Увеличение сварочного тока влияет

Обновлено: 18.05.2024

Влияние скорости сварки на глубину провара носит сложный характер. При малых скоростях сварки ( 1 - 1 5 м / ч) глубина провара минимальная. Повышение скорости сварки до некоторого значения приводит к увеличению глубины провара. Дальнейшее возрастание скорости приводит к уменьшению глубины провара. В пределах наиболее часто применяемых режимов сварки глубина провара изменяется незначительно с изменением скорости сварки. [1]

Влияние скорости сварки на надежность защиты зоны сварки видно из рис. XI.6. Ветер и сквозняки также снижают эффективность газовой защиты. В названных случаях рекомендуется на 20 - 30 % повышать расход защитного газа, увеличивать диаметр выходного отверстия сопла или приближать горелку к поверхности детали. Для защиты от ветра зону сварки закрывают щитками. Для достаточной защиты соединений, указанных на рис. XI.7, в, г, необходим повышенный расход газа. При их сварке рекомендуется устанавливать сбоку и параллельно шву экраны, задерживающие утечку защитного газа. [3]

Влияние скорости сварки на надежность защиты зоны сварки видно из рис. XI.6. Ветер и сквозняки также снижают эффективность газовой защиты. В названных случаях рекомендуется на 20 - 30 % повышать расход защитного газа, увеличивать диаметр выходного отверстия сопла или приближать горелку к поверхности детали. Для защиты от ветра зону сварки закрывают щитками. Для достаточной защиты соединений, указанных на рис, XI.7, а, г, необходим повышенный расход газа. При их сварке рекомендуется устанавливать сбоку и параллельно шву экраны, задерживающие утечку защитного газа. [5]

Влияние скорости сварки на глубину погружения дуги носит сложный характер. При малых скоростях ( порядка 10 - 12 и / ч при сварке под флюсом и 1 0 - 1 5 м / ч при ручной дуговой сварке) глубина провара минимальна. Это обусловлено уменьшением интенсивности вытеснения сварочной ванны из-под основания дуги при характерном для этих случаев вертикальном ее расположении. У основания дуги образуется слой жидкого металла, который препятствует проплавлению основного металла. [6]

Влияние скорости сварки ( см. рис. 4.11, в) на глубину проплавления и ширину шва носит сложный характер. Сначала при увеличении скорости сварки давление дуги все больше вытесняет жидкий металл, толщина прослойки жидкого металла под дугой уменьшается и глубина проплавления возрастает. При дальнейшем увеличении скорости сварки ( 20 м / ч) заметно снижается погонная энергия и глубина проплавления начинает уменьшаться. Во всех случаях при увеличении скорости сварки ширина шва уменьшается. [8]

Влияние скорости сварки на форму и качество шва показано на фиг. [9]

Рассмотрим влияние скорости сварки и эффективной мощности источника на поле температур на примере сварки пластин. [10]

Рассмотрим влияние скорости сварки а и эффективной мощности источника теплоты q на температурное поле предельного состояния при сварке пластин. [11]

В табл. 79 приведены данные по влиянию скорости сварки на размеры шва. [12]

Изменение скорости сварки обычно сопровождается соответствующим увеличением сварочного тока и напряжения дуги. При этом время взаимодействия жидкого металла и газа изменяется в небольшой степени. Поэтому увеличение или уменьшение скорости практически не влияет на выгорание элементов при сварке в углекислом газе. Влияние скорости сварки на химический состав металла шва в основном сводится к изменению долей основного и электродного металлов в шве. [13]

Влияние параметров режима на форму и размеры шва при сварке под флюсом

Форма и размеры шва зависят от многих параметров режима сварки под флюсом: величины сварочного тока, напряжения дуги, диаметра электродной проволоки, скорости сварки и др. Такие параметры, как наклон электрода или изделия, величина вылета электрода, грануляция флюса, род тока и полярность и т. п. оказывают меньшее влияние на форму и размеры шва.

Влияние параметров режима на форму и размеры шва обычно рассматривают при изменении одного из них и сохранении остальных постоянными. Приводимые ниже закономерности относятся к случаю наплавки на пластину, когда глубина проплавления не превышает 0,7 ее толщины (при большей глубине проплавления ухудшение теплоотвода от нижней части сварочной ванны резко увеличивает глубину проплавления и изменяет форму и размеры шва).

С увеличением силы сварочного тока глубина проплавления возрастает почти линейно до некоторой величины. Это объясняется ростом давления дуги на поверхность сварочной ванны, которым оттесняется расплавленный металл из-под дуги (улучшаются условия теплопередачи от дуги к основному металлу), и увеличением погонной энергии. Ввиду того, что повышается количество расплавляемого электродного металла, увеличивается и высота усиления шва. Ширина шва возрастает незначительно, так как дуга заглубляется в основной металл (находится ниже плоскости основного металла).

Увеличение плотности сварочного тока (уменьшение диаметра электрода при постоянном токе) позволяет резко увеличить глубину проплавления. Это объясняется уменьшением подвижности дуги. Ширина шва при этом уменьшается. Путем уменьшения диаметра электродной проволоки можно получить шов с требуемой глубиной проплавления в случае, если величина максимального сварочного тока, обеспечиваемая источником питания дуги, ограничена. Однако при этом уменьшается коэффициент формы провара шва.

Род и полярность тока оказывают значительное влияние на форму и размеры шва, что объясняется различным количеством теплоты, выделяющимся на катоде и аноде дуги. При сварке на постоянном токе прямой полярности глубина проплавления на 40 - 50%, а на переменном - на 15 - 20% меньше, чем при сварке на постоянном токе обратной полярности. Поэтому швы, в которых требуется небольшое количество электродного металла и большая глубина проплавления (стыковые и угловые без разделки кромок), целесообразно выполнять на постоянном токе обратной полярности.

При увеличении напряжения дуги (длины дуги) увеличивается ее подвижность и возрастает доля теплоты дуги, расходуемая на расплавление флюса (количество расплавленного флюса). При этом растет ширина шва, а глубина его проплавления остается практически постоянной. Этот параметр режима широко используют в практике для регулирования ширины шва.

Увеличение скорости сварки уменьшает погонную энергию и изменяет толщину прослойки расплавленного металла под дугой. В результате этого основные размеры шва уменьшаются. Однако в некоторых случаях (сварка тонкими проволоками на повышенной плотности сварочного тока) увеличение скорости сварки до некоторой величины, уменьшая прослойку расплавленного металла под дугой и теплопередачу от нее к основному металлу, может привести к росту глубины проплавления. При чрезмерно больших скоростях сварки и силе сварочного тока в швах могут образовываться подрезы.

С увеличением вылета электрода возрастает интенсивность его подогрева, а значит, и скорость его плавления. В результате толщина прослойки расплавленного металла под дугой увеличивается и, как следствие этого, уменьшается глубина проплавления. Этот эффект иногда используют при сварке под флюсом электродными проволоками диаметром 1-3 мм для увеличения количества расплавляемого электродного металла при сварке швов, образуемых в основном за счет добавочного металла (способ сварки с увеличенным вылетом электрода). В некоторых случаях, особенно при автоматической наплавке под флюсом, электроду сообщают колебания поперек направления шва с различной амплитудой и частотой, что позволяет в широких пределах изменять форму и размеры шва. При сварке с поперечными колебаниями электрода глубина проплавления и высота усиления уменьшаются, а ширина шва увеличивается и обычно несколько больше амплитуды колебаний.

Состав и строение частиц флюса оказывают заметное влияние на форму и размеры шва. При уменьшении насыпной массы флюса (пемзовидные флюсы) повышается газопроницаемость сдоя флюса над сварочной ванной и, как результат этого, уменьшается давление в газовом пузыре дуги. Это приводит к увеличению толщины прослойки расплавленного металла под дугой, а значит, и к уменьшению глубины проплавления. Флюсы с низкими стабилизирующими свойствами, как правило, способствуют более глубокому проплавлению.

Пространственное положение электрода и изделия при сварке под флюсом оказывает такое же влияние на форму и размеры шва, как и при ручной сварке покрытыми электродами (MMA, SMAW). Для предупреждения отекания расплавленного флюса, ввиду его высокой жидкотекучести, сварка этим способом возможна только в нижнем положении при наклоне изделия на угол не более 10-15°.

Перед началом автоматической сварки под флюсом следует проверить чистоту кромок и правильность их сборки и направления электрода по оси шва. Металл повышенной толщины сваривают многопроходными швами с необходимым смещением электрода с оси шва. Перед наложением последующего шва поверхность предыдущего тщательно зачищают от шлака и осматривают с целью выявления наличия в нем наружных дефектов.

При автоматической сварке под слоем флюса (SAW) стыковых соединений на весу практически сложно получить шов с проваром по всей длине стыка из-за вытекания в зазор между кромками расплавленного металла и флюса и, как результат, - образования прожогов. Для предупреждения этого применяют различные приемы, способствующие формированию корня шва (сварка на флюсовую подушку, на керамическую подкладку или сварка на остающуюся стальную подкладку).

Выбор параметров режима

Сварку обычно выполняют на постоянном токе обратной полярности. Иногда возможна сварка на переменном токе. При прямой полярности скорость расплавления в 1,4-1,6 раз выше, чем при обратной, однако дуга горит менее стабильно, с интенсивным разбрызгиванием.

Обратная полярность

Диаметр электродной проволоки

Выбирают в пределах 0,5-3,0 мм в зависимости от толщины свариваемого материала и положения шва в пространстве. Чем меньше диаметр проволоки, тем устойчивее горение дуги, больше глубина проплавления и коэффициент наплавки, меньше разбрызгивание.

Больший диаметр проволоки требует увеличения сварочного тока.

Зависимость силы сварочного тока от диаметра проволоки

Сварочный ток

Устанавливают в зависимости от диаметра электрода и толщины свариваемого металла. Сила тока определяет глубину проплавления и производительность процесса в целом. Ток регулируют скоростью подачи сварочной проволоки.

Влияние силы тока

Напряжение на дуге

С ростом напряжения на дуге глубина проплавления уменьшается, а ширина шва и разбрызгивание увеличиваются. Ухудшается газовая защита, образуются поры. Напряжение на дуге устанавливают в зависимости от выбранного сварочного тока и регулируют положением вольт-амперной характеристики, изменяя напряжение холостого хода источника питания.

Влияние напряжения на дуге

Скорость подачи электродной проволоки

Связана со сварочным током. Устанавливают с таким расчетом, чтобы процесс сварки происходил стабильно, без коротких замыканий и обрывов дуги

Скорость сварки

Устанавливают в зависимости от толщины свариваемого металла с учетом качественного формирования шва. Металл большой толщины лучше сваривать узкими швами на высокой скорости.

Медленная сварка способствует разрастанию сварочной ванны и повышает вероятность образования пор в металле шва.

Схема сварки

При чрезмерной скорости сварки могут окислиться конец проволоки и металл шва.

Расход защитного газа

Определяют в зависимости от диаметра проволоки и силы сварочног о тока. Для улучшения газовой защиты увеличивают расход газа, снижают скорость сварки, приближают сопло к поверхности металла или используют защитные экраны.

Техника сварки

Вылет электрода

Расстояние от точки токоподвода до горна сварочной проволоки. С увеличением вылета ухудшаются устойчивость горения дуги и формирование шва, интенсивнее разбрызгивается металл. Малый вылет затрудняет процесс сварки, вызывает подгорани газового сопла и токоподводяшего наконечника.

Вылет электрода

Выпуск электрода

Расстояние от сопла горелки до торца сварочной проволоки. С увеличением выпуска ухудшается газовая зашита зоны сварки. При малом выпуске усложняется техника сварки, особенно угловых и тавровых соединений.

Вылет и выпуск зависят от диаметра электродной проволоки:

Диаметр проволоки, мм

Вылет электрода, мм

Выпуск электрода, мм

Расход газа, л/мин

Оптимальная совокупность параметров режима делает процесс стабильным на трех стадиях:

1 - при зажигании дуги и установлении рабочего режима сварки;
2 - в широком диапазоне рабочих режимов;
3 - в период окончания сварки.

Процесс сварки считается стабильным, если электрические и тепловые характеристики его не изменяются во времени или изменяются по определенной программе. В связи с этим механизированную сварку в защитных газах ведут стационарной дугой, импульсно-дуговым способом, с синергетической системой управления.

Сварка стационарной дугой

Случайные колебания скорости подачи электродной проволоки и длины дуги могут нарушить стабильность процесса, привести к коротким замыканиям. обрыву дуги. Во избежание этого необходимо изменять скорость плавления электрода, т.е. соответствующим образом варьировать силу сварочного тока.

вольт-амперная характеристика дуги (ВАХ дуги) в защитных газах при плавящемся электроде имеет возрастающий характер.

Вольт-амперная характеристика

В определенный момент стабильного процесса сварки скорость подачи электродной проволоки Vп1 равна скорости плавления Vпл1. При этом параметры по току и напряжению определялись рабочей точкой А1 с длиной дуги lд1. Допустим, что в связи со сбоями в механизме подачи проволоки скорость подачи уменьшилась. Тогда возникает относительная скорость плавления ΔVпл = Vпл1 - Vп2, которая приводит к перемещению рабочей точки в новое положение - А2. Оно характеризуется уменьшением сварочною тока (Δl), что приводит к уменьшению первоначальной скорости плавления. Процесс сварки вернулся в точку А1 с длиной дуги lд1. Этот процесс носит название -саморегулирование по длине дуги. Оно становится интенсивнее при более жесткой волыамперной характеристике источника питания.

При сварке от источника с жесткой характеристикой сварщик корректирует режим по току, регулируя скорость подачи проволоки. Однако при этом изменяются длина дуги и напряжение на ней. Для поддержания нужной длины дуги при настройке режима следует корректировать вольт-амперную характеристику ИП, переходя с одной (I) на другую (II).

Вольт-амперная характеристика дуги

Стабильность дуги, особенно в потолочном положении, а также размеры шва и его качество зависят от вида переноса электродного металла через дуговой промежуток. Таких видов переноса существует три.

1. Крупнокапельный перенос с короткими замыканиями дуги. Образуются капли размером в 1,5 раза превышающие диаметр электродной проволоки. Процесс сопровождается короткими замыканиями с естественным импульсно-дуговым процессом, обусловленным параметрами режима. Напряжение на дуге периодически снижается до 0 и в момент отрыва капли увеличивается до рабочего значения. Ток в момент короткого замыкания возрастает, что приводит к отрыву капли электродного металла.

Процесс протекает с разбрызгиванием металла, что ухудшает внешний вид сварного соединения, приводит к непроварам, чрезмерной выпуклости шва.

Крупнокапельный перенос

2. Среднекапельный перенос без коротких замыканий.

Дуга горит непрерывно, а электродный металл переносится через дугу каплями, диаметр которых близок к диаметру проволоки.

Сварка идет с периодическим изменением напряжения на дуге и сварочного тока.

Импульсно-дуговой процесс зависит от параметров режима сварки и также сопровождается разбрызгиванием, снижается качество шва.

Среднекапельный перенос

3. Струйный перенос.

Дуга горит непрерывно, оплавленный конец электрода вытянут конусом, с которого в сварочную ванну стекают капли размером менее 2/3 диаметра электрода. Масса капли невелика, поэтому электродный металл легко переносится в ванну при сварке во всех пространственных положениях.

Разбрызгивание при струйном переносе незначительно. Производительность высока. Получить струйный перенос можно в аргоне. В углекислом газе такой перенос достигается при высокой плотности сварочного тока или при проволоках, активированных редкоземельными элементами

Управляемый перенос электродного металла с требуемыми размерами капель успешно достигается при импульсно-дуговом процессе, когда периодически измененяют напряжение на дуге и ток сварки.

Струйный перенос

Импульсно-дуговая сварка

Импульсно-дуговая (нестационарной дугой) сварка способом MIG/MAG возможна при низком сварочном токе во всех пространственных положениях шва при минимальном разбрызгивании и качественном формировании шва.

Существуют два основных вида переноса электродного металла:

  • с непрерывным горением дуги - "длинной дугой";
  • с короткими замыканиями дугового промежутка - "короткой дугой"

Виды переноса электродного металла

Особенность импульсно-дуговой сварки плавящимся электродом состоит в том, что процессом переноса электродного металла можно управлять. При сварке "длинной дугой" возможны две разновидности переноса:

  • один импульс - одна капля;
  • один импульс - несколько капель.

Перенос "короткой дугой" характерен для сварки в углекислом газе. Нестабильность и усиленное разбрызгивание электродного металла определяются свойствами источника питания и зависят от характера изменения мгновенной мощности как в период горения дуги, так и при коротком замыкании.

При импульсно-дуговой сварке способом MIG/MAG эффективно синергетическое управление процессом.

Синергетическое управление

Инверторные источники питания позволяют ускорить изменения параметров по току до 1000 А/мс. Высокое быстродействие источника способствует оптимальному выбору токов импульса и паузы, времени импульса и паузы, частоты импульса в зависимости от скорости подачи проволоки Это обеспечивает стабильный перенос капли электродного металла за один импульс.

В современных полуавтоматах внедрены микропроцессорные технологии управления импульсными процессами сварки в зависимости от марки стали, диаметра проволоки, вида защитного газа. Такие системы называются синергетическими.

Импульсный процесс сварки

Благодаря предварительному программированию импульсных режимов во время сварки регулируются только два параметра: сварочный ток и длина дуги. Синергетическое оборудование легко перестраивает режимы сварки в зависимости от марки свариваемой стали, диаметра электродной проволоки и вида защитною газа.

В синергетической системе оборудования фирмы "Кемппи" запрограммированы оптимальные параметры режима сварки для различных комбинаций материала: углеродистая сталь, нержавеющая сталь, алюминиевые сплавы; диаметров электродной проволоки сплошного сечения: 1,0; 1,2; 1,6 мм; времени заварки кратера.

Для каждого диаметра проволоки имеется широкий диапазон токовых значений режима, который позволяет сваривать материалы разной толщины и во всех пространственных положениях. Синергетические системы повышают производительность на 20% по сравнению с обычной сваркой MIG/MAG.

Большая Энциклопедия Нефти и Газа

Увеличение силы сварочного тока при неизменной скорости сварки влечет за собой увеличение объема сварочной ванны. При этом наблюдается укрупнение зерен металла шва, что повышает склонность к меж-кристаллитной коррозии и образованию горячих трещин, особенно в литых аустенитных сталях. [1]

С увеличением силы сварочного тока ( рис. 28, а) глубина проплавления возрастает почти линейно до некоторой величины. Это объясняется ростом давления дуги на поверхность сварочной ванны, которым оттесняется расплавленный металл из-под дуги ( улучшаются условия теплопередачи от дуги к основному металлу), и увеличением погонной энергии. Ввиду того, что повышается количество расплавляемого электродного металла, увеличивается и высота усиления шва. [3]

С увеличением силы сварочного тока при сварке электродной1 проволокой одного диаметра увеличиваются производительность сварки и глубина проплавления основного металла. Рост производительности сварки объясняется увеличением скорости плавления электродной проволоки и уменьшением разбрызгивания электродного металла. Разбрызгивание уменьшается благодаря тому, что с увеличением значения 1св и, следовательно плотности тока изменяется характер переноса электродного металла - металл переносится в виде более мелких капель. При большом сварочном токе дуга погружается в основной металл, и поэтому большее количество капель удерживается внутри глубокой сварочной ванны. [4]

С увеличением силы сварочного тока возрастает эффективная мощность дуги, вследствие чего увеличивается количество расплавленного основного и электродного металла, значительно возрастает глубина провара, выпуклость валика, незначительно возрастает. [5]

При увеличении силы сварочного тока при сварке листов равной толщины обычно увеличивается диаметр заклепки. Если нижний лист имеет большую толщину, растет и глубина проплавления. То же наблюдается и при увеличении времени горения дуги. [7]

При увеличении силы сварочного тока при сварке листов равной толщины обычно увеличивается диаметр заклепки. Если нижний лист имеет большую толщину, растет и глубина проплавления. То же наблюдается и при увеличении времени горения дуги. Для предупреждения образования подрезов, трещин и пор в заклепке, вызванных высокой скоростью кристаллизации металла, применяют повторное кратковременное возбуждение дуги или плавное уменьшение сварочного тока. При применении плавящегося электрода шов образуется за счет проплавления основного металла и расплавления электродной проволоки диаметром до 2 мм. [9]

При увеличении силы сварочного тока повышается температура капель электродного металла, а также снижается время нагрева проволоки в вылете. Это способствует повышению концентрации паров воды в зоне дуги и, как следствие, росту содержания водорода в расплавленном металле. [10]

Так, при увеличении силы сварочного тока увеличивается интенсивность плавления электрода, размер капель практически не изменяется, но время их взаимодействия со шлаком уменьшается, что приводит к меньшему воздействию шлака на металл. Поверхность металлической ванны, контактирующая со шлаком, при этом не изменяется и поэтому не может влиять на характер взаимодействия шлака с металлом. [12]

А / мм2, Увеличение силы сварочного тока приводит к увеличению эффективной тепловой мощности дуги Q3 ( J), вследствие чего увеличиваются глубина проплавления, выпуклость, ширина валика и скорость плавления электрода, В результате этого доля основного металла в металле шва повышается. [13]

Размер капель уменьшается с увеличением силы сварочного тока , повышением содержания углерода, уменьшением диаметра электродной проволоки и поверхностного натяжения в металле капли. В этом плане весьма эффективно добавление к аргону СО2 или кислорода, поскольку окисление поверхности капли снижает поверхностное натяжение. [14]

При сварке самозащитной порошковой проволокой увеличение силы сварочного тока приводит к уменьшению содержания азота в металле шва. Влияние силы сварочного тока объясняется тем, что по мере ее увеличения возрастает количество проволоки, расплавляемой в единицу времени, и как следствие, количество выделяющихся газов, приводящих к снижению парциального давле ния азота в зоне плавления. [15]

Увеличение сварочного тока ( переход на более жесткий режим сварки) вызывает уменьшение длительности протекания процесса сварки, увеличение производительности машины и уменьшение расхода электроэнергии на сварку. [3]

Увеличение сварочного тока уменьшает ширину провара, которая в сумме с зазором определяет ширину шва ( фпг. Возрастание напряжения дуги несколько увеличивает ширину шва. [4]

Увеличение сварочного тока уменьшает ширину провара, когорая в сумме с зазором определяет ширину шва ( фиг. Возрастание напряжения дуги несколько увеличивает ширину шва. [5]

Увеличение сварочного тока при неизменной скорости сварки приводит к увеличению объема сварочной ванны. При этом наблюдается заметное укрупнение структуры шва. [6]

Увеличение сварочного тока повлекло за собой пропорциональное увеличение глубины провара основного металла, что позволило соответственно увеличить скорость сварки, а значит и производительность процесса за счет сокращения машинного времени. [7]

Увеличение сварочного тока значительно увеличивает глубину провара и мало влияет на ширину шва; вследствие этого i) np снижается. [8]

Для увеличения сварочного тока повышают ток в об мотке возбуждения поперечных полюсов. Вследствие этогс возрастают магнитный поток Фп и, следовательно, напря жение генератора, которое увеличивает величину сварочного тока. Недостатком этого способа регулирования является изменение напряжения холостого хода генератора, ко торое резко сказывается при больших и малых токах. Вс избежание этого применяют комбинированный способ регулирования, при котором оно производится реостатом в обмотке возбуждения, а для получения больших или меньших токов пользуются смещением щеток по коллектор против или по направлению вращения якоря. При смещении щеток против вращения якоря уменьшается размагни чивающее действие реакции якоря, а при смещении по направлению вращения, наоборот, размагничивающее деист вне реакции якоря становится большим. [9]

Для увеличения сварочного тока повышают ток в обмотке возбуждения поперечных полюсов. Вследствие этого возрастают магнитный поток Фп и, следовательно, напряжение генератора, которое увеличивает величину сварочного тока. Недостатком этого способа регулирования является изменение напряжения холостого хода генератора, которое резко сказывается при больших и малых токах. Во избежание этого применяют комбинированный способ регулирования, при котором оно производится реостатом в обмотке возбуждения, а для получения больших или меньших токов пользуются смещением щеток по коллектору против или по направлению вращения якоря. При смещении щеток против вращения якоря уменьшается размагничивающее действие реакции якоря, а при смещении по направлению вращения, наоборот, размагничивающее действие реакции якоря становится большим. [10]

С увеличением сварочного тока s возрастает давление дуги, вследствие чего жидкий металл сварочной ванны g более интенсивно вытесняется из-под электрода и дуга погружается в глубь ю основного металла. Коэффициент я 2 формы шва при этом уменьшается. Чем выше сварочный ток при неиз-к менном напряжении, тем больше коли - § чество расплавляемого в единицу времени электродного металла, что приводит к увеличению высоты усиления а. Такие швы на низкоуглеродистых и низколегированных сталях менее стойки против образования трещин, а сварные соединения с подобными швами даже при отсутствии трещин обладают худшей работоспособностью при вибрационных ( знакопеременных) нагрузках благодаря резкому переходу от шва к основному металлу. В этом месте чаще всего преждевременно разрушаются сварные соединения. [11]

С увеличением сварочного тока дуга больше погружается в основной металл, возрастает погонная энергия и количество расплавленного в единицу времени электродного металла. В результате глубина провара и доля участия основного металла в металле шва увеличиваются. Сварочный ток при сварке высокопрочных сталей обычно не превышает 800 А. [12]

С увеличением сварочного тока ( рис. 3.29, а) глубина проплавления возрастает почти линейно до некоторого значения. Это объясняется ростом давления дуги на поверхность сварочной ванны, которым оттесняется расплавленный металл из-под дуги ( улучшаются условия теплопередачи от дуги к основному металлу), и увеличением погонной энергии. Ввиду того что повышается количество расплавляемого электродного металла, увеличивается и высота усиления шва. [14]

С увеличением сварочного тока увеличивается глубина провара и повышается производительность процесса сварки. [15]

Читайте также: