Технология сварки теплоустойчивых сталей

Обновлено: 16.05.2024

Что такое теплоустойчивая сталь? Основные марки теплоустойчивых сталей и их свариваемость. Основные методы сварки и сварочные материалы для сварки реакторных сталей 15Х2МФА и 15Х2НМФА. Трудности при сварке и чем они вызваны. Холодные трещины. Требования к сварочным материалам и металлу швов реакторных сталей. Радиационное охрупчивание швов и методы его снижения на стадии изготовления сварных узлов и при эксплуатации оборудования.

С начала создания атомных электростанций в США и других странах для корпусов реакторов с водой под давлением применялись простые по составу стали, которые широко использовались в теплоэнергетике. Все эти стали имели сравнительно низкую прочность и радиационную стойкость, но обладали достаточной технологичностью и хорошей свариваемостью[2, 3]. В середине 50-х прошлого века для корпусов реакторов в США использовалась листовая сталь марки SА212В легированная небольшим содержанием Mn и Si и содержанием углерода 0,30-0,35% (см. таблицу). Невысокая прочность и ударная вязкость привели к быстрой замене ее на сталь SA302В более легированную марганцем и дополнительно молибденом. Эта марка стали была более прочной и с начала 60-х годов стала основным конструкционным материалом при производстве реакторов за рубежом. Однако содержание примесных элементов в ней сохранялось высоким, как и в стали SА212В. Для поковок С и Mn были заменены Ni и Mo. Так, появилась сталь SA336 с добавкой небольшого количества Cr. В дальнейшем эта сталь (с 1989 г.) стала обозначаться SA508. В связи с увеличением толщины полуфабрикатов сталь SA302В была модифицирована никелем. Этот материал впоследствии получил обозначение SA533 и нашел широкое применение для корпусов реакторов под давлением. В Германии наибольшее распространение получила сталь 22NiMoCr37, близкая по составу SA508, а во Франции - SA508. Листы из этих марок стали с различным уровнем прочности поставляются после нормализации и отпуска в улучшенном состоянии. Это относится и для металла поковок, предназначенных для изготовления обечаек. Для этих сталей по всему сечению полуфабриката имеет место более оптимальная структура отпущенного бейнита по сравнению с ферритно-перлитной структурой стали SA212В. Радиационная стойкость этих сталей достаточно подробно представлена в обзоре [4].

Таблица. Химический состав реакторных сталей

Марка Годы прим С Mn Cr Mo Ni Др. эл. P S Cu
Зарубежные стали
SA212B 1 950 £0,31 0,85-1,20 - - 0,15-0,30Si £0,035 £0,040
SA302B £0,25 1,15-1,50 £0,35 0,45-0,60 - - £0,035 £0,035 -
SA336 0,19-0.25 1,10-1,30 0,25-0.45 0,50-0,60 0,40-0,50 - £0,025 £0,025 -
SA533 £0,27 1,15-1,55 - 0,45-0,60 0,40-0,70 - £0,035 £0,040 £0,10
SA508 £0,25 1,20-1,50 £0,25 0,55-0,70 0,40-1,00 - £0,015 £0,015 0,10-0,15
Российские стали
15X2МФА 0,13-0,18 0,30-0,60 2,50-3,00 0,60-0,80 £0,40 0,10-0,12V- £0,020 £0,020 £0,30
15Х2НМФА 0,12-0,20 0,40-0,90 1,6-2,7 0,40-0,75 1,0-1,5 0,25-0,35V £0,025 £0,020 £0,20
15Х2В2ФА 0,13-0,18 0,30-0,60 2,5-3,5 £0,025 £0,04 1,2-1,6 £0,006 £0,006 £0,06

В нашей стране работы по созданию энергетических атомных реакторов для первых энергоблоков АЭС были начаты в 1956 году. Разработка концепции создания первых крупных атомных энергоблоков осуществлялось Институтом атомной энергии под руководством академика А.П. Александрова. В рамках этой большой общей проблемы на наш институт была возложена задача создания корпусов реакторов диаметром 3,5-4,2 м, высотой 11-12 м [5]. Поскольку изготовление таких габаритов корпусов без применения сварки было невозможно, то для решения поставленной задачи потребовалась разработка свариваемой теплоустойчивой стали. По существу необходимо было разработать не только сталь, но и технологию всего ее металлургического передела – выплавки, ковки из отливок большой массы и термической обработки основных заготовок.

Основной научно-технической задачей, которая решалась при выполнении этого большого комплекса работ, было обеспечение высокой стойкости основного металла и металла сварных швов против теплового и радиационного охрупчивания. Для обеспечения транспортировки изготовленных на заводе реакторов по железной дороге было необходимо ограничить диаметр корпуса, что приводило к более высоким интегральным потокам нейтронов на стенку корпуса реактора по сравнению с зарубежными аналогами. Кроме того, были выдвинуты более высокие требования к материалу по уровню прочности. Работы по созданию стали осуществлялось коллективом института в период с 1956 по 1960 года под руководством И.В. Горынина. Была разработана сталь Cr-Mo-V композиции как для цилиндрической части корпуса реактора, где на металл воздействует максимальный поток нейтронов, так и для более толстостенных элементов реактора - крышки и фланца. Созданная композиция более чем на 20 лет опередила мировые разработки. За рубежом стали такого типа под названием «суперхролой» стали появляться лишь в 80-е годы. В настоящее время предпринимаются попытки использовать сталь такой композиции и для новых европейских реакторов мощностью свыше 1000 МВт.

Сталь марки 15Х2МФА постоянно совершенствовалась и в настоящее время является лучшим конструкционным материалом по радиационной стойкости. Эволюция химического состава сталей для корпусов атомных реакторов детально описана в работе [6] и представлена на рис.1.

Технология сварки теплоустойчивых сталей

ТЕХНОЛОГИЯ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ И ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ

СВАРКА ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ

Теплоустойчивыми называют стали, длительно работающие при температуре до 600 °С. К ним относятся перлитные низколегированные хромомолибденовые стали 12МХ, 12ХМ, 15ХМ, 20ХМЛ, работающие при температуре 450. 550 °С и хромомолибденованадиевые стали 12Х1МФ, 15Х1М1Ф, 20МФЛ, работающие при температуре 550. 600 °С в течение 100 000 ч (10 лет). Они дешевы и технологичны, из них делают отливки, прокат, поковки для изготовления сварных конструкций: турбин, паропроводов, котлов и т.п.

Теплоустойчивость сварных соединений оценивают отношением длительной прочности металла соединения и основного металла - коэффициентом теплоустойчивости.

Чтобы работать при высоких температурах, стали должны обладать жаростойкостью, длительной прочностью, стабильностью свойств во времени и сопротивлением ползучести: их пластическая деформация при постоянной нагрузке с течением времени должна возрастать незначительно. Все это достигается введением в состав сталей 0,5. 2,0% хрома, 0,2. 1,0 % молибдена, 0,1 . 0,3 % ванадия и — иногда — небольших добавок редкоземельных элементов. Хорошее сочетание механических свойств изделий из теплоустойчивых сталей достигается термообработкой: нормализацией или закалкой с последующим высокотемпературным отпуском. Это обеспечивает мелкозернистую структуру, состоящую из дисперсной ферритокарбидной смеси. После 100000 ч работы обработанная таким образом сталь 15ХМ имеет прочность 260 МПа (26,5 кгс/мм2) при температуре 450 °С и 62 МПа (6,3 кгс/мм2) при температуре 550 °С, а сталь 12X1МФ - 154 МПа (15,7 кгс/мм2) при температуре 500 °С и 58 МПа (5,9 кгс/мм2) при температуре 580 °С.

Физическая свариваемость теплоустойчивых сталей, определяемая отношением металла к плавлению, металлургической обработке и к последующей кристаллизации шва не вызывает затруднений. Современные сварочные материалы и технология сварки обеспечивают требуемые свойства и стойкость металла шва против горячих трещин. Однако сварные соединения склонны к холодным трещинам и к разупрочнению металла в ЗТВ - зоне термического влияния. Поэтому нужно применять сопутствующий сварке местный или предварительный общий подогрев изделия. Это уменьшает разницу температур в

зоне сварки и на периферийных участках, что снижает напряжения в металле. Уменьшается скорость охлаждения металла после сварки больше аустенита превращается в мартенсит при высокой температуре, когда металл пластичен. Напряжения, возникающие из-за разницы объемов этих фаз, будут меньше, вероятность образования холодных трещин снизится. Применяя подогрев, нужно учитывать, что излишне высокая температура приводит к образованию грубой ферритно-перлитной структуры, не обеспечивающей необходимую длительную прочность и ударную вязкость сварных соединений. Уменьшить опасность возникновения холодных трещин можно, производя отпуск деталей, выдерживая их при температуре 150. 200 °С сразу после сварки в течение нескольких часов. За это время завершится превращение остаточного аустенита в мартенсит и удалится из металла большая часть растворенного в нем водорода.

Разупрочнение теплоустойчивых сталей в ЗТВ зависит также от параметров режима сварки. Повышение погонной энергии сварки увеличивает мягкую разупрочняющую прослойку в ЗТВ, которая может быть причиной разрушения жестких сварных соединений при эксплуатации, особенно при изгибающих нагрузках. Основные способы сварки конструкций из теплоустойчивых сталей - это дуговая и контактная стыковая. Последнюю используют для сварки стыковых соединений труб нагревательных котлов в условиях завода.

Дуговую сварку производят электродами с покрытием, в защитных газах и под флюсом. Подготовку кромок деталей при всех способах дуговой сварки производят механической обработкой. Допускается применение кислородной или плазменной резки с последующим удалением слоя поврежденного металла толщиной не менее 2 мм.

Дуговую сварку производят при температуре окружающего воздуха не ниже 0 °С с предварительным и сопутствующим сварке местным или общим подогревом. Температура подогрева зависит от марки стали и толщины свариваемых кромок. Хромомолибденовые стали при толщине кромок до 10 мм, а хромомолибденованадиевые - до 6 мм можно сваривать без подогрева. Сталь 15ХМ, например, толщиной 10. 30 мм надо подогревать до температуры 150. 200 °С, а больше 30 мм - до температуры 200. 250 °С. До 250. 300 °С подогревают сталь 12Х1МФ толщиной 6. 30 мм, а свыше 30 мм требуется ее подогрев до температуры 300. 350 °С. При многопроходной автоматической сварке под флюсом минимальную температуру подогрева можно снижать на 50 °С. Аргонодуговую сварку корневого шва стыков труб выполняют без подогрева.

После сварки производят местный отпуск сварных соединений или общий отпуск всей сварной конструкции. Хромомолибденовые стали нагревают при отпуске до температуры 670. 700 °С с выдержкой при этой температуре 1 . 3 ч в зависимости от толщины сваренных кромок,

хромомолибденованадиевые - до температуры 740. 760 °С с выдержкой 2. 10 ч. Чем больше в стали хрома, молибдена, ванадия, тем больше должны быть температура и время отпуска. Отпуск стабилизирует структуру и механические свойства соединений, снижает остаточные напряжения, однако он не позволяет полностью выровнять структуру и устранить разупрочненную прослойку в ЗТВ.

Ручную дуговую сварку теплоустойчивых сталей ведут электродами из малоуглеродистой сварочной проволоки с основным (фтористо-кальциевым) покрытием, через которое вводят в шов легирующие элементы. Этот тип покрытия хорошо раскисляет металл шва, обеспечивает малое содержание в нем водорода и неметаллических включений, надежно защищает от азота воздуха. Это позволяет получать высокую прочность и пластичность шва. Однако для электродов с таким покрытием характерна повышенная склонность к образованию пор при удлинении дуги, наличии ржавчины на поверхности свариваемых кромок и при небольшом увлажнении покрытия. Поэтому нужно сваривать предельно короткой дугой, тщательно очищать кромки и сушить электроды перед их применением при температуре 80. 100 °С. Хромомолибденовые стали сваривают электродами типа Э-09Х1М (ГОСТ 9467-75) марки ЦУ-2ХМ диаметром 3 мм и более, а также ЦЛ-38 диаметром 2,5 мм, хромомолибденованадиевые - электродами типа Э-09Х1МФ марок ЦЛ-39 диаметром 2,5 мм, ЦЛ-20, ЦЛ-45 диаметром 3 мм и более. Сварку ведут на постоянном токе обратной полярности узкими валиками без поперечных колебаний электрода с тщательной заваркой кратера перед обрывом дуги. Когда подогрев свариваемых изделий и их термообработка после сварки невозможны или если необходимо сваривать перлитные теплоустойчивые стали с аустенитными, допускается использование электродов на никелевой основе марки ЦТ 36 или проволоки Св 08Н60Г8М7Т при аргонодуговой сварке.

Теплоустойчивые стали сваривают дуговой сваркой плавящимся электродом в углекислом газе и вольфрамовым электродом в аргоне. Сварку в С02 из-за опасности шлаковых включений между слоями используют обычно для однопроходных швов и для заварки дефектов литья. Сварку ведут на постоянном токе обратной полярности с присадочной проволокой (ГОСТ 2246-70) Св 08ХГСМА для хромомолибденовых сталей или Св 08ХГСМФА для хромомолибденованадиевых сталей. Для проволоки диаметром 1,6 мм сила сварочного тока 140. 200 А при напряжении дуги 20. 22 В, а диаметром 2 мм 280. 340 А при 26. 28 В.

Ручная аргонодуговая сварка используется для выполнения корневого шва при многопроходной сварке стыков труб. Автоматической сваркой в аргоне сваривают неповоротные стыки паропроводов в условиях монтажа. При аргонодуговой сварке хромомолибденовых сталей.

Автоматическую дуговую сварку под флюсом используют на поворотных стыках трубопроводов, коллекторов котлов, корпусов аппаратов химической промышленности и других изделиях с толщиной стенки 20 мм и более. Применяют низкоактивные по кремнию и марганцу флюсы ФУ-11, ФУ-16, ФУ-22. Этим достигается стабильность содержания Si и Мп в многослойных швах и низкое содержание в них оксидных включений - продуктов процесса восстановления марганца. Сварку под флюсом ведут со скоростью 40. 50 м/ч на постоянном токе обратной полярности силой 350. 400 А при напряжении дуги 30. 32 В. Высокая скорость сварки уменьшает погонную энергию, что снижает разупрочнение хромомолибденованадиевых сталей в околошовной зоне. Применяют проволоку диаметром 3 мм Св 08МХ и Св 08ХМ для хромомолибденовых сталей и Св 08ХМФА для хромомолибденованадиевых сталей. Можно применять проволоку диаметром 4 и 5 мм, увеличив соответственно силу тока до 520. 600 А и 620. 650 А при напряжении дуги 30. 34 В.

Электроды для сварки легированных теплоустойчивых сталей

Должны в первую очередь обеспечить необходимую жаропрочность сварных соединений - способность противостоять механическим нагрузкам при высоких температурах.

Для конструкций, работающих при температурах до 475°С, используют молибденовые электроды типа Э-09М, а при температурах до 540°С - хромомолибденовые электроды типов Э-09МХ, Э-09Х1М, Э-09X2М1 и Э-05Х2М.

Для конструкций, работающих при температурах до 600°С, применяют хромомолибденованадиевые электроды Э-09Х1МФ, Э-10ХIМ1НБФ, Э-10Х3М1БФ.

Электроды Э-10Х5МФ с повышенным содержанием хрома предназначены для сварки конструкций из сталей с повышенным содержанием хрома (12Х5МД, 15Х5М, 15Х5МФЛ и др.), работающих в агрессивных средах при температурах до 450°С.

Для сварки теплоустойчивых сталей чаще используют электроды с основным покрытием, обеспечивающие прочность наплавленного металла при повышенных температурах, а также малую склонность к образованию горячих и холодных трещин. Наиболее распространены в цеховых условиях и на монтаже электроды типа ТМЛ, обладающие хорошими технологическими свойствами:

  • малая склонность к образованию "стартовой" и общей пористости благодаря легкому зажиганию и стабильному горению дуги;
  • высокая маневренность при сварке в различных положениях;
  • легко отделяется шлак, что позволяет сваривать в узких и глубоких разделках без зашлаковки.

Характеристики электродов для сварки легированных теплоустойчивых сталей

Для молибденовых сталей

Марка
Обозначение кода по ГОСТ
Область применения
Технологические особенности

Покрытие

Род полярность тока

Коэффициент наплавки, г/А?ч

Положение в пространстве

ЦЛ-6
Е - 02 - А24

УОНИ-13/15М
Е - 02 - Б20

ЦУ-2М
Е - 02 - Б20

Для сталей 16М, 20М и др., при сварке паропроводов, коллекторов котлов, работающих при температурах до 475°С. Сварка короткой дугой по зачищенным кромкам

Для хромомолибденовых сталей с повышенным содержанием хрома

УОНИ-13/45108ХМ
Е-04-Б20

Для сталей 15МХ, 20ХМ и др., в том числе для сварки трубопроводов и деталей энергетического оборудования, работающих при температурах до 520°С. Сварка предельно короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-300°С

УОНИ-13ХМ
Е - 04 - Б20

Для сталей 15ХМ, 20ХМ и др., в том числе для сварки трубопроводов и деталей энергетического оборудования, работающих при температурах до 520°С. Сварка предельно короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-200°С

ТМЛ-1
Е - 05 - Б20

Для паропроводов, работающих при температурах до 500°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-300°С. Возможна сварка в узкие разделки

48Н-10
Е - 06 - Б20

Для сталей 12ХМ, 12Х2М1-Л и др., в том числе для сварки паропроводов, работающих при температурах до 550°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-300°С

Для хромомолибденовых сталей с повышенным содержанием хрома и молибдена

ЦЛ-55
Е - 06 - Б20

Для сталей 10Х2М и др., в том числе для сварки трубопроводов, работающих при температурах до 550°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-300°С

Тип Э-09МХ

Для хромомолибденовых сталей

УОНИ-13/45МХ
Е-04-Б20

Для сталей 12МХ, 15ХМ и др., в том числе для сварки трубопроводов, работающих при температурах до 500°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 150-300°С

ТМЛ-1У
Е - 05 - 620

Для сталей 12МХ, 15МХ и др., для сварки трубопроводов и деталей энергетического оборудования, работающих при температурах до 540°С. Сварка короткой дугой по зачищенным кромкам. Возможна сварка в узкую разделку с углом скоса кромок до 15°. Дуга очень стабильна. Хорошо отделяется шлак

ОЗС-11
Е-04-РБ23

Для сталей 12МХ, 15МХ, 12ХМФ. 15Х1М1Ф и др., для сварки паропроводов, работающих при температурах до 500°С. Сварка короткой дугой по зачищенным кромкам. Сварка сталей толщиной более 12 мм с предварительным и сопутствующим подогревом до 150-200°С. Рекомендуются для монтажных работ

Для хромомолибденованадиевых сталей

ТМЛ-3
Е-07-Б20

Для сварки неповоротных стыков трубопроводов, работающих при температурах до 575°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 250-350°С. Шлак легко отделяется. Высокая стойкость металла против образования пор в шве

ТМЛ-ЗУ
Е-06-Б20

Для сталей 12МХ, 15МХ, 12Х2М1, 12Х1МФ, 15Х1М1Ф, 20ХМФ1, 15Х1М1Ф-Л и др., в т.ч. для трубопроводов, работающих при температурах до 565°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 350-400°С. Сварка в узкую разделку с углом скоса кромок до 15°

ЦЛ-39
Е-07-Б20

Для сталей 12Х1МФ, 12Х2МФСР, 12Х2МФБ и др., в т.ч. для сварки элементов нагрева поверхностей котлов и трубопроводов диаметром до 100 мм с толщиной стенки до 8 мм, работающих при температурах до 575°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 350-400°С

ЦЛ-27А
Е-07-Б20

Для сталей 15Х1М1Ф, конструкций из литых, кованых и трубных деталей, работающих при температурах до 570°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 350-400°С

ТИП Э-10Х3М1БФ

Для хромомолибденованадиевониобиевых сталей

ЦЛ-26М
Е - 08 - Б20

Для сталей 12ХМФБ поверхностей нагрева котлов, работающих при температурах до 600°С, а также для тонкостенных труб пароперегревателей в монтажных условиях. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 300-350°С

Для сталей 12Х2МФБ, в т.ч. тонкостенных труб пароперегревателей, поверхностей нагрева котлов, работающих при температурах до 600°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 300-350°С. Изготовляются диаметром 2,5 мм

ТИП Э-10Х5МФ

Для хромомолибденованадиевых и хромомолибденовых сталей

ЦЛ-17
Е - 00 - Б20

Для сталей 15Х5М (Х5М), 12Х5МА, 15Х5МФА в ответственных конструкциях, работающих в агрессивных средах при температурах до 450°С. Сварка короткой дугой по зачищенным кромкам с предварительным и сопутствующим подогревом до 350-450°С

Сварка теплоустойчивых сталей

ТЕРМИЧЕСКАЯ ОБРАБОТКА СВАРНЫХ СОЕДИНЕНИЙ НИЗКОЛЕГИРОВАННЫХ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ

1. Низколегированные теплоустойчивые стали, как правило, содержат до 0,2 % С, 1—2 % Сr (только стали типа - 15Х5М содержат до 6 % Сr — в целях повышения сопротивления коррозии), до 0,5 % Мо и до 0,3 % V.

2. Состав этих сталей обусловливает некоторые особенности структурных превращений в ЗТВ при сварке и некоторые особенности их термической обработки (табл. 6.2.).

Таблица 6.2 Рекомендуемые режимы термической обработки сварных соединений низколегированных теплоустойчивых сталей


3.Особенности превращений в ЗТВ этих сталей связаны с тем, что входящие в сталь легирующие элементы повышают устойчивость образующегося при нагреве аустенита, приводя тем самым его к распаду при охлаждении в области низких темпера­тур о образованием дисперсных и частично неравновесных структур распада. В свя­зи с этим твердость металла в ЗТВ этих сталей заметно повышается и может дохо­дить до НВ 350.

4. Отпуск сварных соединений этих сталей, как правило, является операцией, необхо­димой не только для снижения уровня сварочных напряжений, но и для распада не­равновесных структур, снижения твердости и повышения ударной вязкости в целях снижения опасности хрупких разрушений этих соединений.

5 Легирование рассматриваемых сталей хромом, молибденом и ванадием приводит к об­разованию карбидов с повышенной устойчивостью к растворению, поэтому при крат­ковременном сварочном нагреве эти карбиды растворяются в более нагретых облас­тях ЗТВ, чем карбиды большей части низколегированных строительных сталей, что

делает участок с повышенной твердостью более узким у низколегированных теплоус­тойчивых сталей по сравнению с низколегированными строительными.

6. Этот же эффект определяется более высокими значениями критических температуру рассматриваемых сталей, что и предопределяет более высокую температуру отпус­ка при термической обработке низколегированных теплоустойчивых сталей (730—740°С), чем у углеродистых нелегированных и низколегированных сталей для строительных конструкций (550—650 °С).

7. Очень часто низколегированные теплоустойчивые стали применяют в термически обработанном состоянии:

- после нормализации о высоким отпуском;

- реже, после закалки с отпуском.

8.В процессе такой термической обработки перед сваркой в сталях создается мелкозернистое строение с мелкими равномерно распределенными частицами карбидов.

9. Естественно, что сварка портит структуру стали в ЗТВ:

- в областях, прилежащих к сплавлению, растут зерна и появляются элементы не­равновесных структур в области, нагревавшейся выше 900 °С;

- в участках, нагревавшихся до более низких температур (700—900 °С), происходят укрупнение карбидных выделений и некоторое снижение прочности.

10. Весьма полезно (там, где можно с учетом п.9) восстанавливать свойства сварных соеди­нений путем нормализации с высоким отпуском. Однако такая обработка может быть ра­циональной только в том случае, если нагреву подвергается все изделие. При локальномнагреве нормализация может привести к ухудшению строения и свойств переходного уча­стка между нагревавшейся областью и оставшимся ненагретым металлом.

11. Низколегированные теплоустойчивые стали имеют еще некоторые особенности, кото­рые сказываются на условиях проведения их термической обработки — это их пониженная теплопроводность, повышенная температура потери упругих свойств (температура раз­мягчения) и возможность снижения сопротивления деформации и -разрушению границ зерен по сравнению с телом зерна при температуре -650 °С.

12. Указанные обстоятельства (п.11) требуют ограничения скорости нагрева, особенно при локальной термической обработке в интервале температур до достижения сталью хотя бы ограниченной способности к пластической деформации (до 300 °С). Скорость охлаждения после высокого отпуска в целях снижения уровня остаточных напряжений также следует ограничивать по крайней мере до перехода металла в упругое состояние по всему сече­нию (примерно до 300 °С). С другой стороны, относительное ухудшение свойств на гра­ницах зерен при 650 °С требует, наоборот, быстрого прохождения этого интервала при нагреве.

13. Значение термической обработки не ограничивается только воздействием на строение и свойства ЗТВ сварных соединений низколегированных теплоустойчивых сталей, она име­ет значение и для улучшения свойств металла шва при сварке таких сталей электродами, дающими металл шва (типа 09МХ, 09X1М, 09ХМФ, 10Х1М1НФБ), по составу близкий к свариваемой стали:

- на строение металла шва лучше всего влияет нормализация, обеспечивающая пе­рекристаллизацию и измельчение зерна;

- высокий отпуск пригоден только для локального нагрева, так как и в ЗТВ, и в ме­талле шва приводит к распаду неравновесных структур, снижению твердости и уровня остаточных напряжений, повышению ударной вязкости.

14. Для сталей 12Х1МФ, 15Х1М1Ф, 15Х5М при толщине металла более 20 мм нагрев до400°С ведут со скоростью до 300 °С/ч, охлаждение после сварки до 300 °С — со скоро­стью до 300 °С/ч. Термическая обработка должна производиться не более, чем 3 суток по­сле сварки сталей 12Х1М и 15Х1М1Ф всех толщин и не более, чем 1 сутки после сварки стали 15Х5М всех толщин.

Читайте также: