Технология сварки стали 10х17н13м3т

Обновлено: 18.05.2024

Сварка высоколегированных сталей и сплавов на железоникелевой и никелевой основах осуществляется двумя видами электродов: электродами для сварки коррозионно-стойких материалов и электродами для сварки жаростойких и жаропрочных сталей и сплавов.

Согласно действующей классификации к высоколегированным сталям относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу при концентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% никеля. Промежуточное положение занимают сплавы на железоникелевой основе.

В соответствии с ГОСТ 10052-75 электроды для сварки высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов по химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла классифицированы на 49 типов (например, электроды типа Э-07Х20Н9, Э-10Х20Н70Г2М2Б2В, Э-28Х24Н16Г6). Наплавленный металл значительной части электродов, регламентируется техническими условиями предприятий — изготовителей.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются — и иногда весьма существенно — от состава и структуры свариваемых материалов. Основными показателями, решающими вопрос выбора таких электродов, является обеспечение: основных эксплуатационных характеристик сварных соединений (механических свойств, коррозионной стойкости, жаростойкости, жаропрочности), стойкости металла шва против образования трещин, требуемого комплекса сварочно-технологических свойств.

Электроды для сварки высоколегированных сталей и сплавов имеют покрытия основного, рутилового и рутилово-основного видов. Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов для сварки углеродистых, низколегированных и легированных сталей.

Вместе с тем повышенное электросопротивление металла электродного стержня обуславливает необходимость применения при сварке пониженных значений тока и уменьшения длины самих стержней (электродов). В противном случае из-за чрезмерного нагрева стержня возможен перегрев покрытия и изменение характера его плавления, вплоть до отваливания отдельных кусков.

Сварка, как правило, производится постоянным током обратной полярности.

Электроды для сварки коррозионно-стойких сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений, обладающих требуемой стойкостью против коррозии в атмосферной, кислотной, щелочной и других агрессивных средах.

Некоторые марки электродов данной группы имеют более широкую область применения и их можно использовать не только для получения соединений с требуемыми коррозионной стойкостью, но и в качестве электродов, обеспечивающих высокую жаростойкость и жаропрочность металла шва.

табл.1
Марка электрода Тип электрода по ГОСТ 10052-75 или тип наплавленного металла Диаметр, мм Основное назначение
УОНИ-13/НЖ, 12Х13 Э-12Х13 2,0; 2,5; 3,0; 4,0; 5,0 Сварка хромистых сталей типа 08Х13 и 12Х13
ОЗЛ-22 Э-02Х21Н10Г2 3,0; 4,0 Сварка оборудования из сталей типа 04Х18Н10, 03Х18Н12, 03Х18Н11, работающего в окислительных средах, подобных азотной кислоте
ОЗЛ-8 Э-07Х20Н9 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-8С 08Х20Н9КМВ 2,5; 3,0; 4,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-14 Э-07Х20Н9 3,0; 4,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-14А Э-04Х20Н9 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 08Х18Н10Т, 06Х18Н11 и 08Х18Н12Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-36 Э-04Х20Н9 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 06Х18Н11, 08Х18Н12Т и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК
ЦЛ-11 Э-08Х20Н9Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК
ЦЛ-11С/Ч Э-08Х20Н9Г2Б 2,5; 3,0; 4,0 Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-7 Э-08Х20Н9Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют жесткие требования стойкости к МКК
ЦТ-15 Э-08Х19Н10Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов
ЦЛ-9 Э-10Х25Н13Г2Б 3,0; 4,0; 5,0 Сварка двухслойных сталей со стороны легированного слоя из сталей типа 12Х18Н10Т, 12Х18Н9Т и 08Х13, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-40 08Х22Н7Г2Б 3,0; 4,0 Сварка сталей марок 08Х22Н6Т и 12Х21Н5Т
ОЗЛ-41 08Х22Н7Г2М2Б 3,0; 4,0 Сварка стали марки 08Х21Н6М2Т
ОЗЛ-20 Э-02Х20Н14Г2М2 3,0; 4,0 Сварка оборудования из сталей типа 03Х16Н15М3 и 03Х17Н14М2, работающего в средах высокой агрессивности
ЭА-400/10У; ЭА-400/10Т 08Х18Н11М3Г2Ф 2,0; 2,5; 3,0; 4,0; 5,0 Сварка оборудования из сталей типа 08Х18Н10Т и 10Х17Н13М2Т, работающего в агрессивных средах при температуре до 350 С, когда к металлу шва предъявляют требования стойкости к МКК
НЖ-13 Э-09Х19Н10Г2М2Б 3,0; 4,0; 5,0 Сварка оборудования из сталей типа 10Х17Н13М3Т, 08Х21Н6М2Т и 10Х17Н13М2Т, работающего при температуре до 350 С, когда к металлу шва предъявляют требования к стойкости к МКК
НЖ-13С Э-09Х19Н10Г2М2Б 3,0; 4,0 Сварка оборудования из сталей типа 10Х17Н13М2Т, 10Х17Н13М3Т и 08Х21Н6М2Т, работающего при температуре до 3500С, когда к металлу шва предъявляют требования стойкости к МКК
НИАТ-1 Э-08Х17Н8М2 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 12Х18Н10Т и 10Х17Н13М2Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-3 14Х17Н13С4Г 3,0; 4,0; 5,0 Сварка оборудования из стали 15Х18Н12С4ТЮ, работающего в средах повышенной агрессивности, когда к металлу шва не предъявляют требования стойкости к МКК
ОЗЛ-24 02Х17Н14С5 3,0; 4,0 Сварка оборудования из сталей типа 02Х8Н20С6, работающего в условиях производства 98%-ной азотной кислоты
ОЗЛ-17У 03Х23Н27М3Д3Г2Б 3,0; 4,0 Сварка оборудования из сплавов марок 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений
ОЗЛ-37-2 03Х24Н26М3Д3Г2Б 3,0; 4,0 Сварка оборудования из сплавов марок 03Х23Н25М3Д3Б, 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений
ОЗЛ-21 Э-02Х20Н60М15В3 3 Сварка оборудования из сплавов типа ХН65МВ и ХН60МБ, работающего в высокоагрессивных средах, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-25Б Э-10Х20Н70Г2М2Б2В 3,0; 4,0 См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов

Электроды для сварки жаростойких и жаропрочных сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений с требуемой жаростойкостью и/или жаропрочностью. Жаростойкими сварными соединениями являются соединения, обладающие высокой стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550-6000С. Жаропрочными сварными соединениями являются соединения, работающие при этих температурах в нагруженном состоянии в течение определенного времени (жаропрочные соединения должны обладать при этом достаточной жаростойкостью).

Некоторые марки электродов, предназначенные для сварки жаростойких и/или жаропрочных материалов, используются для сварки коррозионно-стойких и разнородных сталей и сплавов.

Разработка технологии сварки стали 10Х17Н13М3Т

Проведение расчета силы сварочного напряжения и скорости подачи проволоки. Описание химического состава твердого металла. Определение структуры стали по диаграмме Шеффлера. Ознакомление с технологическими особенностями сварки высоколегированной стали.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 08.09.2010
Размер файла 431,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Дисциплина "Технология и оборудование сварки плавлением"

Тема: "Разработка технологии сварки стали 10Х17Н13М3Т"

1. Эскиз сварного соединения

2. Расчет параметров режима сварки

3. Расчет норм времени на выполнение сварочных операций

4. Определение химического состава и структуры стали

5. Технологические особенности сварки стали

6. Выбор сварочных материалов

7. Расчет расхода сварочных материалов

8. Расчет химического состава сварного шва и определение его структуры

9. Выбор сварочного оборудования

10. Расчет расхода электроэнергии

11. Карта технологического процесса

К высоколегированным относятся, стали, содержащие более 10 % легирующих элементов. Они содержат, как правило, небольшое количество углерода - до 0,25 %.

В зависимости от основных свойств высоколегированные стали делятся на следующие группы: коррозионно-стойкие (нержавеющие) стали - обладают высокой стойкостью против химической и электрохимической коррозии; жаростойкие (окалиностойкие) стали - обладают стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550°С; жаропрочные стали - способны работать в нагруженном состоянии при высоких температурах в течение определенного времени.

Основными легирующими элементами высоколегированных сталей являются хром и никель. Рассмотрим их влияние на свойства и структуру сталей.

Хром является основным химическим элементом, обеспечивающим коррозионную стойкость стали. При введении в сталь 12% Сr се электрохимический потенциал становится положительным, и она резко увеличивает свою коррозионную стойкость - становится нержавеющей. При содержании 25% Сr наблюдается повторный скачок коррозионной стойкости, что позволяет поддерживать ее на высоком уровне при повышенных температурах. Сталь становится жаростойкой.

Влияние Сr на структуру стали выражается в том, что он сужает область существования -фазы и стабилизирует -фазу. При содержании Cr более 12% сталь во всем температурном интервале - от температур кристаллизации до комнатных - сохраняет однофазную ферритную структуру, поэтому считается, что Cr является ферритизатором.

Введение в сталь никеля, наоборот, расширяет -область и понижает температуру --превращения. При введении в сталь более 20% Ni температура начала распада аустенита становится ниже 20 o С и сталь в обычных условиях сохраняет чисто аустенитную структуру, поэтому Ni называют аустенитизатором. Никель также увеличивает коррозионную стойкость стали и её жаропрочность, так как -фаза обладает большей жаропрочностью, чем -фаза.

Комбинируя различным содержанием в стали Сr, Ni и других легирующих элементов, можно получить стали различной структуры. Определить структуру стали в зависимости от ее химического состава позволяет диаграмма Шеффлера.

В химическом ЭквСr объединены ее легирующие элементы, которые аналогично Сr расширяют область феррита при их введении в сталь. Их влияние приведено к влиянию Сr через соответствующие коэффициенты. В ЭквNi объединены элементы-аустенитизаторы. Значения коэффициентов в формулах ЭквСr и ЭквNi определяются эмпирическим путем, поэтому несколько отличаются одно от другого в разных литературных источниках.

1. Эскиз сварочного соединения

Рисунок 1.1 - Эскиз сварного соединения

S=S1=?=12мм; b=5,01,5 мм; m>30мм; l

g=2,0мм; толщина подкладки должна быть не менее 0,25S, но не менее 1,5 мм.

Расчет параметров режима сварки ведется в зависимости от заданного способа сварки. Основными параметрами режима являются: сила сварочного , напряжение на дуге , скорость подачи сварочной проволоки , диаметр проволоки , скорость сварки .

Первоначально следует задаться диаметром проволоки . Его значение зависит от толщины свариваемого металла и способа сварки. Так как по заданию толщина металла 12мм и сварка автоматическая под слоем флюса, то принимаю .

Сила сварочного тока , А определяется по формуле

где h - глубина проплавления,

- коэффициент пропорциональности, зависящий от условий сварки,

Диаметр сварочной проволоки уточняют по формуле

где j - допустимая плотность тока, j=50А/мм .

Напряжение на дуге устанавливают в зависимости от способа сварки, а также от марки и диаметра проволоки и определяется по формуле

Скорость сварки вычисляют по формуле

где - коэффициент наплавки, ;

- сила сварочного тока, А;

- плотность металла, =7,85 г/см;

- площадь поперечного сечения наплавленного металла за один проход

Скорость подачи сварочной проволоки вычисляют по формуле

где - площадь сечения проволоки, см

Общее время на выполнение сварочной операции состоит из нескольких компонентов и определяется по формуле

где - подготовительно-заключительное время;

- время на обслуживание рабочего места;

- время перерывов на отдых и личные надобности.

Основное время - это время на непосредственное выполнение сварочной операции. Оно определяется по формуле

где - масса наплавленного металла, г

где - длина шва, см

Подготовительно-заключительное время включает в себя такие операции, как получение производственного задания, инструктаж, получение и сдача инструмента, осмотр и подготовка оборудования к работе и т.д. При его определении общий норматив времени делится на количество деталей, выпущенных в смену.

Вспомогательное время включает в себя время на смену электрода, осмотр и очистку свариваемых кромок , очистку швов от шлака и брызг , клеймение швов , установку и поворот изделия, его закрепление

Время зачистки кромок или шва вычисляют по формуле

где - количество слоёв при сварке за несколько проходов.

Время на установку клейма принимают 1.8 мин на 1 знак.

Время на установку, поворот и снятие изделия зависит от его массы. При массе изделия до 25кг эти операции выполняются вручную. =3 мин.

При автоматической и полуавтоматической сварке во вспомогательное время входит время на заправку кассеты с электродной проволоки. Это время можно принять равным 5 мин.

Время на обслуживание рабочего места включает в себя время на установку режима сварки, наладку полуавтомата или автомата, уборку флюса, инструмента.

Время перерывов на отдых и личные надобности зависит от положения, в котором сварщик, выполняет работы.

Ручная дуговая сварка трубопроводов

Для сооружения промысловых трубопроводов, транспортирующих природный газ, содержащий сероводород, используют малоуглеродистые стали марок 10, 20 и низколегированные - 12ХМ, 12Х1МФ, 14ХГС, 15ХМ.

Сэ = С % + 1/9(Мn % + Сr %) + 1 /8Ni % + 1/13Мо %.

Влияние толщины свариваемого металла δ учитывается поправкой Сэ′=0,005δСэ. Тогда полный эквивалет углерода

температура предварительного подогрева Тпод=350

Полученная температура предварительного подогрева должна быть проверена и откорректирована путем определения действительных скоростей охлаждения при сварке на принятых режимах и сопоставления результатов расчета с рекомендуемым для данной марки стали диапазоном допустимых скоростей охлаждения.

Концы труб под сварку обрабатывают механическим способом (абразивным кругом, резцом, фрезой и т. п.). В необходимых случаях применяют газовую или плазменную резку, после чего абразивным инструментом зачищают поверхности реза на глубину не менее 1 мм. Если применяют трубы из стали 12ХМ, 15ХМ и им подобные, то при отрицательной температуре термическую резку необходимо проводить с предварительным подогревом до температуры 200-250 °С с последующим медленным охлаждением. Трубы под сварку собирают с помощью наружных центраторов до диаметра 530 мм, а трубы большего диаметра - с помощью внутренних центраторов. При отрицательной температуре воздуха концы труб на длине 150 мм перед сваркой подогревают.

При сварке труб из хромомолибденовой стали первые два слоя выполняют с плавным поворотом секции. Прихватку и сварку корневого слоя выполняют электродами диаметром 2- 3,25 мм, последующие слои - электродами диаметром 4 мм. Запрещается прекращать сварку стыков труб до заполнения 2 /з разделки шва по всей окружности. При вынужденных перерывах в работе обеспечивают медленное охлаждение стыка в теплоизоляции.

Для снижения остаточных сварочных напряжений, которые являются одним из факторов, определяющих склонность сварных соединений к коррозионному растрескиванию, и ликвидации элементов неравновесных структур применяют термическую обработку. Наиболее распространен отпуск с температурой 600-700 °С ( в зависимости от марки стали). Термическую обработку стыков труб из сталей 20, 14ХГС, 12ХМ, 15ХМ проводят не позднее чем через 15 сут после сварки, если стыки были сварены с подогревом. В монтажных условиях сварные соединения нагревают электрическими нагревателями (печи) сопротивления, индукционным, комбинированным или газопламенным способами.

Для термической обработки сварных соединений технологических трубопроводов применяют гибкие электрические нагреватели сопротивления (ГЭН). Эти нагреватели имеют большую удельную мощность (45-50 кВт на 1 м 2 поверхности), позволяют использовать сварочные источники питания (трансформаторы и преобразователи). Стыки магистральных трубопроводов нагревают при помощи разъемных муфельных печей сопротивления ПТО. Для трубопроводов диаметром 57 мм и менее можно использовать газовые горелки.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сталь коррозионно-стойкая 10Х17Н13М3Т

Сварка электрошлаковым способом стали 10X17H13M3T: сталь типа 10X17H13M3T применяют в сварных конструкциях при изготовлении различных деталей химического оборудования, имеющих непосредственный контакт с агрессивной средой. В связи с интенсификацией технологических процессов в химической промышленности возникла необходимость в сварке толстолистовых конструкций из указанной стали. Образцы толщиной 60 мм сваривали пластинчатыми электродами, дополнительное легирование осуществляли путем присадки меди и никеля. Режимы сварки пластинчатыми электродами сталей различного химического состава приведены в табл. 9.43.


Химический состав металла шва при сварке стали 10X17H13M3T приведен в таблице ниже.


Можно видеть, что по механическим свойствам сварные соединения несколько уступают основному металлу, склонность к меж-кристаллитной коррозии металла шва после нагрева при различных температурах (250-650° С) в случае использования флюса АНФ-7 незначительна, швы, выполненные под флюсом АНФ-14, подвержены действию межкристаллитной коррозии; ударная вязкость металла шва резко возрастает при дополнительном легировании никелем (электрод 10X17H13M3T) и медью (электрод 12Х18Н10Т); наблюдается незначительная межкристаллитная коррозия металла шва, выполненного электродом 10X17H13M3T с дополнительным легированием медью. В случае применения электродов 12Х18Н10Т и 08Х18Н10 в тех же условиях

склонность к межкристаллитной коррозии практически отсутствует.

Отмечается некоторое влияние термообработки на механические и коррозионные свойства сварных соединений, выполненных различными электродами. Нагрев при температуре 875° С в течение 1, 2, 3 и 4 ч снижает ударную вязкость металла шва стали 10X17H13M3T, дополнительно легированного медью, соответственно от 7,66 до 4. После сварки под флюсом АНФ-14 наблюдается межкристаллитная коррозия, под флюсом АНФ-7 - нет. То же происходит после нагрева при 875° С влечение 3 ч.

Таким образом, при сварке стали 10X17H13M3T рекомендуется применять электрод аналогичного химического состава в сочетании с флюсом АНФ-7. В некоторых случаях может быть использован электрод 12Х18Н10Т.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

Сварка нержавейки

Фото сварка нержавейки

Внимание!
Информация собранна в разных источниках, в том числе из личного опыта сварщиков, монтажников и технологов.

В этой статье речь пойдёт только о популярных и ходовых марках стали. И без учёта требований ГОСТ так как по стандарту большую часть нержавеющих сплавов вообще нельзя варить. Например по ГОСТ 14771-76 варить нержавейку можно только дуговым способом в защитном газе.

Есть мнение, что разные сплавы нержавеющей стали имеют разную свариваемость и поэтому если планируются сварочные работы, то необходимо выбрать какую-то определённую марку нержавеющей стали, например AISI-304 (08Х18Н10).

Это отчасти верно и сталь AISI-304 сваривается лучше, чем AISI-430 (12Х17), но это не совсем так, 430 марку можно так же надёжно сваривать, как и любую другую при соблюдении определённой технологии и материалов.

AISI-430 относится к ферритным сплавам и не содержит никеля и при обычном способе сварки швы получаются хрупкими. Поэтому для устранения этого негативного факта её надо варить с высоколегированной присадочной проволокой и будет прочно, главное долго не перегревать, а также избегать резкого охлаждения металла и провести стабилизирующий отжиг.

Ферритные марки требующие соблюдение технологи сварки и сварочных материалов:
Хром в составе ухудшает качество шва.
AISI-409 (08Х13), содержание хрома 10,5-11,7%
AISI-430 (12Х17), содержание хрома 16,0-18,0%
AISI-439 (08Х17Т), содержание хрома 17,0-19,0%

Сварка аустенитных марок AISI-201/304/316/321

Свариваемость этих сплавов: легко сваривается разными видами сварки, гарантируя хорошее качество шва.
Электродами НИИ-48Г, ГС-1, ДС-12
Аргонно-дуговой сваркой на полуавтоматах проволокой 08Х20Н9Г7Т, 08Х21Н10Г6
Под флюсом АН-48 с использованием вышеуказанных сварочных материалов.
Испытания показали, что шов получается стойким к межкристаллической коррозии (МКК).

Для предупреждения образования в швах и околошовной зоне горячих трещин рекомендуется:
Следует применять режимы, уменьшающие долю основного металла в шве, и использовать припой и сварочные материалы с минимальным содержанием (серы, фосфора, свинца, олова, висмута). Применение для сварки постоянного тока обратной полярности. При ручной сварке покрытыми электродами следует поддерживать короткую дугу и сварку вести без поперечных колебаний. При сварке в защитных газах, предупреждая подсос воздуха, следует поддерживать коротким вылет электрода и выбирать оптимальными скорость сварки и расход защитных газов. Необходимо также принимать меры к удалению влаги из флюса и покрытия электродов, обеспечивая их необходимую прокалку.
Благоприятно и легирование швов повышенным количеством молибдена, марганца и вольфрама, подавляющих процесс образования горячих трещин.

Сварка ферритных марок AISI-409/430/439

В ферритных марках никель заменён на марганец это не способствует хорошей свариваемости.
При сварке хромистых ферритных сталей появляются определённые трудности. При нагревании до температуры 600…900° С хром, вступает в реакцию с углеродом, образовывая карбиды. Кристаллиты карбидов, находящиеся внутри металла, становятся причиной межкристаллитной коррозии, которая существенно ухудшает механические свойства стали.
Хром имеет свойство сильно окисляться. При окислении хрома образуются частые тугоплавкие окислы, которые, также, отрицательно влияют на свариваемость сталей этого типа.

Оптимально использовать дуговую сварку в инертных газах при соблюдении минимального энерговклада в свариваемый шов. Рекомендуется сварка «сверху» (то есть, когда свариваемая поверхность расположена ниже сварочного инструмента). В качестве присадочного материала можно использовать аустенитную проволоку 309Lsi( Cв-07Х25Н13, Св-08Х25Н13БТЮ) и т.п. Можно использовать электроды или присадочные проволоки на основе ферритной хромистой стали марки AISI 430.

Для того, чтобы гарантировать адекватную коррозионную стойкость необходимо убрать окалину и цвета побежалости травлением или механической обработкой щетками из нержавеющей стали и пропассивировать холодным 10-20% раствором азотной кислоты. Необходима последующая тщательная промывка холодной водой и сушка.

ферритные сплавы имеют достаточную свариваемость для многих «статических» применений. Однако шов может быть хрупким при газовой сварке (при нагревании происходит рост зерен в микроструктуре металла). Свойства усталости 430 AISI в сваренном состоянии низкие, и ее не рекомендует для применений, где используется растяжение, или другие воздействия.

Сварка стали AISI-304/430 видео

Технология сварки ферритных хромистых сталей

Сварку ферритных сталей выполняют с предварительным подогревом до температуры 300-400°C и последующим, после сварки, высоким отпуском (нагрев до температуры 650-750°C и последующее медленное охлаждение). Высокий отпуск необходим при сварке сталей этого класса для снятия внутренних напряжений и восстановления начальных механических свойств стали.

Для сварки ферритных, сталей, применяют электроды из сварочной проволоки следующих марок: Св-01Х19Н9, Св-04Х19Н9, Св-07Х25Н13 с покрытием, имеющем в своём составе плавиковый шпат и окись марганца. Применение этих электродов позволяет получить жидкий шлак, который хорошо растворяет окислы хрома. Рекомендуют следующие покрытия: ЦЛ-2, ЦТ, УОНИ-13/НЖ.

Для сварки ферритных, как и для большинства высоколегированных сталей, применяют постоянный ток обратной полярности, при малых сварочных токах. Величину тока определяют из следующей пропорции: 25-30 А на миллиметр диаметра электрода. И делается это из тех соображений, что большинство высоколегированных сталей при сварке легко перегреваются, т.к. обладают малой теплопроводностью.

Отожженная 430-я сталь является самой мягкой и податливой и может использоваться для холодной формовки. Диапазон температуры отжига 780°C сопровождается последующим охлаждением на воздухе.
Отпуск после сварки обычно не требуется, хотя 200-300°C — рекомендованный диапазон температуры отпуска.

Как обработать швы нержавейки после сварки

Способ травление
Эффективным методом обработки сварных швов является травление. Если правильно выполнить метод травления, то это позволит качественно устранить оксидный слой и зону с низким содержанием хрома. Обработка по этому методу выполнения путем покрытия, погружения или наружного нанесения пасты, все зависит от условий. В основном, при травлении используют смешанные кислоты (азотная кислота/плавиковая кислота) в пропорциях 8 – 20% азотной кислоты и 0,5 – 5% плавиковой кислоты, с добавлением H2O (вода). Время травления зависит не только от концентрации кислот, но и от температуры, сорта проката и толщины окалины (кислотоупорный прокат по сравнению с нержавеющим прокатом требует продолжительной обработки). После метода травления конструкция становится стойкой к воздействию коррозии.

Способ шлифовка и полировка (для поворотов перил)
Для него из инструментов вам потребуются болгарка и шлифовальные круги для нее с разной степенью зернистости, так как вся обработка делается последовательно в несколько заходов.

Сначала убираются все наплавы наиболее жестким материалом. Если сильных наплавов нет, можно сразу переходить к более мелкозернистым материалам.
Часть, которая будет шлифоваться, ограничивается клейкой алюминиевой лентой. Она прикрепляется к поверхности в несколько слоев, чтобы граница была заметнее.
Не заклеенная поверхность обрабатывается аккуратно, давить на инструмент не нужно.
Лента снимается, ею заклеивается обработанная часть, чтобы ограничить уже другую, для зачистки следующей зоны.
После каждой шлифовки поверхность промывается водой и вытирается насухо. Так продолжается, пока все круги, вплоть до самого мелкозернистого, не будут использованы. Обычно хватает трех кругов, с зернистостью 180, потом 320 и 600. Все заканчивается войлочным кругом, потом начинается процедура полировки.

Сначала шов зачищают диском с вулканитом, его можно надеть прямо на дрель. Это мягкий материал, похожий на резину, поэтому он не оставит царапин, но сможет повлиять на соединение и запилить его до наиболее ровного состояния.

После на обработанную поверхность наносится паста для полировки. Чтобы она правильно распределилась, шов нужно обработать другим кругом, войлочным, который тоже надевается на дрель. Делайте продольные движения по всему шву, чтобы паста распределилась равномерно. Размер круга подбирается в зависимости от величины и вида изделия, так как без маленьких кругов углы не обработать.

Полировочная обработка швов ведется до того момента, пока нержавейке после сварки не вернется ее зеркальный вид, а матовые пятна не исчезнут.

Шлифовка полировка сварного шва видео
Подготовка к сварке

Перед тем, как приступить к выполнению сварочных работ нужно провести предварительную подготовку стали. Края детали необходимо защитить от блеска, а так же произвести обезжиривание свариваемой поверхности с помощью органического растворителя, например ацетона.
Существует несколько способов, которыми можно воспользоваться, для получения качественного результата:
Ручная дуговая сварка (MMA). Рекомендуется использовать, если не предъявляется завышенных требований к качеству стыка. Главной проблемой будет подбор нужного электрода к конкретной марке стали. Самыми популярными вариантами электродов выступают карбонатные или рутиловые. В первом случае сварка осуществляется постоянным током, во втором — переменным.
Сварка неплавящимися вольфрамовыми электродами в инертной среде аргона (TIG). При данном виде сварки можно получить шов высокого качества, для этого будет нужно использовать высоколегированную проволоку.
Полуавтоматическая сварка в защитной среде инертных газов. Является преимущественным методом сварки, так как с помощью него можно работать с материалом различной толщины. В качестве среды чаще всего применяют смесь аргона и диоксида углерода. Процентное содержание последнего не советуется превышать более 2%, так как это может вызвать дефекты сварки.

Отдельные нюансы работы с нержавеющей сталью

Перед тем, как начать сварку, обратите внимание на следующие моменты:
Нержавеющая сталь обладает небольшим коэффициентом теплопроводности. Для того, чтобы избежать повышенное нагревание детали в районе шва, необходимо уменьшить сварочный ток на 25-30%.
При сварке осуществляется сильный нагрев электродов, такие условия их сильно изнашивают.
Если деталь достаточно толстая, зазор между швами нужно оставлять побольше, в противном случае возможно появление трещин.
Производить охлаждение швов желательно как можно быстрее, так как велика вероятности уменьшения антикоррозийных свойств металла.
При выборе метода сварки необходимо руководствоваться толщиной и маркой металла, а так же качеством ожидаемого результата.

FAQ сварка нержавейки

Какую нержавеющую сталь лучше выбрать для сварки?

Есть мнение, что разные сплавы нержавеющей стали имеют разную свариваемость и поэтому если планируются сварочные работы, то необходимо выбрать какую-то определённую марку нержавеющей стали, например AISI-304.
Это отчасти верно и сталь AISI-304 сваривается лучше, чем AISI-430, но это не совсем так, 430 марку можно так же надёжно сваривать, как и любую другую при соблюдении определённой технологии и материалов.

Чем лучше варить аустенитные марки?

Свариваемость этих сплавов: легко сваривается разными видами сварки, гарантируя хорошее качество шва.
Электродами НИИ-48Г, ГС-1, ДС-12
Аргонно-дуговой сваркой на полуавтоматах проволокой 08Х20Н9Г7Т, 08Х21Н10Г6
Под флюсом АН-48 с использованием вышеуказанных сварочных материалов.
Испытания показали, что шов получается стойким к межкристаллической коррозии (МКК)

Какие электроды лучше использовать для сварки ферритных сплавов?

Как обрабатывать швы нержавейки после сварки?

Есть два способа - химическое травление и механическая обработка.
При травлении используют смешанные кислоты (азотная кислота/плавиковая кислота) в пропорциях 8 – 20% азотной кислоты и 0,5 – 5% плавиковой кислоты, с добавлением H2O (вода).
При механической обработке шов шлифуется болгаркой, после наносится специальная паста и шлифуется войлоком до зеркального вида.

Читайте также: