сварочные инверторы.

Пояснения на схеме

Принцип работы сварочного аппарата, построенного на основе инвертора, иллюстрирует схема.


Структурная схема инвертора для сварки начинается с обозначения входящего тока и выпрямителя. Сетевое напряжение выпрямляется мостом из мощных диодов, установленных на радиаторы для рассеивания выделяющегося тепла.

Форма выпрямленного напряжения, имеющая ярко выраженные пульсации, схематически изображена в квадрате схемы, соответствующем выпрямителю.

Перед входом в инвертор, в общем-то, представляющем собой преобразователь напряжения, пульсации фильтруются с помощью конденсаторов большой ёмкости (на структурной схеме не показаны).


В инверторе, поступающее постоянное напряжение преобразуется в переменное, имеющее высокую частоту. Преобразование осуществляется за счёт переключения с большой частотой мощных ключевых полевых транзисторов, созданных по IGBT технологии.

При работе транзисторов выделяется большая мощность, поэтому их монтируют на массивных алюминиевых радиаторах. В свою очередь, работой транзисторов управляет высокочастотный генератор, основу которого составляет микросхема контроллера, работающего по принципу широтно-импульсного модулирования.

В этой части, принципиальная схема сварочного инвертора повторяет схемы импульсных блоков питания, используемых в радиоэлектронной аппаратуре с прошлого века.

Полученные в результате инвертирования высокочастотные импульсы поступают на трансформатор, где происходит снижение их амплитуды до уровня, на котором будет осуществляться сварка.

Далее, трансформированное высокочастотное напряжение окончательно фильтруется конденсаторами и поступает на выходные клеммы сварочного инвертора.

Частота генерируемого при работе инвертора тока достигает значения нескольких десятков килогерц. Именно высокая частота лежит в основе принципа работы аппарата инверторной сварки.

Благодаря принципу высокочастотного преобразования удалось добиться снижения веса и уменьшения размеров сварочных аппаратов в несколько раз.

В основном это обусловлено очень малой массой и габаритами высокочастотных трансформаторов, конденсаторов и дросселей.

Управление током


Регулирование сварочного тока инвертора производится посредством электронного регулятора с обратной связью, изображённого на схеме. С помощью потенциометра, расположенного на лицевой панели сварочного инвертора, выбирается требуемая величина тока сварки.

При вращении ручки потенциометра, устанавливается некий уровень опорного напряжения на входе логических элементов, построенных на операционных усилителях.

Сигнал, поступающий по линии обратной связи с датчика тока, расположенного на выходе аппарата, сравнивается компаратором с уровнем заданного регулирующим потенциометром напряжения.

При несовпадении уровней напряжения задающей цепи и сигнала датчика тока, происходит изменение амплитуды управляющего импульса, поступающего на контроллер.

При этом происходит изменение скважности импульсов, генерируемых контроллером, что вызывает изменение режима переключения транзисторов и в конечном итоге, величины тока сварки.

То есть, принцип регулирования заключается в том, что схема всегда стремится поддерживать соответствие между значениями заданного и фактического тока, что обеспечивает его стабильность.

В качестве контроллера, формирующего регулируемые сигналы широтно-импульсной модуляции, обычно применяется микросхема TL494, производимая американской фирмой Texas Instruments, либо её аналоги.

Приведённая структурная схема показывает только принцип работы и взаимодействия отдельных функциональных блоков. Детализованная электросхема каждого типа инверторов может иметь индивидуальные особенности.

Автоматические функции сварочного оборудования

Чтобы понять, как работают инверторные сварочные аппараты в различных ситуациях, следует ознакомиться с принципом работы некоторых их функций.

ARC FORCE

Эта функция призвана осуществлять форсирование дуги. В процессе работы сварщика иногда капля расплавленного электрода, не оторвавшись вовремя и не попав в сварочную ванну, зависает, уменьшая зазор.

Это может грозить прилипанием электрода к детали. Принцип работы arc force заключается в кратковременном увеличении тока, который «сдувает» каплю металла.

ANTI STICK

В начале работы, в процессе розжига дуги, электрод может прилипнуть к заготовке. Принцип функции anti stick состоит в том, что в этот момент происходит резкое снижение сварочного тока. После отрыва электрода режим работы аппарата возвращается к норме.

HOT START

Работа этой опции помогает легко зажечь электрическую дугу. Принцип данной автоматической функции прост. При разжигании дуги, в момент отрыва электрода от заготовки, происходит кратковременное увеличение значения сварочного тока, что способствует более надёжному розжигу дуги.

Все функции способствуют более быстрой и надежной работе инвертора, что в итоге приводит к высокому качеству сварного шва.

Что выбрать: MOSFET или IGBT -инвертор?

71

Не нужно на 100% разбираться в премудростях электротехники, чтобы высказать мнение по теме. Заголовок «MOSFET или IGBT?» напоминает старое соревнование форматов: VHS или DVD? Кто же победит? И пусть скажут, сравнение не корректное. Но, DVD формат великолепный, качество звука и изображения замечательные, а мы все так привыкли к старому доброму VHS…

Для тех, кто не понимает о чем идет речь, поясним. На сегодняшний день существует две технологии изготовления сварочных инверторов,

  • первая основана на базе полевых транзисторов с изолированным затвором (MOSFET) и пользуется успехом на правах «старого, работающего и проверенного варианта»
  • вторая — на базе биполярных транзисторов с изолированным затвором (IGBT). Это инновационная технология, новое поколение и тому подобное.

Возникает закономерный вопрос: что же выбрать старое, проверенное временем, или относительно новое, но более технологичное?

Попробуем привести пару доводов и, как говорится, ближе к «телу»…

Что не говори, а IGBT занимают меньший объем и при этом позволяют получить более высокую силу тока на выходе, они меньше нагреваются. Разве это не аргумент в пользу IGBT? Возражения же заключаются в том, что схемы IGBT покамест не идеально продуманы и т.д., разработчикам не было времени на это и они звучат «натянуто».

Конечно, если покупать инвертор для бытовой сварки, то не так уж важно, какие у него транзисторы внутри. Вообще не важно, что внутри. Главное, чтобы электрод поджигался нормально, дуга не прыгала туда-сюда, чтобы электрод не залипал. Так же, желательно, чтобы инвертор работал при пониженном напряжении в сети, не боялся забросов напряжения, чтобы желтая лампа перегрева редко зажигалась.

Если речь идет о небольших объемах бытовых работ, то практически любой инвертор в этом станет вашим надежным другом и товарищем, та же Ресанта или Сварог, или Фубаг, или отечественный Форсаж и т.д. и т.п.

Но что, если нужен профессиональный аппарат, когда варить придется целый день. Наше мнение, здесь лучше IGBT. Почему? Возьмем для примера сварочный аппарат РICO 180— это же прелесть, а не сварочник! Приведем в качестве примера его систему охлаждения. Она интеллектуальная и включается только тогда, когда транзисторы нагреваются. А в РICO даже после 15 и более минут сварки на небольших токах вентилятор не шелохнется. Это значит, что схемы холодные, корпус аппарата холодный. И все это IGBT, они греются менее интенсивно, чем MOSFET и на более высоких токах. Ну и что мне с этого, скажете Вы? Очень просто. Чем меньше работает вентилятор, тем лучше! Особенно если Вы работаете в запыленных помещениях. Основной враг инвертора — это пыль. Она является основной причиной досрочного выхода инверторов из строя. Соответственно, чем меньше пыли затягивается в сварочный аппарат, тем лучше! А это значит, чем дольше не включаются кулеры, тем лучше! Получить это можно только с IGBT.

Несомненный плюс так же состоит в том, что достигается высокая мощность при еще более малом весе. Каждый грамм играет роль, если приходится целый день носить инвертор на плече.

Минус в свое время был в дороговизне ремонта IGBT и невозможности подчас найти запчасти. Но время идет, техника совершенствуется, а то, что было раньше дорогим и недоступным, становится обыденным и легкозаменяемым! Так что наше мнение, будущее за новыми технологиями. А Вы как думаете? Стоит с этим согласиться?

Применение igbt транзисторов в инверторе

Применение высоковольтных мощных полупроводников позволило создавать компактные производительные сварочные инверторы. Последним словом в этой области после MOSFET инверторов стали сварочные аппараты на IGBT транзисторах.

Полевые полупроводники

Используемые в инверторах полупроводники по MOSFET технологии – это полевые силовые транзисторы с изолированным затвором. Управление полупроводником осуществляется напряжением, в отличие от биполярных транзисторов, управляемых током. Канал ключа имеет высокую проводимость 1 мОм. В закрытом виде у них огромное входное сопротивление.


Изначально полевые полупроводники использовались и до сих пор применяются как ключи. В схемах импульсных источников питания применяются полевики с индуцированным затвором. В таком исполнении при нулевом напряжении на затвор-исток канал закрыт.

Для открытия ключа требуется подать потенциал определенной полярности. Для управления ключом не требуется силовых источников. Данные полупроводники часто используются в источниках питания и инверторах.

Биполярный прибор

IGBT – это биполярный транзистор с изолированным затвором, применяемый в инверторе. Фактически он состоит из двух транзисторов на одной подложке. Биполярный прибор образует силовой канал, а полевой является каналом управления.

Соединение полупроводников двух видов позволяет совместить в одном устройстве преимущества полевых и биполярных приборов. Комбинированный прибор может, как биполярный, работать с высокими потенциалами, проводимость канала обратно пропорциональна току, а не его квадрату, как в полевом транзисторе.

При этом IGBT транзистор имеет экономичное управление полевого прибора. Силовые электроды называются, как в биполярном, а управляющий получил название затвора, как в МОП приборе.

IGBT транзисторы для сварочных инверторов и силовых приводов, где приходится работать при высоких напряжениях, стали использовать, как только отладили технологию их производства. Они сократили габариты, увеличили производительность и мощность инверторов. Иногда они заменяют даже тиристоры.

В IGBT инверторе для обеспечения работы мощных переключателей применяются драйверы – микросхемы, усиливающие управляющий сигнал и ускоряющие быструю зарядку затвора.

Некоторые модели IGBT транзисторов работают с напряжением от 100 В до 10 кВ и токами от 20 до 1200 А. Поэтому их больше применяют в силовых электроприводах, сварочных аппаратах.

Полевые транзисторы больше применяют в импульсных источниках и однофазных сварочных инверторах. При токовых параметрах 400-500 В и 30-40 А они имеют лучшие рабочие характеристики. Но так как IGBT приборы могут применяться в более тяжелых условиях, их все чаще применяют в сварочных инверторах.

Применение в сварке


Простой сварочный инвертор представляет собой импульсный источник питания. В однофазном инверторном источнике питания переменный ток напряжением 220 В и частотой 50 или 60 Гц выпрямляется с помощью мощных диодов, схема включения мостовая.

Затем инвертор преобразует постоянное напряжение в переменное, но уже высокой частоты (от 30 кГц до 120 кГц). Проходя через понижающий высокочастотный трансформатор (преобразователь), напряжение понижается до нескольких десятков вольт. Потом этот ток преобразуется обратно в постоянный.

Все преобразования необходимы для уменьшения габаритов сварочного аппарата. Традиционная схема сварочного инвертора получалась надежной, но имела очень большие габариты и вес. Кроме этого, характеристики сварочного тока с традиционным источником питания были значительно хуже, чем у инвертора.

Передача электроэнергии на высокой частоте позволяет использовать малогабаритные трансформаторы. Для получения высокой частоты постоянный ток преобразуется с помощью высоковольтных, мощных силовых транзисторов в переменный частотой 50-80 кГц.

Для работы мощных транзисторов напряжение 220 В выпрямляется, проходя через мостовую схему и фильтр из конденсаторов, который уменьшает пульсации. На управляющий электрод полупроводника подается переменный сигнал с генератора прямоугольных импульсов, который открывает/закрывает электронные ключи.

Выходы силовых транзисторов подключаются к первичной обмотке понижающего трансформатора. Благодаря тому, что они работают на большой частоте, их габариты уменьшаются в несколько раз.

Силовой инверторный блок

Переменное напряжение 220 В – это некоторое усредненное значение, которое показывает, что оно имеет такую же энергию, как и постоянный ток в 220 В. Фактически амплитуда равна 310 В. Из-за этого в фильтрах используются емкости на 400 В.

Мостовая выпрямительная сборка монтируется на радиатор. Требуется охлаждение диодов, поскольку через них протекают большие токи. Для защиты диодов от перегрева на радиаторе имеется предохранитель, при достижении критической температуры он отключает мост от сети.

В качестве фильтра используются электролитические конденсаторы, емкостью от 470 мкФ и рабочим напряжением 400 В. После фильтра напряжение поступает на инвертор.

Во время переключения ключей происходят броски импульсного тока вызывающие высокочастотные помехи. Чтобы они не проникали в сеть и не портили ее качество, сеть защищают фильтром электромагнитной совместимости. Он представляет собой набор конденсаторов и дросселя.

Сам инвертор собирается по мостовой схеме. В качестве ключевых элементов применяются IGBT транзисторы на напряжения от 600 В и токи соответствующие данному инвертору.

Они тоже с помощью специальной термопасты монтируются на радиаторы. При переключениях этих транзисторов возникают броски напряжения. Чтобы их погасить применяются RC фильтры.

Полученный на выходе электронных ключей переменный ток поступает на первичную обмотку высокочастотного понижающего трансформатора. На выходе вторичной обмотки получается переменный ток напряжением 50-60 В.

Под нагрузкой, когда идет сварка, он может выдавать ток до нескольких сотен ампер. Вторичная обмотка обычно выполняется ленточным проводом для уменьшения габаритов.

На выходе трансформатора стоит еще один мощный диодный мост. С него уже снимается необходимый сварочный ток. Здесь используются быстродействующие силовые диоды, другие использовать нельзя, потому что они сильно греются и выходят из строя. Для защиты от импульсных бросков напряжения используются дополнительные RC цепи.

Мягкий пуск

Для питания блока управления инвертора применяется стабилизатор на микросхеме с радиатором. Напряжение питания поступает с главного выпрямителя через резистивный делитель.

При включении сварочного инвертора конденсаторы начинают заряжаться. Токи достигают таких больших величин, что могут сжечь диоды. Чтобы этого не произошло, используется схема ограничения заряда.

В момент пуска ток проходит через мощный резистор, который ограничивает пусковой ток. После зарядки конденсаторов резистор с помощью реле отключается, шунтируется.

Блок управления и драйвер

Управление инвертором осуществляет микросхема широтно-импульсного модулятора. Она подает высокочастотный сигнал на управляющий электрод биполярного транзистора с изолированным затвором. Для защиты силовых транзисторов от перегрузок дополнительно устанавливаются стабилитроны между затвором и эмиттером.

Для контроля напряжения сети и выходного тока используется операционный усилитель, на нем происходит суммирование значений контролируемых параметров. При превышении или понижении от допустимых значений срабатывает компаратор, который отключает аппарат.

Для ручной регулировки сварочного тока предусмотрен переменный резистор, регулировочная ручка которого выводится на панель управления.

Сварочное оборудование на IGBT транзисторах имеет наилучшие характеристики по надежности. По сравнению с полевыми ключами биполярные транзисторы с изолированными затворами имеют преимущество больше 1000 В и 200 А.

При использовании в бытовых приборах и сварочных инверторах для домашнего пользования первое место до недавнего времени оставалось за сварочным оборудованием с MOSFET полупроводниками. Эта технология давно используется и хорошо отработана. Но у нее нет перспектив роста, в отличие от оборудования на IGBT транзисторах.

Новые модели уже ничем не уступают устройствам с полевыми приборами и на малых напряжениях. Только по цене первенство остается за аппаратами с полевыми транзисторами с индуцированным затвором.

Проверка боем: применение IGBT от ST в составе инверторов сварочных аппаратов MMA


STMicroelectronics выпускает несколько серий IGBT-транзисторов и мощных быстродействующих диодов, идеально подходящих для создания инверторов сварочных аппаратов. Сверхсовременные IGBT серий V, H, HB, M и диоды серии W отличаются малыми потерями на переключения и низким напряжением насыщения. Эти замечательные качества были подтверждены на практике при испытании MMA-инверторов мощностью 4 и 6 кВт.

Рынок сварочного оборудования представляет собой быстроразвивающуюся отрасль силовой электроники. На сегодня существует множество типов сварочных аппаратов:

  • с различными технологиями – ручная дуговая сварка плавящимся электродом (manual metal arc, ММА), ручная сварка в среде защитных газов (tungsten inert gas, TIG), полуавтоматическая сварка в среде инертных (metal inertgas, MIG) или активных газов (metal active gas, MAG);
  • с различными источниками тока – трансформаторные, инверторные;
  • с постоянным выходным током (например, для сварки стали) или с переменным током (например, для сварки алюминия).

Наиболее распространенным типом сварочной технологии является MMA. Она отличается простотой и применяется как в профессиональных, так и в бытовых аппаратах. Структура такого сварочного аппарата достаточно проста и состоит из источника тока, выходного выпрямителя (опционально) и системы управления (рисунок 1).

Рис. 1. Упрощенная структурная схема сварочного аппарата

Рис. 1. Упрощенная структурная схема сварочного аппарата

Источник тока может быть реализован на базе мощного сетевого трансформатора (трансформаторный аппарат), либо на базе инвертора (инверторный аппарат). Главными достоинствами трансформаторных аппаратов являются простота и максимальная надежность, а недостатками – большие габариты, грубое регулирование и низкое качество сварки. Инверторные аппараты, использующие современные полупроводниковые силовые ключи, не имеют этих недостатков.

Основными компонентами мощных инверторов являются IGBT-транзисторы и быстродействующие диоды. Компания STMicroelectronics выпускает силовые электронные компоненты, идеально подходящие для построения сварочных аппаратов [1]:

  • IGBT серии V со сверхнизкой энергией выключения, работающие с напряжениями до 600 В на частотах до 120 кГц;
  • IGBT серии HB с малым напряжением насыщения и низкой энергией выключения, работающие с напряжениями до 650 В на частотах до 50 кГц;
  • IGBT серии H с низкой энергией выключения, работающие с напряжениями до 1200 В на частотах до 35 кГц;
  • IGBT серии M с малым напряжением насыщения, работающие с напряжениями до 1200 В на частотах до 20 кГц;
  • диоды серии W с малым прямым падением напряжения и минимальным временем восстановления.

Требования к IGBT в составе сварочных инверторов

Принцип работы инверторного сварочного аппарата достаточно прост (рисунок 2). Питающее напряжение сети выпрямляется и поступает на вход инвертора. Инвертор преобразует постоянное напряжение в переменное, которое передается в нагрузку через высокочастотный силовой трансформатор. Работу инвертора контролирует система управления (СУ). Увеличивая и уменьшая длительности управляющих импульсов, можно изменять передаваемую в нагрузку мощность. Кроме основных блоков, схема содержит и вспомогательные: корректор коэффициента мощности (ККМ) и выходной выпрямитель.

Рис. 2. Структура инверторного сварочного аппарата

Рис. 2. Структура инверторного сварочного аппарата

Основным блоком инверторного сварочного аппарата является непосредственно инвертор, который может быть реализован по любой из известных топологий. Среди наиболее часто используемых схем можно отметить push-pull, мостовую, полумостовую, полумостовую несимметричную (косой полумост).

Несмотря на многообразие топологий, требования к IGBT оказываются примерно одинаковыми:

  • Высокое рабочее напряжение. Для бытовой сети рейтинг напряжения транзисторов должен быть 600 В и выше.
  • Большие коммутационные токи. Средние значения достигают десятков ампер, пиковые – сотен ампер.
  • Высокая частота переключений. Увеличение частоты позволяет снизить габариты трансформатора и индуктивности выходного фильтра.
  • Малое значение энергии на включение (Eвкл) и выключение (Eвыкл) для минимизации потерь на переключения.
  • Низкое значение напряжения насыщения Uкэ нас. для минимизации кондуктивных потерь.
  • Стойкость к жесткому режиму коммутации. Инвертор работает с индуктивной нагрузкой.
  • Стойкость к короткому замыканию. Критично для мостовой и полумостовой схем.

К вышесказанному стоит добавить, что, во-первых, при выборе транзисторов для инвертора следует обращать внимание не только на рейтинги токов и напряжений, но и на параметры, определяющие мощность потерь. Во-вторых, требования к низкому напряжению насыщения и высокой рабочей частоте оказываются противоречивыми.

IGBT производства STMicro­electro­nics сочетают в себе уникальные характеристики: способны коммутировать большую мощность, отличаются высоким быстродействием, при этом – сохраняют низкое значение Uкэ нас. Это стало возможным благодаря использованию новейших технологий.

Мощности потерь и особенности технологии производства IGBT от ST

Основный причиной ограничения мощности инвертора является перегрев IGBT. Он является следствием потерь мощности, рассеиваемой в виде тепла.

Как известно, суммарные потери мощности в IGBT (Pd) складываются из двух составляющих: потери проводимости (Pконд, кондуктивные потери) и потери на переключения (Pперекл) (таблица 1).

Таблица 1. Потери мощности в IGBT

Кондуктивные потери определяются значением напряжения насыщения Uкэ нас. По этой причине его стараются максимально снизить.

Потери на переключения объединяют энергию, затрачиваемую на включение (Eвкл) и на выключение (Eвыкл).

Энергия на включение Евкл в большей степени определяется встроенным антипараллельным диодом. Для оптимизации этого параметра можно использовать внешний диод с лучшими характеристиками (меньшее время восстановления) или оптимизировать режим переключения (переключения при нулевых токах или напряжениях).

Энергия на выключение Евыкл определяется эффективностью рекомбинации неосновных носителей в структуре IGBT. Затягивание процесса рекомбинации приводит к появлению токового хвоста (рисунок 3), [2].

Рис. 3. Потери на выключение для планарного IGBT

Рис. 3. Потери на выключение для планарного IGBT

Во время включенного состояния через IGBT протекает ток, и в его слое n- происходит накопление неосновных носителей (дырок из слоя p+). После выключения транзистора число этих накопленных носителей сокращается достаточно медленно, главным образом – за счет неэффективной рекомбинации в низколегированном слое n-. В результате образуется токовый «хвост», приводящий к дополнительным потерям мощности.

Один из способов повышения быстродействия заключается в уменьшении степени легирования области p+. Это приводит к уменьшению числа носителей, а значит – и к ускоренному процессу рекомбинации. Однако уменьшение числа носителей, очевидно, приведет и к возрастанию напряжения насыщения.

Рис. 4. Развитие технологий IGBT производства STMicroelectronics

Рис. 4. Развитие технологий IGBT производства STMicroelectronics

Таким образом, увеличение быстродействия при сохранении напряжения насыщения возможно только благодаря качественным улучшениям и применению новых технологий. Например, для ускорения процесса рекомбинации между слоями p+ и n- создается слой n+ (рисунок 4а). Быстродействие возрастает, но остается достаточно низким.

Одним из революционных решений, позволившим качественно улучшить характеристики IGBT, стало применение технологии TGFS (Trench Gate Field Stop), (рисунок 4б). Суть TGFS состоит в изменении структуры затвора, который выполняется в изолированной канавке. Проводящий канал становится вертикальным, что уменьшает эффективную толщину слоя n-. Это, с одной стороны, приводит к снижению напряжения насыщения, а с другой – к уменьшению числа накапливаемых носителей.

Наиболее современное поколение IGBT производства STMicroelectronics серии V включает все лучшие технологические решения [2]: TGFS, снижение толщины исходной пластины p-, уменьшение толщин диффузных и эпитаксиальных слоев, увеличение глубины внедрения затвора (рисунок 4в). Это позволяет уменьшить энергию, затрачиваемую на выключение, при сохранении значения напряжения насыщения.

STMicroelectronics выпускает несколько серий IGBT с различными характеристиками. Богатый выбор позволяет найти оптимальные транзисторы с учетом требований к конкретному сварочному аппарату и используемой топологии.

Обзор серий IGBT от ST

Линейка IGBT производства STMicroelectronics содержит четыре серии, представители которых наиболее подходят для сварочных инверторов. Это серии V, HB, H, M. Все эти транзисторы отвечают перечисленным выше требованиям и имеют отличные характеристики [1, 4]:

  • высокие рабочие напряжения – 600…1200 В;
  • высокие показатели коммутируемых токов – до 80 А;
  • рекордные значения энергии выключения – от 0,2 мДж;
  • быстродействие – до 120 кГц;
  • доступность версий со встроенным быстродействующим антипараллельным диодом;
  • доступность различных корпусных исполнений (TO-247, D2PAK, TO-220 и другие);
  • стойкость к импульсам короткого замыкания.

Серия M предназначена для коммутации напряжений до 1200 В и токов до 40 А (таблица 2). Отличительной особенностью серии является низкое напряжение насыщения (не более 2,2 В) и малая энергия на переключения (от 1,2 мДж). Это делает данные транзисторы оптимальным выбором для инверторов, работающих на частотах до 20 кГц.

Таблица 2. Характеристики IGBT серии M

Серия H способна коммутировать напряжения до 1200 В и токи до 40 А (таблица 3). По сравнению с транзисторами серии M, IGBT серии H имеют меньшее значение энергии переключения (от 0,85 мДж) и большее напряжение насыщения (до 2,4 В). По этой причине они подходят для более высокочастотных приложений и способны работать на частотах до 100 кГц.

Таблица 3. Характеристики IGBT серии H

Серия HB не является основной для построения сварочных инверторов, однако ее характеристики также на высоте (таблица 4). Напряжение насыщения для этих IGBT являются рекордными среди всех семейств и начинаются от 1,65 В. Энергия переключения, во многих случаях не превышает 0,6 мДж. Рабочая частота для представителей семейства достигает 50 кГц.

Таблица 4. Характеристики IGBT серии HB

Серия V, как было сказано выше, является флагманом в номенклатуре STMicroelectronics. Благодаря новейшим технологиям, у данных IGBT практически полностью отсутствует токовый «хвост», и энергия на выключение оказывается минимальной – от 0,2 мДж (таблица 5), при этом напряжение насыщения не превышает 2,15 В. Все это позволяет использовать транзисторы серии V в быстродействующих инверторах с максимальной частотой переключения до 120 кГц.

Таблица 5. Характеристики IGBT серии V

Для наименования IGBT представленных серий используется код, состоящий из восьми позиций (таблица 6). Он содержит тип компонента, обозначение корпуса, название семейства, напряжение пробоя, наличие диода и его характеристики. Стоит отметить, что версии транзисторов с диодом с низким падением напряжения (индекс DL) не подходят для работы в составе сварочных инверторов.

Таблица 6. Именование IGBT производства STMicroelectronics

  • (пусто) – нет
  • D – быстродействующий
  • DL – с низким падением

Код напряжения пробоя:

  • V – Very High Speed до 120 кГц
  • H…B – High Speed до 50 кГц
  • H – High Speed до 35 кГц
  • M – Low Loss до 20 кГц

Максимальный ток при 100°С

B – D2PAK W – TO-247
F – TO-220FP WA – TO-247 Long Led
FW – TO3FP WT – TO-3P
P – TO-220 Y – Max247

Большинство IGBT представленных семейств выпускается в двух вариантах: со встроенным быстродействующим диодом и без него. Характеристики этих диодов достаточно хороши. Однако в случае необходимости требуется применять внешние диоды, например, в схеме асимметричного моста. При этом следует обратить внимание на мощные быстродействующие диоды серии W производства STMicroelectronics.

Обзор мощных диодов серии W от ST

Мощные быстродействующие диоды серии W разработаны специально для работы в составе мощных импульсных преобразователей с жесткими условиями переключений. Для этого их характеристики соответствующим образом оптимизированы (таблица 7):

  • для снижения статической мощности прямое падение напряжения уменьшено (от 0,92 В);
  • обратное напряжение достигает 600 В;
  • средний ток достигает 200 А;
  • время восстановления и обратный ток существенно снижены для сокращения энергии на переключение;
  • большинство диодов выпускаются в сдвоенном исполнении.

Таблица 7. Мощные быстродействующие диоды производства STMicroelectronics

Результаты практического применения IGBT от ST в MMA-инверторах

Для подтверждения преимуществ транзисторов IGBT производства STMicro­electro­nics были построены и испытаны сварочные инверторы: MMA160 (входная мощность 3,8 кВт) и MMA200 (входная мощность 6 кВт) [3].

Условия проведения испытаний были одинаковыми [3]:

  • в обоих случаях использовалась асимметричная полумостовая схема инвертора со спаренными параллельными IGBT (рисунки 5 и 6);
  • в качестве питания использовалось сетевое напряжение 220 В, 50 Гц;
  • температура окружающего воздуха составляла 25°C;
  • в качестве нагрузки применялись керамические резисторы общим сопротивлением 145 мОм с активным охлаждением;
  • максимальный коэффициент заполнения не превышал 50% для гарантированного исключения возможности насыщения сердечника выходного ВЧ-трансформатора;
  • защитное отключение производилось при достижении транзисторами температуры 105°С.

Инвертор MMA160 был построен на базе транзисторов STGW40V60DF (рисунок 5). Частота переключений составляла 63 кГц.

Рис. 5. Схема инвертора MMA160

Рис. 5. Схема инвертора MMA160

В ходе испытаний производились замеры входной мощности, входного тока и температуры корпуса транзисторов. При увеличении входной мощности от 2 кВт до максимальной мощности в 3,8 кВт происходил разогрев транзисторов и рост энергии на выключение (таблица 8).

Таблица 8. Результаты испытаний инвертора MMA 160

Инвертор показал устойчивую работу во всем диапазоне мощностей. Отключение при максимальной мощности произошло только по истечении 10 минут 17 секунд, после срабатывания защиты от перегрева (105°С). Максимальное значение энергии на выключение IGBT при этом увеличивалось с 311 мДж до 550 мДж, что является хорошим результатом и соответствует заявленному в документации значению (таблица 5).

Инвертор MMA200 был построен с использованием спаренных IGBT STGW60H65DFB (рисунок 6). Рабочая частота составила 63 кГц. Для дополнительной защиты транзисторов были применены снабберные RC-цепочки.

Рис. 6. Схема инвертора MMA200

Рис. 6. Схема инвертора MMA200

В ходе испытаний входная мощность MMA200 увеличивалась с 2,6 кВт до 5,8 кВт. Инвертор продемонстрировал устойчивую работу во всех режимах и выключился после срабатывания температурной защиты спустя 8 минут 15 секунд после выхода на мощность 5,8 кВт. При увеличении входных токов происходил рост температуры транзисторов и увеличение энергии на выключение (таблица 9). Диапазон изменений энергии на выключение составил 586…947 мДж, что соответствует заявленному значению.

Таблица 9. Результаты испытаний инвертора MMA200

Проведенные испытания подтвердили отличные характеристики, заявленные производителем. Таким образом, IGBT производства компании STMicroelectronics идеально подходят для построения инверторов сварочных аппаратов.

Заключение

В номенклатуре компании STMicro­electro­nics есть четыре серии IGBT, предназначенных для работы в жестких условиях переключения в составе сварочных инверторов. Данные транзисторы отвечают всем необходимым для этого требованиям. Их основными достоинствами являются:

Кроме IGBT, STMicroelectronics предлагает разработчикам мощные быстродействующие диоды серии W, которые отличаются малым временем восстановления и низким прямым падением напряжения.

Отличные характеристики силовых компонентов производства ST подтверждены практикой. Для этого инженерами компании были созданы и испытаны сварочные инверторы MMA160 и MMA200, построенные на основе транзисторов STGW40V60DF и STGW60H65DFB.

Новинка от ONS: IGBT для сварочного оборудования


Компания ON Semiconductor выпускает IGBT с тремя рейтингами напряжения – 600/650/1200 В, используя технологии производства Field Stop Trench и Field Stop II Trench, а также группу Trench-транзисторов, оптимизированных специально для построения сварочных инверторов. Эти IGBT позволяют создавать инверторы push-pull, мостовой, полумостовой и полумостовой асимметричной топологий.

Номенклатура мощных IGBT производства компании ON Semiconductor насчитывает почти сотню наименований, из них более двадцати подходят для создания сварочных инверторов, построенных по различным топологиям.

В 2012 году компания ON Semiconductor начала выпускать IGBT по технологии Field Stop Trench для сварочных инверторов. В 2013 году на рынке появились первые представители технологии Field Stop II Trench. В 2014 году была выпущена специализированная линейка IGBT NGTBxxN60Sxx, разработанная специально для создания сварочных инверторов.

Данные группы транзисторов не конкурируют друг с другом. Характеристики их таковы, что созданная линейка предоставляет разработчику возможность оптимального выбора подходящего ключа с учетом рабочего напряжения, напряжения насыщения, энергии на переключение и так далее.

Необходимо понимать, что IGBT, предназначенные для сварочных инверторов, должны отвечать целому ряду требований. При выборе транзисторов недостаточно учитывать только уровни токов и напряжений, представленных в документации. Важно помнить о целом ряде особенностей работы в данном конкретном приложении.

Рассмотрим анализ требований к силовым транзисторам, работающим в условиях жестких переключений, особенности инверторов с наиболее популярными топологиями (push-pull, мостовой, полумостовой, асимметричной полумостовой), а также обзор специализированных IGBT производства компании ON Semiconductor.

Режимы переключения IGBT-транзисторов

Одним из важнейших требований к IGBT для сварочных инверторов является способность устойчивой работы в условиях жестких переключений.

Работа в условиях мягких переключений не представляет особой проблемы для силовых ключей – коммутации происходят при нулевых либо небольших значениях токов или напряжений. Самым очевидным примером такого режима является работа с чисто резистивной нагрузкой (рисунок 1а).

Рис. 1. Режимы переключения IGBT

Рис. 1. Режимы переключения IGBT

В этом случае режим переключения транзисторов оказывается максимально мягким. Формы токов и напряжений практически прямоугольные и без выбросов. Несмотря на наличие токового «хвоста» при выключении IGBT, динамические потери (Pвкл + Pвыкл) остаются низкими. Основная же часть потерь – потери проводимости (кондуктивные потери, Pконд).

Совсем другая картина наблюдается при жестких переключениях, которые происходят при ненулевых токах и напряжениях. Ярким примером такого режима является коммутация индуктивной нагрузки (рисунок 1б). При включении и выключении IGBT ток через индуктивность изменяется не скачком, а плавно. Наиболее жестким моментом является выключение транзистора. Накопленная в индуктивности энергия приводит к возникновению выброса напряжения. Чем больше накопленная энергия — тем мощнее выброс напряжения. Он может привести к пробою IGBT.

Вторым негативным аспектом при таких коммутациях является значительное возрастание мощности потерь при переключениях.

Для борьбы с выбросами напряжения в высокочастотных схемах применяют демпфирующие RC-цепочки или обратные диоды (рисунок 1в).

Все вышеназванные негативные последствия жестких переключений при индуктивной нагрузке относятся и к IGBT сварочных инверторов. В сварочных аппаратах нагрузкой инвертора выступает индуктивность – первичная обмотка мощного ВЧ-трансформатора.

В итоге можно выделить общие требования к IGBT для инверторов сварочных аппаратов:

  • устойчивость работы при жестких переключениях;
  • устойчивость к выбросам напряжений даже при наличии защитных цепочек;
  • минимальные значения энергии на включения (Евкл) и выключения (Евыкл) для минимизации динамических потерь;
  • высокие рабочие частоты для возможности снижения габаритов ВЧ-трансформатора;
  • максимально низкое напряжение насыщения «коллектор-эмиттер» Uкэ нас при сохранении высоких рабочих частот.

Перечисленные требования являются общими, часть характеристик определяется особенностями конкретной применяемой топологии инвертора (таблица 1, рисунок 2).

Рис. 2. Наиболее популярные топологии инверторов сварочных аппаратов

Рис. 2. Наиболее популярные топологии инверторов сварочных аппаратов

Таблица 1. Характеристики различных топологий инверторов

Уровень напряжения на IGBT. Для большинства схем рабочее напряжения на ключе должно быть выше выпрямленного значения напряжения сети (Udc). Единственным исключением является топология push-pull. Для нее напряжение на ключах превышает 2×Udc.

Значения коммутируемых токов. Большая мощность сварочных аппаратов требует больших токов, коммутируемых инвертором. Стоит отметить, что при прочих равных условиях в случае симметричной полумостовой схемы для получения той же мощности на выходе необходимо протекание через IGBT вдвое больших токов. Это связано с тем, что к обмотке трансформатора всегда прикладывается только половина выпрямленного напряжения Udc/2.

Стойкость к коротким замыканиям. Все упомянутые топологии, за исключением ассимметричной полумостовой, имеют опасность протекания сквозных токов. Помимо возможных сквозных токов в основном каскаде могут возникать и аварийные короткие замыкания.

В любом из приведенных случаев при возникновении КЗ схема защиты должна успеть сработать до того, как силовые ключи выйдут из строя. По этой причине для приложений, работающих в жестких условиях, применяют особый класс IGBT с нормированным значением допустимого времени КЗ.

Типовые значения нормированных времен короткого замыкания составляют 5 и 10 мкс.

Наличие встроенных обратных диодов. За исключением асиммметричной полумостовой схемы, все топологии требуют наличия обратных диодов, параллельных транзисторам. По этой причине наличие в одном с IGBT корпусе быстродействующих диодов с малым временем восстановления является большим плюсом.

Компания ON Semiconductor выпускает широкий перечень мощных IGBT, отвечающих вышеперечисленным требованиям для различных топологий.

Базовым параметром при выборе IGBT является уровень рабочего напряжения. Номенклатура ON Semiconductor содержит три основных группы с напряжениями 600, 650 и 1200 В.

Обзор IGBT 600 В от ON Semiconductor

Транзисторы с рабочим напряжением 600 В, производства компании ON Semiconductor (таблица 2), обладают отличными характеристиками:

  • ток коллектора – 35…75 А;
  • напряжение насыщения – от 1,4 В;
  • энергия на выключение – от 0,28 мДж;
  • быстродействующий встроенный диод;
  • время КЗ – до 5 мкс.

Таблица 2. IGBT 600 В для сварочных инверторов

Стоит отметить, что линейка мощных IGBT производства ON Semiconductor постоянно расширяется и состоит из трех групп с различными технологиями производства: Field Stop Trench, Field Stop II Trench и группа Trench-транзисторов, оптимизированных специально для построения сварочных инверторов (первые представители появились в 2014 году).

Все три технологии сосуществуют вместе, взаимно дополняя друг друга. Например, транзистор NGTB50N60FWG, выполненный по технологии FS Trench, является рекордсменом по величине напряжения насыщения (1,45 В). Наименьшей энергией на выключение обладают представители технологии FS II Trench: NGTB35N60FL2 и NGTB40N60L2 – от 0,28 мДж.

Особо отметим специализированную линейку транзисторов NGTBxxN60Sxx. Она создавалась специально для построения сварочных инверторов. Отличительной чертой этих IGBT является сочетание оптимального соотношения низкого напряжения насыщения и низкой энергии на выключение. Например, NGTB50N60S1 имеет напряжение насыщение 1,8 В при значении энергии на переключение всего 0,46 мДж. Лидерство по величине коммутируемого тока также остается за данной специализированной группой. Для NGTB75N60S величина тока достигает 75 А.

Говоря о предпочтительных топологиях построения инверторов, можно отметить, что для транзисторов, не имеющих допустимого времени работы при КЗ (NGTB60N60S, NGTB45N60S2, NGTB30N60S), оптимальным будет асиммметричная полумостовая схема, в которой протекание сквозных токов невозможно.

С помощью транзисторов с большим значением рабочих токов (NGTB60N60S, NGTB75N60FL2, NGTB75N60S) можно создавать наиболее мощные инверторы по любой из топологий. Возможно построение даже симметричной полумостовой схемы, которая требует повышенных значений тока для получения мощности, сравнимой с другими топологиями.

Специализированные транзисторы NGTBxxN60Sxx могут применяться для всех топологий, кроме push-pull.

Обзор IGBT 650 В от ON Semiconductor

Данная группа транзисторов является наиболее современной и включает только представителей, выполненных по технологии FS II Trench (таблица 3).

Таблица 3. IGBT 650 В для сварочных инверторов

Несложно заметить, что характеристики этих IGBT практически полностью совпадают с характеристиками транзисторов FS II Trench с напряжением 600 В. Единственное отличие – более высокий уровень напряжения – 650 В.

Данная линейка IGBT будет отличным выбором для любой из топологий, кроме push-pull. Для push-pull следует обратить внимание на транзисторы с напряжением 1200 В.

Обзор IGBT 1200 В от ON Semiconductor

Перечень IGBT 1200 В производства компании ON Semiconductor включает представителей всех трех технологий. Разработчику предоставляется широкий выбор при определении оптимального ключа.

Анализируя данный сегмент транзисторов, можно отметить их отличительные черты (таблица 4):

  • ток коллектора – 15…50 А;
  • напряжение насыщения – от 1,7 В;
  • энергия на выключение – от 0,37 В.
  • быстродействующий встроенный диод;
  • время КЗ – до 10 мкс.

Таблица 4. IGBT 1200 В для сварочных инверторов

Как и в случае с группой транзисторов 600 В, IGBT, созданные по различным технологиям, не конкурируют, а взаимно дополняют друг друга. Однако рекордными характеристиками обладают FS II Trench: наибольшим током коллектора в 50 А отличается NGTB50N120FL2; наименьшая энергия на выключение в 0,37 мДж – у NGTB15N120FL2; наименьшее напряжение насыщения, равное 1,7 В – у NGTB30N120L2.

Тем не менее, следует уделить особое внимание транзисторам, разработанным специально для сварочных инверторов – NGTB25N120S и NGTB40N120S. Характеристики этих IGBT полностью совпадают с характеристиками сверхсовременных FS II Trench.

Высокий уровень рабочего напряжения 1200 В позволяет строить все типы инверторов, в том числе – push-pull.

Компания ON Semiconductor выпускает IGBT с тремя уровнями напряжения – 600/650/1200 В, – с использованием нескольких технологий производства. Наряду с ключами, созданными по технологиям Field Stop Trench и Field Stop II Trench, существует группа Trench-транзисторов, оптимизированных специально для построения сварочных инверторов. Они способны работать в условиях жестких переключений и имеют весьма достойные характеристики:

  • рабочие напряжения – 600 и 1200 В;
  • токи коллектора – 25…75 А;
  • напряжения насыщения – от 1,7 В;
  • малые энергии на выключение (Евыкл) – от 0,28 мДж;
  • время стойкости к короткому замыканию – 5 и 10 мкс;
  • высокая степень устойчивости к жестким переключениям;
  • встроенный обратный диод с низким падением и малым временем восстановления.

Представленные IGBT позволяют создавать инверторы основных топологий: push-pull, мостовой, полумостовой, полумостовой асимметричной.

Читайте также: