Точечно искровой сварочный аппарат для ювелирных работ своими руками

Обновлено: 08.05.2024

Попросил знакомый «посмотреть» нерабочий сварочный аппарат. Говорит, что уже отдавал его в ремонт, там сказали что проблема, скорее всего в трансформаторе и ничем помочь не могут. Я, в общем-то, ремонтом не занимаюсь, но на «посмотреть» что-либо обычно соглашаюсь. Посмотреть-то не сложно, ну а вдруг «оно» ещё и отремонтируется – мне не сложно, а люди радуются.

Хозяин аппарата объяснил, что предназначен он для сварки ювелирных изделий точечными одиночными импульсами, управляется ножной педалью и для работы нужна вольфрамовая игла. Сварочный импульс, вроде, есть, но по технологии должна быть ещё «зажигающая» искра, пробивающая расстояние до 1-3 мм, а её как раз нет. Называется всё это чудо – Ding Xing Jewelry Machine (рис.1).


На передней панели аппарата (рис.2) стоят два регулятора режима сварки – длительность и ток импульса, стрелочный индикатор тока со шкалой до 50 А, два винтовых зажима – красный и чёрный (к красному подключается игла, к чёрному – свариваемые детали), круглое гнездо для разъёма ножной педали-переключателя и сетевой выключатель с подсветкой.


На задней стенке расположен сетевой разъём и предохранительная колодка.

Аппарат показался достаточно лёгким, поэтому сразу же сняли верхнюю крышку (рис.3) и заглянули внутрь – вдруг там чего-нибудь не хватает? Но, нет, вроде всё на месте – небольшой сетевой трансформатор ватт на 100, несколько электролитических конденсаторов и трансформатор на ферритовом сердечнике ещё меньшего размера, чем сетевой. Ещё мелочь какая-то на плате и непонятный белый брусок с подходящими к нему проводами. Почти все соединения с платой разъёмные.


Ладно, забрал аппарат домой, буду «посмотреть».

Дома сразу же полез в Интернет искать схему. И, конечно же, надеялся, что кто-нибудь уже ремонтировал такое «чудо» и поделился впечатлениями. Ан, нет. Ничего подходящего не нашёл. Даже нормального описания работы с ним… Ладно, тогда начнём с осмотра.

Плата к днищу корпуса крепится с одного края на трёх стойках сделанных из винтов М4 (рис.4), а с другого была когда-то приклеена термоклеем к резиновой бобышке (ножка корпусная, видна на фото слева на заднем плане). Клей, конечно же, уже оторван (или сам отвалился).


К стойкам плата прикручивается гайками через изолирующие прокладки (рис.5). На рисунке видно, что с транзистора Q10 стёрта маркировка. Как оказалось, маркировка стёрта и со всех остальных транзисторов и со стабилизатора питания тоже (рис.6). Шифруются, однако…



Реле, видимое в нижнем правом углу предыдущего фото, более подробно показано на рисунке №7:


Провода к амперметру, что стоит на передней панели аппарата, идут от шунта, выполненного из эмалированного медного провода (рис.8). Провода припаяны, разъёма нет. Даже рядом. Возможно, что сначала подразумевалось прибор подключать в другое место схемы.


На рисунке №9 показан разъём, по которому подаётся питание с силового трансформатора. Видны вставленные спички – наверное, это уже «наши» доработки…


На рисунке №10 тот же разъём, но фото сделано уже с платы, вытащенной из корпуса аппарата. Учитывая две пары проводов, подходящих к этому разъёму и два выпрямительных моста около него, можно сделать предположение, что схема питается двумя напряжениями и одно из них достаточно высоковольтное. Скорее всего, оно и является «сварочным». А второе, низковольтное, питает схему управления.


Электролитические конденсаторы на 250 В и 2200 мкФ стоят марки Rubycon (рис.11 и рис.12). Четыре белых прямоугольника перед ними на рисунке №11 – это резисторы сопротивлением 0,1 Ом и мощностью по 5 Вт.



В другом углу платы стоят ещё два таких же резистора и электролитический конденсатор Nichicon 2200 мкФ 50 В (рис.13). Справа на фото – радиатор, к которому прикручен мощный транзистор Q2 в корпусе TO-247.


Надо полагать, что если в приборе применяются конденсаторы именно таких марок, то высока вероятность того, что в этих частях схемы повышена требовательность к низкому сопротивлению источников питания при импульсной сильноточной нагрузке.

На рисунке №14 показаны выходные клеммы на плате, к которым короткими толстыми проводниками подключаются винтовые разъёмы, находящиеся на передней панели аппарата. Буквы «КР» и «Ч» - это уже я подписал, чтобы знать, куда какой разъём подключать при экспериментах на столе.


В этом же углу печатной платы нанесена маркировка «S1878» (рис.15). Так как больше никаких опознавательных данных нет, то очень вероятно, что эти цифры относятся к версии аппарата.


Фото непонятного белого бруска, прикрученного к днищу, показано на рисунках №16…18.




Брусок похож на отпиленный кусок дюралюминиевой трубы прямоугольного профиля, в который что-то вставлено и залито эпоксидной смолой. Смола не очень твёрдая – царапается кончиком ножа и, наверное, можно будет попробовать расковырять её. Но для начального понимания, хорошо было бы на схему глянуть – куда этот «брусок» подключается. Беглый осмотр дорожек, подходящих к разъёмам, ничего не прояснил – чёрные и синие проводники на плате соединяются между собой, синие идут к четырём пятиваттным резисторам, красные – раздельно к мелким резисторам с диодами (но, похоже, что одинаковым по номиналам), чёрные – к одной из обмоток ферритового трансформатора. Тестер показывает, что между чёрным и синим выводами стоит диод. Контакты одного разъёма никак не «звонятся» с контактами другого. Очень похоже, что это два раздельных транзистора. Скорее всего, IGBT или полевые. Надо срисовывать схему с платы …

К обеду следующего дня схема аппарата стала более-менее понятной (рис.19). И хоть «рожицы» всех активных элементов были ободраны и где какие выводы у них было не ясно, но по схемотехнике узлов становилось понятно, кто что делает и за что отвечает.


Схему можно разделить на две части в соответствии с уровнями питающих напряжений. Первая часть, высоковольтная – это та, что запитывается от обмотки трансформатора Tr1 с напряжением 118 В. Выпрямленное мостом D1 напряжение проходит через токовый шунт, ограничительный терморезистор R1, фильтруется конденсаторами С1…С4 и поступает на чёрный винтовой зажим на передней панели аппарата. Здесь всё сразу понятно.

Вторая часть, низковольтная, питается от 19,6 В – это все остальные элементы. Они служат для создания искры (импульса пробоя) на выводах вторичной обмотки трансформатора Tr2 и для разряда в этот же момент накопленной конденсаторами С1…С4 энергии в место сварки. Разряд происходит через вторичную обмотку Tr2 и через транзисторы Q5, Q6 (они, скорее всего, IGBT).

Есть две неожиданности в той части схемы, куда подаётся напряжение через педаль. Первая – это то, что два резистора имеют одинаковую нумерацию «R22» (помечены вопросительными знаками). Вторая – то, что катушка реле зашунтирована конденсатором 100 нФ (он виден на переднем плане на рисунке №7). Конденсатор впаян вместо диода, место установки которого обозначено на плате как D9.

Схема на транзисторах Q11 и Q12 отвечает за кратковременное включение реле К1 при нажатии на педаль. Если рассматривать работу этого узла в схемотехнике, показанной в обведённой пунктиром схеме, то в момент подачи питания транзистор Q11 должен быть закрытым (так как С8 ещё разряжен), а соответственно, Q12 открывается током, проходящим через R22 (тот, который в коллекторе Q11). Реле К1 включится. Когда конденсатор С8 зарядится через R23, напряжение на базе Q11 повысится, он откроется и закроет Q12. Реле отключится. Чтобы включить реле ещё раз, надо отпустить педаль, дать некоторое время для разряда конденсатора С8 и опять нажать педаль.

Работа других частей схемы тоже понятна – при нажатии на педаль срабатывает реле К1 и напряжение со стабилизатора VR1 через контакты К1.1 поступает на резисторы R11 и R20. Если смотреть в сторону R20, то это напряжение открывает силовой транзистор Q2, нагрузкой которого является первичная обмотка трансформатора Tr2. Трансформатор начинает накапливать энергию и ток в обмотке растёт до того момента, пока напряжение падения на двух резисторах по 0,1 Ом и R4R5, стоящих в истоке транзистора, не станет достаточным для открывания тиристора Q1. Напряжение на затворе Q2 пропадает, транзистор закрывается и трансформатор отдаёт накопленную энергию во вторичную обмотку. Трансформатор Tr2 – повышающий, его первичная обмотка имеет 6 витков, вторичная 66. Если расстояния между проводниками, подключенным к чёрному и красному разъёмам аппарата, будет достаточным для пробоя, то возникает искровой разряд.

В то же время, когда напряжение подаётся на R20, оно же поступает и через резистор R11 на транзисторы Q10, Q9, Q3. На них собран узел, открывающий на некоторое время транзисторы Q5, Q6 (через них разряжаются конденсаторы С1…С4) и поддерживающий разрядный ток на заданном уровне. Происходит это так – при появлении напряжения питания оно через R14 поступает на базу Q9. Этот транзистор выполняет роль эмиттерного повторителя – с него напряжение поступает на базы транзисторов Q5, Q6. Открывшись, эти транзисторы могут пропускать через себя весь сварочный ток. Датчиком силы этого тока являются четыре резистора сопротивлением по 0,1 Ом, включенные параллельно. Напряжение падение с них поступает на регулируемый делитель, образованный постоянным резистором R6 и переменным резистором 100 Ом, стоящим на передней панели аппарата и являющимся регулятором сварочного тока. Когда напряжение на базе Q3 достигнет уровня открывания транзистора, он, естественно, начинает открываться и уменьшать напряжение на базе транзистора Q9 и запирать Q5, Q6, чем вызывает уменьшение протекающего через них тока. Понятно, что этот процесс не может продолжаться долго – ведь конденсаторы С1…С4 разряжаются и напряжение на них уменьшается, поэтому в схему внесены элементы, ограничивающие время сварочного импульса – через резистор R12 и переменный резистор сопротивлением 10 кОм происходит заряд конденсатора С11 (как и в схеме включения реле К1). Когда напряжение на базе транзистора Q10 будет достаточно для его открывания, он откроется и зашунтирует собой базу Q9 на «землю». Чем вызовет полное закрывание силовых транзисторов Q5 и Q6 и прекращение сварочного импульса.

Для удовлетворения любопытства, решил разобрать этот «брусок» и посмотреть, что же там точно находится. Сточил одну грань алюминиевого корпуса и вынул внутренности (рис.20). Действительно, что-то залито, и это «что-то» было предварительно засунуто в термоусадочную трубку и приклеено термоклеем к внутренним противоположным боковинам профиля.


Вскрытие термоусадки показало, что под ней скрывается «что-то» в корпусе TO247 (рис.21).


Обкусав кусачками и расковыряв жалом нагретого паяльника клей по краям болванки стало возможным достать транзистор (рис.22 и рис.23)



Маркировка и здесь содрана (рис.24). Жаль, конечно, но этого и следовало ожидать. Но зато душа успокоилась и теперь стало более-менее понятно, что там скрывалось (рис.25)



Для проверки целостности этих транзисторов собрал простейшую усилительную схему (рис.26). Всё нормально работало, транзисторы открывались, лампочка загоралась. Красные выводы - базы (затворы), чёрные - коллекторы (стоки), синие - эмиттеры (истоки).


Теперь всё это надо назад в алюминиевый профиль «упаковать». Приклеил транзисторы к оставшейся болванке-заливке, обмотал в три слоя фторопластовой лентой, аккуратно засунул в профиль и туго обмотал сверху толстыми нитками (рис.27). Проверил, что нигде ничего не сломано и не замыкает и пропитал всё это клеем БФ-2, разведённым в спирте. Сутки на сушку.


Теперь, когда схема аппарата есть и в целом понятно, как он должен работать, надо искать неисправность. Ещё во время срисовывания схемы обратил внимание, что транзистор Q2 был «паяный» и одна дорожка около переходного отверстия была порвана, а потом восстановлена. Прозвонка транзистора прямо в схеме показала, что он «звонится» по всем ножкам, показывая на переходе сток-исток (и наоборот) сопротивление около 2 Ом. Кстати, его маркировка была сцарапана не очень сильно и по остаткам символов можно было догадаться, что это транзистор IRFP460. Однако… 500 В и до 80 А в импульсе…

Таких транзисторов «в тумбочке» не было, поставил три в параллель IRF630. Сварочник ожил, начал «искрить», но искра была короткая, много меньше полумиллиметра. Хозяин аппарата посмотрел на неё, попробовал сам и сказал «не правильно»…

Опять разбираю корпус, вытряхиваю внутренности и пытаюсь определить, что же может ещё не работать. Решил разобрать трансформатор, посмотреть, а нет ли межвиткового замыкания во вторичной обмотке. Выводы выпаянного трансформатора фотографирую для того, чтобы потом назад всё так же намотать и не перепутать начала и концы обмоток (рис.28 и рис.29).



Провод для намотки обеих обмоток использован достаточно тонкий, многожильный. Но в толстой изоляции. На ощупь она мягкая и шершавая и кажется, что прилипает к рукам. При 66-ти витках вторичная обмотка имеет сопротивление 1 Ом по постоянному току. Намотана ближе к сердечнику.

Пока занимался разматыванием, обратил внимание, что сердечник слегка намагничен и притягивает мелкие металлические шайбы и стружку. Ну и, в общем-то, это единственное, что узнал нового – подозрения на межвитковое замыкание не оправдались, всё внутри было чисто и аккуратно. Трансформатор до меня не разбирали. Собрал всё назад, впаял, проверил – всё осталось как и было, искры практически нет. Для эксперимента домотал ко вторичке ещё 6 витков толстым проводом МГТФ (рис.30) но ничего не поменялось.


Вспомнил, что забыл размагнитить сердечник. Выпаял транзистор Q2 и подключил первичку трансформатора к выходу усилителя НЧ вместо акустики. На вход усилителя подал синусоидальный сигнал частотой 100 кГц и пошёл варить кофе. По прошествии некоторого времени, потраченного на выпивание чашки кофе и просмотра новостей, выключил усилитель и проверил сердечник. Намагниченность пропала. Впаял транзистор, включил аппарат – искра есть и её длина увеличилась примерно до 1 мм. Уже хорошо… Но хозяин сварочника говорил, что должна быть и 3 мм. Звоню ему, прошу при случае купить «родной» транзистор – IRFP460.

Буквально через несколько дней транзистор был впаян и аппарат заработал так, как ему и было положено. Провёл небольшую профилактику платы и всех разъёмов (почистил, помыл, подогнул), сделал несколько проб по свариванию выводов резисторов (рис.31) и отнёс хозяину.

Самодельная сварка аргоном. Осциллятор своими руками

Прикупил себе товарищ сварочный инвертор аргонно-дуговой сварки для разных металлов. В основном таких как нержавейка и алюминий в среде газа аргон, но вот незадача такой тип сварки не подходит для сварки алюминия. Задал я вопрос на форуме, рекомендовали менять местами массу и держак, но при таком подключении вольфрамовый электрод просто сгорает. Рекомендовали варить переменным сварочником, якобы алюминий лучше варить переменным током, при таком токе шов получается качественный. Было решено купить сварочник переменного тока, но для него нужен осциллятор. Вот и дал он мне такую задачку собрать для него осциллятор

Осциллятор это такой прибор, который нужен для бесконтактного розжига дуги. Дуга разжигается за счет высоковольтного напряжения между контактами, к примеру как в свече двигателя внутреннего сгорания искра пробивается на расстоянии. По такому же принципу работает осциллятор

Схема осциллятора Евгения

В поисках хорошей схемы долго я скитался по просторам рунета, схемы все время чем то не нравились, но вот наткнулся на каком то форуме на схему от Евгения. Выкладываю схему в оригинале

Человек построил схему на базе принципиальной схемы обратнохода на UC3842-5 и трансформатора строчника телевизора. Мне эта идея очень понравилась, но к сожалению у меня нет этой микросхемы и я решил сделать схему на базе таймера NE555.

Схема осциллятора на NE555

На базе NE555 можно собрать неплохой генератор прямоугольных импульсов, усилить его драйвером на транзисторах для управления полевым транзистором и гонять преобразующий трансформатор.
Разберу схему с начала. Питать осциллятор решил от отдельного блока питания 30В, после диодного моста напряжение примерно 45В. На Q1R2R5D6C2C3 собран источник опорного напряжения для питания генератора и драйвера. На R3R4R8D5C6C7 и таймере 555 собран генератор прямоугольных импульсов скважностью 60%, R6Q2Q5 драйвер для управления Q3. C1R1D3 RCD клампер для подавления выбросов с трансформатора.
После трансформатора высокое напряжение свыше 1000В поэтому установлен высоковольтный диод HVR-1×4, такой диод можно найти в микроволновке, он способен выдержать до 12кВ. Между плюсом и минусом установлен разрядник из свечи с мопеда, после через конденсатор установлен развязывающий трансформатор, через который пропускается сам сварочный кабель. Второй трансформатор уже подает высоковольтное напряжение на держак и массу

В точке А схема осциллятора соединяется с датчиком тока, он необходим для работы осцилятора в нужный момент. То есть когда дуга не зажжена и ток не течет через кабель, осциллятор работает выдавая высоковольтное напряжение. Когда дуга зажигается, через датчик тока на трансформаторе проходит какой то ток, с трансформатора на компаратор поступает напряжение, компаратор открывает транзистор C945 и работа осциллятора останавливается. Эта мера необходима, что бы осциллятор работал только для розжига и поддержания дуги когда она затухает, все остальное время осциллятор как бы в режиме ожидания

Датчик тока построен на повторителе из первого ОУ, для согласования напряжения с датчика и компаратора, и собственно самого компаратора, который сравнивает опорное напряжение с напряжением с датчика тока. В качестве датчика тока выступает обычный трансформатор 50ГЦ, как расчитать его описано в статье Расчет трансформатора тока

Печатная плата осциллятора

Со схемой немного определился и принялся за разводку платы, кусок текстолита взял 160*100мм

Разводя печатную плату стремился сделать ее как можно компактней, но добиться этого удалось только в управляющей части схемы, в высоковольтной части все компоненты разместил подальше друг от друга, что бы избежать пробоя ведь напряжения немалые

Расчет трансформатора Flyback

Пока печатка травилась в растворе медного купороса решил заняться трансформатором. Для расчета использовал программку Flyback 8.1, замерил размеры магнитопровода и ввел все в программку.
Задал напряжение питания 30В и частоту генератора 48кГц, напряжение на вторичке выставлял таким образом, что бы количество витков вторички равнялось примерно 700, по паспорту это количество витков внутри залитой эпоксидкой катушке
Нажав на кнопку рассчитать я получил точное количество витков первички и диаметр кабеля, а так же зазор на магнитопроводе

На ферритовый магнитопровод намотал пару витков молярного скотча, поверх него намотал 23 витка проводом диаметром 0,63 и сверху намотал скотчем еще пару слоев для изоляции
После намотки принялся за сборку платы. Собрал ИОН и генератор. Установил трансформатор Т1 и диод с разрядником, установлено все кроме RCD клампера. Клампер рассчитываю в той же программе. Задаю емкость конденсатора и рассчитываю диод и сопротивление резистора

Собрал все в кучу, прикрутил на радиатор через прокладки транзисторы, теперь можно и пробное включение сделать.

Включил через лампу на секунду другую. Лампа светится, но не в весь накал, искра стала пробиваться, значит генератор работает. Удалил лампу с цепи, сделал замеры на ИОН там 15В как и надо.

На генераторе есть импульсы, искра пробивается значит можно продолжать сборку и собирать датчик тока.
Установил второй трансформатор и временно установил последовательно два конденсатора 1600В 2,2нФ, так как не было подходящего. На второй трансформатор временно намотал витков для проверки работы схемы

Схема работает отлично, осциллятор работает. Осталось только доработать датчик тока, но так как товарищ еще не привез сварку, испытывать нечем. О его работе я расскажу в следующей статье, а пока устройство лежит ждет своего времени

Не хотите тратить время на сборку платы и настройку, закажите готовый модуль из Китая
для питания от переменного напряжения 220В модуль стоит 1200 рублей, ссылка вот

переменного напряжения 24V

Так же вы можете приобрести осциллятор с питанием от 24В стоимостью 1500 рублей, ссылка вот

Если вы серьезно заинтересованный этой темой, рекомендую прочитать последнюю статью по самодельному аргонодуговому аппарату для алюминия, так же можете прочитать про первый горький опыт Самодельная сварка аргоном. Переделка переменного сварочного аппарата

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки


Работа устройства очень проста. При нажатии на кнопку, которая установлена на сварочной вилке, происходит зарядка конденсаторов до 30 В. После этого на сварочной вилке появляется потенциал, так как конденсаторы подключены параллельно вилке. Для того чтобы сварить металлы соединяем их и прижимаем вилкой. При замыкании контактов происходит короткое замыкание, в результате чего проскакивают искры и металлы свариваются между собой.

Простой аппарат для точечной сварки

Сборка аппарата для сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки


Припаиваем конденсаторы между собой.
Делаем сварочную вилку. Для этого берем два отрезка толстой медной проволоки. И припаиваем к проводам, изолируем места пайки изолентой.
Корпусом вилки будет служить алюминиевая трубка с пластиковой заглушкой, через которую будут торчать сварочные вывода. Чтобы вывода не проваливались, сажаем их на клей.

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки


То есть к сварочной вилке идут четыре провода: два для сварочных электродов и два для кнопки.
Собираем устройство, припаиваем вилку и кнопку.

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки


Измеряем напряжение на конденсаторах. Оно примерно равно 30 В, что вполне приемлемо.
Пробуем сваривать металлы. В принципе терпимо, учитывая то что я взял не совсем новые конденсаторы. Лента держится довольно неплохо.

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки

Простой аппарат для точечной сварки


Первое, что бросается в глаза, так это большее число конденсаторов, что существенно повышает мощность всего аппарата.
Далее, вместо кнопки – резистор сопротивлением 10-100 Ом. Я решил, что хватит с кнопкой баловаться – все заряжается само через 1-2 секунды. Плюс ко всему кнопка не залипает. Ведь ток мгновенного заряда также порядочный.
И третье это дроссель в цепи вилки, состоящий из 30-100 витков толстой проволоки на ферритовом сердечнике. Благодаря этому дросселю будет увеличено мгновенное время сварки, что повысит её качество, и будет продлена жизнь конденсаторов.


Конденсаторы, эксплуатирующийся в таком аппарате контактной сварки обречены на ранний выход из строя, так как такие перегрузки им не желательны. Но их с лихвой хватит на несколько сотен сварочных соединений.

Сморите видео сборки и испытаний


Мини сварочный аппарат 12 В

С помощью этого простого сварочного аппарата вы сможете резать тонкие металлы, сваривать медные провода, наносить гравировку на металлическую поверхность. Без проблем можно найти и другие применения. Такой мини сварочный аппарат возможно питать напряжением 12-24 В.

Мини сварочный аппарат 12 В


В основе сварочного аппарата лежит высоковольтный преобразователь высокой частоты. Построенный по принципу блокинг-генератора с глубокой трансформаторной обратной связью. Генератор формирует кратковременные электрические импульсы, повторяющиеся через сравнительно большие интервалы. Частота тактирования лежит в пределах 10-100 кГц.
Коэффициент трансформации этой схемы будет 1 к 25. Это значит, что если подать на схему напряжение 20 В, то на выходе должно быть порядка 500 В. Это не совсем так. Так как любой импульсный трансформаторный источник или генератор без нагрузки имеет мощные высоковольтные импульсы, достигающие напряжения 30000 В! Поэтому, если вы разберете любую импульсную китайскую зарядку, то увидите параллельно выходному конденсатору подпаянный резистор. Это и сеть нагрузка, без резистора выходной конденсатор быстро вытечет из-за превышения напряжение, или хуже того взорвется.
Поэтому, внимание! Напряжение на выходе трансформатора опасно для жизни!

Схема мини сварочного аппарата

Мини сварочный аппарат 12 В

  • Трансформатор – самодельный, порядок изготовления описан ниже.
  • Резисторы – мощностью 0,5-2 Вт.
  • Транзистор был использован FP1016, но его трудно найти из-за его специфичности. Можно заменить на транзистор 2SB1587, КТ825, КТ837, КТ835 или кт829 с изменением полярности источника питания. Подойдет и другой транзистор с током коллектора от 7 А, напряжением коллектор-эмиттер от 150 В, с большим коэффициентом усиления (составной транзистор).

Мини сварочный аппарат 12 В

Изготовление трансформатора

  • Обмотка коллектора – 20 витков провода 1 мм.
  • Обмотка базы – 5 витков поводом 0,5-1 мм.
  • Высоковольтная обмотка – 500 витков поводом 0,14-0,25 мм.

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В


Собираем схему. Если все исправно – должно запуститься все без проблем. Так как рабочая частота генератора превышает звуковую частоту, то писк при работе вы не услышите, так что не стоит прикасаться к выходу трансформатора руками.

Мини сварочный аппарат 12 В


Запуск генератора начните с напряжения 12 Вольт и при необходимости повышайте.
Дуга зажигается с расстояния 1 см, что свидетельствует о напряжении 30 кВ. Высокая частота не дает разорваться горящей дуге, вследствие чего дуга горит очень стабильно. При использовании медного электрода при близком контакте с другим электродом образуется плазменная среда (плазма меди) в результате чего повышается температура дуговой сварки-резки.

Испытания сварочного аппарата резкой и сваркой

Мини сварочный аппарат 12 В

Мини сварочный аппарат 12 В


В роли электрода использовалась толстая медная проволока. Он зажат в деревянной спичке, так как сухое дерево является и хорошим изолятором.

Мини сварочный аппарат 12 В


Если вам понравился этот небольшой сварочный аппарат, то вы можете сделать его и больших размеров, и мощности. Но будьте крайне осторожны.
Также для увеличения мощности можно собрать генератор по двухтактной схеме, да ещё и на полевых транзисторах, как тут – Простой индукционный нагреватель 12 В. В этом случае мощность будет порядочная.
Также не стоит смотреть на яркие разряды дуги не вооруженным взглядом, используйте специальные защитные очки.

Смотрите видео изготовления сварочного аппарата на блокинг-генераторе



Читайте также: