Uc3845 описание принцип работы схема включения в сварочном инверторе

Обновлено: 17.05.2024

UC3845
ПРИНЦИП РАБОТЫ

Исходя из приведенной таблицы понятно, что UC3845 далеко не лучший вариант этой микросхемы, поскольку нижний предел по температуре у нее ограничен нулем градусов. Причина довольна проста - не каждый хранит сварочный аппарат в отапливаемом помещении и возможна ситуация, когда нужно что то подварить в межсезонье, а сварочник или не включается или банально взрывается. нет, не в клочья, даже куски силовых транзисторов врядли вылетят, но в любом сварки не будет, да еще и ремонт сварочнику нужен. Проскочив по Али я пришел к выводу, что проблема вполне решаема. Конечно же UC3845 популярней и их в продаже больше, но и UC2845 тоже есть в продаже:

У остальных производителей дела чуточки по другому:

Зависимость частоты RC у микросхемы UC3845 от Fairchild


Зависимость частоты от номиналов RC у микросхемы от Fairchild

Зависимость частоты RC у микросхемы UC3845 от STMicroelectronics


Зависимость частоты от номиналов RC у микросхемы от STMicroelectronics

Зависимость частоты RC у микросхемы UC3845 от UNISONIC TECHNOLOGIES CO


Зависимость частоты от номиналов RC у микросхемы от UNISONIC TECHNOLOGIES CO

С тактового генератора получаются довольно короткие импульсы в виде логической единицы. Эти импульсы разбигаются на три блока:
1. Все тот же финальный сумматор DD4
2. D-триггер DD2
3. RS-триггер на DD5
Триггер DD2 имеется только в микросхемах подсерии 44 и 45. Именно он не дает длительности управляющего импульса стать длинее 50% от периода, поскольку он с каждым приходящим фронтом логической единицы с тактового генератора меняет свое состояние на противоположное. Этим он делит частоту на два, формируя одинаковые по длительности нули и единицы.
Происходит это довольно примитивным образом - с каждым приходящим фронтом на тактовый вход С триггер записывает в себя информацию, находящуюся на информационном входе D, а вход D соединен с инверсным выходом микросхемы. За счет внутренней задержки и происходит запись проинвертированной информации. Например на инвертируюющем выходе находится уровень логического нуля. С приходом фронта импульса на вход С триггер успевает записать этот ноль, до того как ноль появится на его прямом выходе. Ну а если ня прямом выходе у нас ноль, то на инверсном будет логическая единица. С приходом следующего фронта тактового импульса триггер уже записывает в себя логическую единицу, которая появится на выходе через какие то наносекунды. Запись логической единицы приводит к появлению логического нуля на инверсном выходе триггера и процесс начнет повторяться со следующего фронта тактового импульса.

Работа D триггера

Именно по этой причине у микросхем UC3844 и UC3845 выходная частота в 2 раза меньше, чем у UC3842 и UC3843 - ее делит триггер.
Попадая на вход установки единицы RS триггера DD5 первый же импуль переводит триггер в состояние, когда на его прямом выходе логическая единица, а на инверсном - ноль. И пока на входе R не появится единица триггер DD5 будет находится в этом состоянии.
Допустим у нас нет ни каких управляющих сигналов извне, тогда на выходе усилителя ошибки OP1 появится напряжение близкое к опорному напряжению - обратной связи нет, инвертирующий вход в воздухе, а на не инвертирующий подано опорное напряжение, равное 2,5 вольта.
Тут сразу оговорюсь - лично меня несколько смутил этот усилитель ошибки, но более внимательно изучив даташит и благодаря тыканьем носом подписчиков выяснилось, что выход у этого усилителя не совсем традиционный. В выходном каскаде OP1 всего один транзистор, соединяющий выход с общим проводом. Положительное напряжение формируется генератором тока, когда этот транзистор приоткрыт или закрыт полностью.
С выхода OP1 напряжение проходит своеобразный ограничитель и делитель напряжения 2R-R. Кроме этого эта же шина имеет ограничение по напряжению в 1 вольт, так что при любых условиях на инвертирующий вход OP2 больше одного вольта не попадает ни при каких условиях.
OP2 - по сути компаратор, сравнивающий напряжения на своих входах, но компаратор тоже хитроделанный - обычный операционный усилитель не может сравнивать столь низкие напряжения - от фактического нуля до одного вольта. Обычному ОУ нужно либо большее напряжение на входе, либо отрицательное плечо напряжения питания, т.е. двуполярное напряжение. Этот же компаратор довольно легко справляется с анализом этих напряжений, не исключено, что внутри какие то смещающие элементы, но до принципиальной схемы нам как бы особого дела нет.
В общем OP2 сравнивает напряжение приходящее с выхода усилителя ошибки, точнее те остатки напряжения, которые получаются после прохождения делителя с напряжением на третьем выводе микросхемы (корпус DIP-8 имеется ввиду).
Но в данный момент времени на третьем выводе у нас вообще ни чего нет, а на инвертирующий вход подано положительное напряжение. Естественно компаратор его проинвертирует и на своем выходе образует четкий логический ноль, что на состоянии RS-триггера DD5 ни как не отразится.
По итогам происходящего мы имеет на первом сверху вход DD4 логический ноль, поскольку питание у нас в норме, на втором входе у нас короткие импульсы с тактового генератора, на третьем входе у нас импульсы с D-триггера DD2, у которых одинаковая длительность нуля и единицы. На и на четвертом входе у нас логический ноль с RS-триггера DD5. В результате на выхоже логического элемента будут полностью повторяться импульсы, которые формирует D-триггер DD2. Следовательно как только на на прямом выходе DD4 будет появляться логическая единица будет открываться транзистор VT2. На инверсном выходе в это же время будет находится логический ноль и транзистор VT1 будет закрыт. Как только на выходе DD4 появится логический ноль VT2 закрывается, а инверсный выход DD4 откроет VT1, что и послужит поводом для открытия силового транзистора.
Ток, который выдерживают VT1 и VT2 равен одному амперу, следовательно данная микросхема с успехом может управлять сравнительно мощными MOSFET транзисторами без дополнительных драйверов.
Для того, чтобы понять как именно происходит регулировка происходящих в блоке питания процессов был собран самый простой бустер, поскольку он требует наименьшего количества моточных деталей. Было взято первое попавшееся под руки ЗЕЛЕНОЕ кольцо и на нем намотано 30 витков. Количество не вычислялось вообще, просто был намотан один слой обмотки и не более того. За потребление я не переживал - микросхема работает в широком диапазоне частот и если начинать с частот под 100 кГц, то этого уже будет вполне достаточно, чтобы не дать сердечнику войти в насыщение.

Все внешние элементы имеют приписку out, означающую, что это СНАРУЖИ микросхемы деталюшки.
Сразу распишу что на этой схеме и для чего.
VT1 - база по сути в воздухе, на плате запаяны торчки для одевания джамперов, т.е. база соединяется либо с землей, либо с пилой, вырабатываемой самой микросхемой. На плате нет резистора Rout 9 - я чет пропустил его необходимость.
Оптрон Uout 1 задействует усилитель ошибки OP1 для регулировки выходного напряжения, степень влияние регулируется резистором Rout 2. Оптрон Uout 2 контролирует выходное напряжения минуя усилитель ошибки, степень влияния регулируется резистором Rout 4. Rout 14 - токоизмерительный резистор, специально взят на 2 Ома, чтобы не ушатать силовой транзистор. Rout 13 - регулировка порога сработки ограничения по току. Ну и Rout 8 - регулировка тактовой частоты самого контроллера.

Силовой транзистор это что то выпаянное из ремонтируемого когда то автомобильного преобразователя - полыхнуло одно плечо, менял все транзисторы (почему ВСЕ ответ ТУТ), а это так сказать сдача. Так что я не знаю что это - надпись сильно потертая, в общем это что то ампер на 40-50.
Rout 15 типа нагрузка - 2 Вт на 150 Ом, но 2 Вт маловато оказалось. Нужно или сопротивление увеличить, либо мощность резистора - вонять начинает, если поработает минут 5-10.
VDout 1 - для исключения влияния основного питания на работу контроллера (HER104 кажется по руки попался), VDout 2 - HER308, ну это чтоб не сразу бахнуло, если что пойдет не так.
Необходимость резистора R9я понял, когда плата уже была запаяна. В принципе этот резистор нужно будет еще подобрать, но это уже чисто по желанию, кому ОЧЕНЬ хочется избавится от релейного способа стабилизации на холостом ходу. Об этому чуть позже, а пока влепил этот резистор со стороны дорожек:

Установка R9 на палту

Первое включение - движки ВСЕХ подстрочников соединены должны быть с землей, т.е не оказывают влияния на схему. Движок Rout 8 установлен так, чтобы сопротивление этого резистора составляло 2-3 кОм, поскольку конденсатор на 2,2 нФ, то частота должна получится порядка 300 с хвостиком кГц, следовательно на выходе UC3845 мы получим где то около 150 кГц.

Снимаем напряжение со светодиода Uout 2 и на всякий случай проверям наличие пилы на верхнем выводе R15 (желтый луч):

Напряжение на токовом резисторе

Амплитуда чуть больше вольта и этой амплитуды может не хватить, ведь на схеме имеются делители напряжения. На всякий случай выкручиваем движок подстроечного резистора R13 в верхнее положение и контролируем, что у нас происходит на третьем выводе микросхемы. В принципе надежды полностью оправдались - амплитуды не хватает для начала ограничения тока (желтый лучик):

Отличительной чертой UC3845 является то, что протекающий через силовой транзистор он контролирует практически на каждом такте работы, а не среднее значение, как например это делает TL494 и если блок питания спроектирован правильно, то ушатать силовой транзистор не получится ни когда.
Теперь поднимаем частоту до тех пор, пока ограничение тока перестанет вносить свое влияние, впрочем сделаем запас - ставим ровно 100 кГц. Синий лучик у нас по прежнему показывает управляющие импульсы, а вот желтый ставим на светодиод оптрона Uout 1 и начинаем вращать регулятор подстроечного резистора. Некоторое время осциллограмма выглядит так же, как при первом опыте, однако появляется и отличие пройдя порог регулирования длительность импульсов начинает уменьшаться, т.е происходит реальная регулировка посредством широтно-импульсной модуляции. И это как раз один из финтов данной микросхемы - в качестве опорной пилы для сравнения она использует пилу, которая формируется на токоограничивающем резисторе R14 и таким образом создает стабилизированное напряжение на выходе:

Тоже самое происходит и при увеличении напряжения на отпроне Uout 2, правда в мое варианте не получилось получить такие же короткие импульсы, как в первый раз - не хватило яркости светодиода оптрона, а уменьшать резистор Rout 3 я поленился.
В любом случае стабилизация ШИМ происходит и вполне устойчиво, но только при наличии нагрузки, т.е. появление пилы, даже не большого значения, на выводе 3 контроллера. Без этой пилы стабилизация будет осуществляться в релейном режиме.
Теперь переключаем базу транзистора на вывод 4, тем самым принудительно подавая пилу на вывод 3. Тут не большая спотыкачка - для этого финта придется подобрать резистор Rout 9, поскольку амплитуда пыли и уровень постоянной составляющей у меня получился несколько великоват.

Принудительная пила на выводе 3

Однако сейчас больше интересен сам принцип работы, поэтому проверяем его, опустив движок подстроечника Rout 13 на землю начинаем вращать Rout 1.
Изменения в длительности управляющего импульса имеются, но они не такие значимые, как хотелось бы - сильно сказывается большая постоянная составляющая. При желании использовать такой вариант включения нужно более тщательно продумать как его правильней организовать. Ну а картинка на осциллографе получилась следующая:

При дальнейшем увеличении напряжения на светодиоде оптрона происходит срыв на релейный режим работы.
Теперь можно проверить нагрузочную способность бустера. Для этого вводим ограничение по напряжение на выходе, т.е. подаем не большое напряжение на светодиод Uout 1 и уменьшаем рабочую частоту. На социлограмме отчетливо видно, что желтый лучик не доходит до уровня одного вольта, т.е. ограничения по току нет. Ограничение дает только регулировка выходного напряжения.
Параллельно нагрузочному резистору Rour 15 устанавливаем еще один резистор на 100 Ом и на осциллограмме отчетливо видно увеличение длительности управляющего импульса, что ведет к увеличению времени накопления энергии в дросселе и с последующей отдачей ее в нагрузку:

Так же не трудно заметить, что увеличивая нагрузку увеличивается и амплитуда напряжения на выводе 3, поскольку возрастает протекающий через силовой транзистор ток.
Осталось посмотреть, что происходит на стоке в режиме стабилизации и при ее полном отсутствии. Становимся синим лучем на сток транзистора и убираем напряжение обратной связи со светодиода. Осциллограмма сильно не устойчивая, поскольку осциллограф не может определить по какому фронту ему синхронизироваться - после импульса довольно приличная "болтака" самоиндукции. В итоге получается следующая картинка.

Напряжение на нагрузочном резисторе тоже изменяется, но я не буду делать ГИФку - страница и так получилась довольно "тяжелой" по трафику, поэтому со всей ответственность заявляю - напряжение на нагрузке равно напряжению максимального значения на картинке выше минус 0,5 вольта.

ПОДВОДИМ ИТОГИ

На микросхеме довольно легко организовать стабилизатор тока, причем контроль протекающего тока контролируется на каждом такте, что полностью исключает перегрузку силового каскада при правильном выборе силового транзистора и токоограничивающего, точнее измерительного резистора, устанавливаемого на исток полевого транзистора. Именно этот факт сделал UC3845 наиболее популярной при проектировании бытовых сварочных аппаратов.
UC3845 имеет довольно серьезные "грабли" - изготовитель не рекомендует использовать микросхему при температурах ниже нуля, поэтому при изготовлении сварочных аппаратов будет логичней использование UC2845 или UC1845, но последние находятся в некотором дефиците. UC2845 несколько дороже, чем UC3845, не так катастрофически, как это обозначили отечественные продавцы (цены в рублях на 1-е марта 2017).

Цены в рублях

Частота у микросхем ХХ44 и ХХ45 в 2 раза меньше тактовой частоты, а коф заполнение не может превышать 50%, то для преобразователей с трансформатором наиболее благоприятно. А вот микросхемы ХХ42 и ХХ43 наилучшим образом подходят для ШИМ стабилизаторов, поскольку длительность управляющего импульса может достигать 100%.

Теперь, поняв принцип работы данного ШИМ контроллера можно вернуться и к проектированию сварочного аппарата на его основе.

Как работает сварочный инвертор?

Устройство сварочного инвертора

Продолжаем изучение сварочного инвертора «Telwin». В первой части было рассказано о силовой части схемы аппарата. Пришло время разобраться в управляющей части схемы.

Вот принципиальная схема управляющей части и драйвера (control and driver).

Кликните по картинке. Рисунок схемы откроется в новом окне. Так будет удобнее более детально изучить схему.

Схема управления и драйвера Telwin Tecnica 144-164

Схема управления и драйвер.

Мозгом устройства можно считать микросхему ШИМ-контроллера. Именно она управляет работой мощных транзисторов и, так сказать, задаёт темп работы преобразователя. В зависимости от модели аппарата могут использоваться микросхемы ШИМ-контроллера типа UC3845AD (Tecnica 144-164) или VIPer20A (Tecnica 141-161, 150, 152, 170, 168GE). Микросхему ШИМ-контроллера легко найти на принципиальной схеме. Ну, а что в железе?

Далее на фото показана часть платы инвертора Telwin Force 165.

Элементы схемы управления

Обратимся к схеме.

По схеме микросхема ШИМ-контроллера U1 управляет работой полевого N-канального MOSFET-транзистора IRFD110 (Q4). Корпус у этого полевого транзистора довольно нестандартный (HEXDIP) – внешне похож на оптопару.

Внешний вид транзистора IRFD110

С вывода стока (D) транзистора Q4 на первичную обмотку разделителного трансформатора T1 поступают прямоугольные импульсы частотой около 65 кГц. У трансформатора T1 имеется 2 вторичные обмотки (3-4 и 5-6), с которых снимаются сигналы для управления мощными ключевыми транзисторами Q5, Q8 (см. схему силовой части).

Схема на транзисторах Q6, Q7 и "обвязка" этих транзисторов нужна для правильной работы ключевых транзисторов Q5, Q8. Транзисторы Q6, Q7 в основном помогают транзисторам Q5, Q8 закрываться. Как мы уже знаем из первой части, в качестве транзисторов Q5, Q8 используются либо IGBT-транзисторы, либо MOSFET. А это накладывает некоторые требования на процесс управления ими.

Стабилитроны D16, D17, D29, D30 (на 18V) защищают IGBT-транзисторы от превышения допустимого напряжения между затвором (G) и эмиттером (E).

Цепи регулировки и контроля.

На печатной плате сварочного инвертора «TELWIN Force 165» можно обнаружить занятную деталь – трансформатор тока T2.

Трансформатор тока

Эта деталь участвует в работе анализатора-ограничителя тока. По принципиальной схеме видно, что трансформатор тока включен в цепь первичной обмотки трансформатора T3. За счёт индукции электромагнитного поля в трансформаторе тока T2 наводится переменное напряжение. Далее это напряжение выпрямляется и ограничивается схемой на элементах D2, D4, R49, R25,R15, R9, R3, R20, R10. За счёт этой схемы контролируется сила тока в первичной обмотке трансформатора T3, а сигналы, полученные от неё, участвуют в работе «задатчика» сварочного тока и генератора импульсов на микросхеме U1.

Схема контроля напряжения сети и выходного напряжения.

Для контроля напряжения в электросети, а также выходного напряжения (OUT+, OUT-) сварочного аппарата используется схема, состоящая из элементов операционного усилителя (ОУ) на микросхеме LM324: U2A и U2B.

Элементы делителя R1, R5, R14, R19, R24, R29, R36 и R38 подключены к входному сетевому выпрямителю и служат для обнаружения завышенного или заниженного напряжения в электросети.

На элементе U2C операционного усилителя LM324 выполнен суммирующий блок. Он складывает сигналы защиты по напряжению и току. Результирующий сигнал подаётся на задающий генератор импульсов – ШИМ контроллер (UC3845AD). При аварии, схема защиты и контроля подаёт сигнал на суммирующий блок. Он в свою очередь блокирует работу генератора, а, следовательно, и всей схемы.

Микросхемы узла контроля и управления

Выходное напряжение снимается с выходов «OUT+», «OUT-» и через элемент гальванической развязки – оптрон ISO1 (H11817B), поступает в схему контроля (U2A, U2B). Так осуществляется отслеживание параметров выходного напряжения.

Оптрон обратной связи и выходные разъёмы

В случае если напряжение в электросети завышено или занижено, сработает компаратор на элементе U2A и подаст сигнал на транзистор Q1 (BC807) через делитель на резисторах R12, R11. Транзистор Q1 откроется и закоротит на корпус (общий провод) вход 10 элемента U2C. Это приведёт к блокировке работы микросхемы U1 – генератора задающих импульсов. Схема выключится.

Одновременно с этим, за счёт подачи напряжения с выхода 1 компаратора U2A засветится жёлтый светодиод D12 (Giallo – "жёлтый"), указывающий на то, что в схеме неисправность или есть проблемы с сетевым питанием. Светодиод D12 показан на силовой части схемы и подключен к CN1-1. Таким же образом сработает схема, если на выходе выпрямителя (OUT+, OUT-) параметры выйдут за рамки установленных. Такое может произойти, например, при неисправностях выпрямительных диодов или если выйдут из строя детали узла контроля – оптрон ISO1 или элементы его «обвязки», полупроводниковый диод D25, стабилитрон D15, резисторы R57, R52, R51, R50 и электролитический конденсатор C29.

О других элементах схемы.

Биполярный транзистор Q9 подаёт напряжение питания на микросхему ШИМ-контроллера U1 (UC3845AD). Этот транзистор управляется элементом операционного усилителя U2B. На вывод 6 U2B подаётся напряжение с делителя на резисторах R64, R39 (см. схему силовой части). Если напряжение с делителя поступает, то U2B подаёт сигнал на транзистор Q9, который открывается и подаёт напряжение на микросхему U1.

Можно сказать, что эта схема участвует в запуске мощного инвертора, так как именно она подаёт питание на управляющий инвертором ШИМ-контроллер.

Ручная установка сварочного тока осуществляется переменным резистором R23.

Переменный резистор ручной регулировки сварочного тока

Ручка резистора выводится на панель управления аппарата.

Ручка задачи сварочного тока на панели сварочного инвертора

Также в цепи регулировки задействованы резисторы R73, R74, R21, R66, R68, R13 и конденсатор C14. Напряжение с цепи ручной регулировки поступает на 10 вывод элемента U2C суммирующего блока.

Как уже говорилось, сварочный инвертор имеет в своём составе множество регулирующих, контролирующих и защитных цепей. Все они нужны для штатной работы аппарата, а также защищают силовые элементы инвертора в случае аварийного режима.

Теперь, когда мы разобрались в работе сварочного инвертора пора рассказать о реальном примере ремонта сварочного инвертора «TELWIN Force 165». Об этом читайте здесь.

Устройство сварочного инвертора

Сварочный инверторный аппарат Telwin

В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.

Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.

Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.

В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.

Дальше будет много букв – наберитесь терпения .

Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.

Основные этапы преобразования энергии в инверторном сварочном аппарате:

1. Выпрямление переменного напряжения электросети 220V;

2. Преобразование постоянного напряжения в переменное высокой частоты;

3. Понижение высокочастотного напряжения;

4. Выпрямление пониженного высокочастотного напряжения.

Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.

Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.

Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.

Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.

Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.

Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.

Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.

Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к "мясу", а точнее к реальному железу и тому, как оно устроено.

Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.

Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.

Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.

Внешний вид платы Telwin Force 165 с обозначением элементов схемы

Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.

Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).

Схема силовой части сварочного аппарата Telwin Tecnica 144-164

Сетевой выпрямитель.

Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.

Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.

На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С°. Это элемент защиты.

В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) - 35А, обратное напряжение (VR) - 800V.

Термопредохранитель на радиаторе диодной сборки

После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.

Помеховый фильтр.

Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.

Фильтр ЭМС

Инвертор.

Схема инвертора собрана по схеме так называемого "косого моста". В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.

Полевой MOSFET транзистор на плате инвертора

Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.

Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.

Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.

Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.

За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.

Размеры этого самого трансформатора невелики.

Импульсный понижающий трансформатор

Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер!

Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.

Выходной выпрямитель.

Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).

Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.

В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.

Диоды выходного выпрямителя

Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).

Схема запуска и реализация «мягкого пуска».

Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.

Интегральный стабилизатор LM7815

Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.

Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».

Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – "Зелёный"). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.

Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.

В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.

Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.

После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.

На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).

Элементы схемы мягкого запуска

Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?

Шим-контроллеры серии UC184x, UC284x, UC384x.

В статье "TL494, что это за "зверь" такой?", мы рассматривали шим-контроллер TL494.
В этой статье мы рассмотрим не менее, а наверное даже может быть более распространённые шим-контроллеры серии 184х, 284х, 384х.
Все эти шим-контроллеры предназначены для построения импульсных источников питания РЭА, с регулированием по току и напряжению, для управления ключевым каскадом на n-канальном МОП транзисторе.
В принципе это одни и те же контроллеры, отличающиеся лишь диапазоном рабочих температур, в котором эти контроллеры надёжно работают.

UC3843

Для контроллеров х842 - КР1033ЕУ10, К1033ЕУ15А, 1114ЕУ7/ИМ.

Для контроллеров х843 - К1033ЕУ15Б, 1114ЕУ8/ИМ.

Для контроллеров х844 - КР1033ЕУ11, К1033ЕУ16А, 1114ЕУ9/ИМ.

Для контроллеров х843 - К1033ЕУ16Б, 1114ЕУ10/ИМ.

По традиции давайте посмотрим, что у него имеется внутри.

highslide.js

Состав.

В его составе имеется:
- источник опорного напряжения на 5В с внешним выводом 8;
- схема защиты от снижения напряжения питания (UVLO).
- генератор пилообразного напряжения (генератор);
- компаратор тока, используется в основном по сигналу ограничения тока;
- усилитель ошибки, используется в основном по напряжению;
- схема управления работой выходного каскада;

Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;


Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
- это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе "SOIC-14".

Назначение выводов микросхемы.

Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;

1. CMP - выход усилителя ошибки. Служит для коррекции АЧХ усилителя ошибки, с этой целью между выводами 1 и 2 обычно подключается конденсатор емкостью около 100 пФ. С помощью этого вывода, можно установить коэффициент усиления усилителя ошибки с помощью дополнительного резистора, который подключается к этим же выводам, что и конденсатор, а так же ещё и управлять работой контроллера.
Если на этом выводе уменьшить напряжение ниже 1-го вольта, то на выходе микросхемы (вывод 6) будет уменьшаться длительность импульсов, уменьшая при этом выходное напряжение (мощность) БП.

2. VFB - вход обратной связи усилителя ошибки. Используется в основном для регулировки (стабилизации) выходного напряжения. Если напряжение на этом выводе превысит 2,5 вольта (подаётся с внутреннего источника на не инвертирующий вход усилителя ошибки), то длительность (скважность) выходных импульсов начнёт уменьшаться, уменьшая тем самым выходное напряжение БП.

3. IS - сигнал обратной связи по току. Этот вывод обычно присоединен к резистору в цепи истока ключевого транзистора. В момент перегрузки МОП транзистора, напряжение на резисторе увеличивается и при увеличении его более 1-го вольта, импульсы на выходе 6 прекращаются и выходной транзистор закрывается.

4. RC - это вход генератора пилообразного напряжения и сюда подключается задающая RC- цепочка, для установки частоты внутреннего генератора.
Резистор от этого вывода подключается к выводу 8 - это вывод опорного напряжения 5 вольт, а конденсатор к общему проводу.
В основном на практике частота задающего генератора выбирается в диапазоне 35…85 кГц, и в RC-цепочке не рекомендуется использовать керамические конденсаторы.
Частота генератора рассчитывается по следующей формуле; - 1,72/R(кОм) * С(мкФ).

5. GND - общий вывод для первичной цепи. Этот вывод не должен быть напрямую соединён с общим выводом вторичных цепей схемы.

6. OUT - выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).

7. VCC - вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34. Более 34 вольт на микросхему подавать не рекомендуется, так как микросхема обладает защитой от перенапряжения, и если напряжение питания на ней превысит 34 вольта - микросхема отключится.

8. REF - выход внутреннего источника стабильного опорного напряжения 5 вольт, ток его нагрузки может достигать 50 мА.

Как это всё работает.

Микросхема работает в диапазоне напряжений, от порога выключения до 30 В. Для её запуска требуется первоначальное превышение питающего напряжения над порогом включения.
Пока напряжение питания не достигнет порога включения, микросхема не работает и потребляет незначительный ток: менее 500 мкА. Как только напряжение превысит порог включения микросхемы, она запускается и начинают работать все её узлы. Ток потребления микросхемой возрастает до 10-12 мА. При понижении питающего напряжения до порога отключения - микросхема отключается, ток её потребления опять падает.
Напряжение на выводе VCC ограничивается встроенным стабилитроном на уровне 34 В. Это дает возможность запустить микросхему от источника высокого напряжения, например выпрямленного сетевого напряжения через высокоомный резистор Rin, что позволяет организовать первоначальный запуск микросхемы (без дежурного блока питания), как показано на рисунке ниже.

Теперь давайте посмотрим на практике, как работает эта микросхема. Для этого на макетной плате соберём вот такую схему. Это более, чем достаточно для проверки её функциональности.

Запитывать нашу конструкцию будем от регулируемого блока питания, выходное напряжение выставим в районе 14-16 вольт, что вполне достаточно. Контроль выходных напряжений и сигналов будем производить с помощью осциллографа.

Макетная плата

Выходной сигнал будем контролировать на выводе 6 микросхемы. Сначала поставим на макетную плату микросхему UC3843 и посмотрим работу генератора пилообразного напряжения, и что у неё на выходе.
Первый луч осциллографа подключим на выход МС (вывод 6), второй к генератору пилообразного напряжения (вывод 4). Движки переменных резисторов вниз по схеме, чтобы не оказывалось влияния на работу микросхемы.

Осциллограмма 1

Видим, что с каждым импульсом генератора пилообразного напряжения, на выходе присутствует один импульс с коэффициентом заполнения около 100% (несколько процентов мёртвое время). То есть выходная частота соответствует частоте генератора.
Возьмём теперь микросхему UC3845, и сравним выходное напряжение с 3843.

Осциллограмма 2

Что мы видим? На один выходной импульс приходится два импульса генератора пилообразного напряжения. То есть выходная частота этой микросхемы будет в два раза меньше частоты задающего генератора. Коэффициент заполнения выходных импульсов здесь около 50%.
Посмотрим теперь как работает токовая защита. Для этого второй луч подключаем к выводу 3 микросхемы (первый на выходе МС и нулевой уровень этого луча на втором делении снизу). Нулевой уровень второго луча находится внизу экрана ниже нулевого уровня первого луча (луч на уровне одного деления).

Осциллограмма 3

Чувствительность второго луча ставим 0,5 вольт на деление. На выводе 3 входное напряжение пока отсутствует и импульсы на выходе (вывод 6) присутствуют.
Начинаем поднимать входное напряжение на выводе "3", имитируя увеличение тока через выходной транзистор.

Осциллограмма 4

Что мы видим? Как только входное напряжение на выводе "3" достигло порога в 1,0 вольт (луч поднялся на два деления), на выходе микросхемы импульсы прекратились.
Давайте посмотрим теперь, как происходит регулировка выходного напряжения блока питания микросхемой. Второй луч для этого теперь подключим к выводу "2" микросхемы.

Осциллограмма 5

На выводе "2" входное напряжение отсутствует. На выводе "6" имеются выходные импульсы. Чувствительность второго луча (нижнего) установлена 1,0 вольт на деление, он в самом низу экрана.
Начинаем потихоньку переменным резистором поднимать входное напряжение на выводе "2" микросхемы до тех пор, пока не будет какого либо изменения на выходе. Нижний луч начал подниматься вверх.

Осциллограмма 6

Что мы видим? Как только входное напряжение на выводе "2" поднялось до 2,5 вольт, может чуть повыше (нижний луч поднялся вверх на два с половиной деления), выходные импульсы на выводе "6" прекратились.
Давайте посмотрим теперь, что будет происходить на выходе усилителя ошибки при такой-же ситуации, то есть на выводе "1" микросхемы.
Второй луч подключаем к выводу "1", Чувствительность луча выставим 0,5 вольт на деление, напряжение на входе (вывод "2") опять уменьшаем.

Осциллограмма 7

Включаем питание, входное напряжение на выводе "2" минимально, на выводе "1" выходное напряжение в районе 2,5 вольт (нижний луч поднят на пять делений). Начинаем переменным резистором постепенно увеличивать напряжение на "2" выводе микросхемы. Верхний луч пополз вниз, то есть напряжение на выводе "1" начало уменьшаться.
Увеличиваем переменным резистором ещё больше входное напряжение на выводе "2", до каких либо изменений в выходном напряжении на выводе "6".

Осциллограмма 8

Всё, импульсы на выходе микросхемы прекратились, первый луч на своей нулевой отметке (второе деление снизу), напряжение на выводе "1" около 0,7 вольта (второй луч поднят чуть больше одного деления от своей нулевой линии).

Теперь всё, что мы увидели на практике, постараюсь теоретически изложить ниже.
В этой микросхеме стабилизация напряжения и токовая защита, происходит не так, как в ранее рассмотренной нами микросхеме TL494. Здесь мы не увидим плавное изменение ширины выходных импульсов от изменения входного напряжения на входе усилителя ошибки (вывод "2"), или на входе компаратора тока (вывод "3"), так как выходными импульсами микросхемы (выходным каскадом) управляет компаратор (компаратор тока), и он при превышении каких либо порогов, просто выключает выходной каскад, а потом при нормализации напряжений и токов - включает.
Инвертирующий вход этого компаратора внутренне смещён на 1,0 вольт. Ограничение (отключение) выходных импульсов происходит, если на выводе "3" компаратора превысить этот порог в 1,0 вольт, или если на выводе "1" уменьшить напряжение так, чтобы оно не превышало падения напряжения на двух последовательно включенных диодах ( у нас получилось около 0,7 вольт). Напряжение на этом выводе достигает такой величины, если входное напряжение на входе усилителя ошибки (вывод "2") превысит 2,5 вольта, потому что на не инвертирующий вход этого усилителя ошибки по внутренним цепям подаётся напряжение 2,5 вольт, то есть что-то похоже на работу TL-431.
Ещё вывод "1" можно использовать, как второй контур регулирования выходного напряжения, если к этому выходу, например подключить транзистор, управляемый светодиодом (оптрон), который связан с выходом БП. Можно так же по этому входу блокировать (аварийно отключить) микросхему, замыкая его транзистором, или ещё чем либо на общий провод.

Если объяснить более понятным языком, то управление выходным напряжением (током) осуществляется здесь тоже усилителями ошибки, как и в ТЛ494, только в той разнице, что в ТЛ494 изменяется скважность выходных импульсов, а здесь управление происходит пачками выходных импульсов.
То есть при включении БП, и на выходе МС появляются импульсы. Напряжение на выходе БП начинает расти, и при достижении установленного порога (например 12 вольт), когда до этого напряжения зарядится конденсатор фильтра - импульсы на выходе МС прекращаются.
Подключенная нагрузка потребляет ток и конденсатор разряжается. Выходное напряжение начинает понижаться и в этот момент (после определённого порога) включается МС и на выход опять поступают импульсы. После нескольких импульсов (пачки импульсов) конденсатор снова подзаряжается до установленного порога и импульсы опять прекращаются.
Если ток нагрузки небольшой, то для подзаряда конденсатора хватает нескольких импульсов (короткая пачка) и соответственно проходит больше времени для подачи на выход следующей пачки импульсов (больше расстояние между пачками импульсов).
При увеличении тока нагрузки, соответственно нужно большее кол-во импульсов в пачке (длинная пачка), чтобы зарядить конденсатор, и соответственно также уменьшается время и между пачками импульсов.
Если мы представим, что пачка импульсов - это один импульс (который может быть и уже и шире), а время (расстояние) между пачками - это время между каждым импульсом - здесь получается полный аналог ШИМ , как и ТЛ494.

Выходной каскад микросхемы выполнен по полу-мостовой схеме и рассчитан на средний ток около 200 мА, пиковый же ток может достигать 1,0 А и на этом уровне ограничивается микросхемой.
Выходной каскад может управлять, как мощным полевым, так и биполярным транзистором.

Ну вот по этим микросхемам, в принципе всё, что хотел сказать. В интернете очень много по ним написано, и есть много технической документации. Если хотите узнать по ним что-то большее и более углубленно, поисковик Вам в руки.

Uc3845 описание принцип работы схема включения в сварочном инверторе


На передней панели, попавшего в ремонт, сварочного инвертора Ресанта 220 ярко горел желтый светодиод, своим зловещим свечением предупреждая несчастного владельца аппарата о своей полной неготовности к проведению сварочных работ.

Выполнять свои прямые обязанности этот инвертор не желал.

Ремонт платы управления Ресанта 220 серии SH

По всем внешним признакам аппарат находился в глухой защите и выходить из нее без посторонней помощи не собирался.

Для начала измерим режим работы платы управления.


Таблица 1 Режим работы платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Получив данные измерений и сравнив с инструкцией по ремонту сварочных инверторов Ресанта серии SH, приходим к выводу, что дефект в самой ПУ. Управляющие импульсы на 2 ноге ПУ отсутствовали.

Выпаиваем ее. Как и чем выпаять ПУ можно посмотреть на видео здесь: Светящийся паяльник.

Вот так она выглядит.



Плата управления инвертора Ресанта серии SH


Для удобства работы и проведения измерений запаиваем ее с обратной стороны основной платы инвертора и попробуем включить аппарат.

Ничего не изменилось, аппарат как и прежде в защите, напряжения на выходе нет.

Снимаем режим работы микросхемы UC3845B.


Таблица 2 Режим работы микросхемы UC3845B платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Судя по измерениям питание на 7 ногу ШИМ не подается.

Теперь измерим режим работы микросхемы LM324N.


Таблица 3 Режим работы микросхемы LM324N платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Собрав всю информацию можно переходить к проверке деталей и в первую очередь нужно проверить цепочку которая идет к 7 ноге UC3845B это + питания микросхемы.

Проверка деталей выявила следующее - резистор R4 номиналом 4.7 кОм был в обрыве, в результате не срабатывал ключ на транзисторе Q01 и питание на ШИМ контроллер UC3845B не подавалось.



Заменим резистор, пока на скорую руку, и пробуем включить аппарат. Теперь все работает правильно, на 2 ноге ПУ появились управляющие импульсы.



Плату управления впаиваем как положено, и собираем аппарат. Теперь он полностью готов выполнять свои прямые обязанности - варить всегда, варить везде. ну и т.д. и т.п.

Внимание!
Отнеситесь с должным вниманием к ремонту системы управления сварочного инвертора, иначе можно окончательно угробить аппарат.

Ремонт сварочных инверторов Ресанта и других производителей.

Расскажите пользователям соцсетей, как работает этот сварочный инвертор. Отзывы о нем оставленные вами в комментариях помогут другим при покупке аппарата.

Читайте также: