Виды сварочного оборудования реферат

Обновлено: 28.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Московский Государственный Вечерний Металлургический Институт

по курсу «Технология материалов и покрытий»

Тема: «Термические виды сварки: электрошлаковая, газовая и дуговая сварка под флюсом»

Студент: Русенцов И. Г.

Преподаватель: Гузенкова А. С.

Москва 2004

В данной работе описаны три вида термической сварки: электрошлаковая, газовая и автоматическая дуговая сварка под флюсом.

В начале работы (глава «Введение») рассказывается о том, что такое сварка как таковая, какие существуют на данный момент её разновидности, также рассказаны некоторые особенности процесса сварки.

Далее по тексту более подробно, в соответствующих главах, описываются процессы электрошлаковой, газовой и автоматической дуговой сварки под флюсом.

Электрошлаковая сварка 6

Газовая сварка 9

Техника газовой сварки 10

Автоматическая дуговая сварка под флюсом 12

Список использованной литературы 14

Сваркой называется технологический процесс получения неразъёмных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместным действием того и другого.

Сварное соединение металлов характеризует непрерывность структур. Для получения сварного соединения нужно осуществить межмолекулярное сцепление между свариваемыми деталями, которое приводит к установлению атомарной связи в пограничном слое.

Если зачищенные поверхности двух соединяемых металлических деталей при сжатии под большим давлением сблизить так, чтобы могло возникнуть общее, электронное облако, взаимодействующее с ионизированными атомами обоих металлических поверхностей, то получаем прочное сварное соединение. На этом принципе основана холодная сварка пластичных металлов.

При повышении температуры в месте соединения деталей, амплитуды колебания атомов относительно постоянных точек их равновесного состояния увеличиваются, и тем самым создаются условия более легкого получения связи между соединяемыми деталями. Чем выше температура нагрева, тем меньшее давление требуется для осуществления сварки, а при нагреве до температур плавления необходимое давление становится равным нулю.

Кусок твёрдого металла можно рассматривать как гигантскую молекулу, состоящую из атомов, размещённых в строго определённом, зачастую очень сложном порядке и прочно связанных в одно целое силами межатомного взаимодействия.

Принципиальная сущность процесса сварки очень проста. Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы. Процесс соединения после соприкосновения протекает самопроизвольно (спонтанно), без затрат энергии и весьма быстро, практически мгновенно.

Объединение отдельных объёмов конденсированной твёрдой или жидкой фазы в один общий объём сопровождается уменьшением свободной поверхности и запаса энергии в системе, а потому термодинамический процесс объединения должен идти самопроизвольно, без подведения энергии извне. Свободный атом имеет избыток энергии по сравнению с атомом конденсированной системы, и присоединение свободного атома сопровождается освобождением энергии. Такое самопроизвольное объединение наблюдается на объёмах однородной жидкости.

Гораздо труднее происходит объединение объёмов твёрдого вещества. Приходится затрачивать значительные количества энергии и применять сложные технические приёмы для сближения соединяемых атомов. При комнатной температуре обычные металлы не соединяются не только при простом соприкосновении, но и при сжатии значительными усилиями. Две стальные пластинки, тщательно отшлифованные и “пригнанные”, подвергнутые длительному сдавливанию усилием в несколько тысяч килограммов, при снятии давления легко разъединяются, не обнаруживая никаких признаков соединения. Если соединения возникают в отдельных точках, они разрушаются действием упругих сил при снятии давления. Соединению твёрдых металлов мешает, прежде всего, их твёрдость, при их сближении действительное соприкосновение происходит лишь в немногих физических точках, и расширение площади действительного соприкосновения достаточно затруднительно.

Металлы с малой твёрдостью, например, свинец, достаточно прочно соединяются уже при незначительном сдавливании. У более важных для техники металлов твёрдость настолько велика, что поверхность действительного соприкосновения очень мала по сравнению с общей кажущейся поверхностью соприкосновения, даже на тщательно обработанных и пригнанных поверхностях.

На процесс соединения сильно влияют загрязнения поверхности металла - окислы, жировые плёнки и пр., а также слои адсорбированных молекул газов, образующиеся на свежезачищенной поверхности металла под действием атмосферы почти мгновенно. Поэтому чистую поверхность металла, лишенную слоя адсорбированных газов, можно сколько-нибудь длительно сохранить лишь в высоком вакууме. Такие естественные условия имеются в космическом пространстве, где металлы получают способность довольно прочно свариваться или «схватываться» при случайных соприкосновениях. В обычных же, земных условиях приходится сталкиваться с отрицательным действием, как твёрдости металлов, так и слоя адсорбированных газов на поверхности. Для борьбы с этими затруднениями техника использует два основных средства: нагрев и давление.

Все существующие способы сварки, как уже упоминалось выше, можно разделить на две основные группы:

Сварку давлением – контактная, газопрессовая – трением, холодная – ультразвуком,

Сварку плавлением – газовая, термитная, электродуговая, электрошлаковая, электронно-лучевая, лазерная.

Самое широкое распространение получили различные способы электрической сварки плавлением, а ведущее место занимает дуговая сварка, при которой источником теплоты служит электрическая дуга.

Электрическую сварку плавлением в зависимости от характера источников нагрева и расплавления свариваемых кромок можно разделить на следующие основные виды сварки:

электрическая дуговая, где источником тепла является электрическая дуга;

электрошлаковая, где основным источником теплоты является расплавленный шлак, через который протекает электрический ток;

электронно-лучевая, при которой нагрев и расплавление кромок соединяемых деталей производят направленным потоком электронов, излучаемых раскалённым катодом;

лазерная, при которой нагрев и расплавление кромок соединяемых деталей производят направленным сфокусированным мощным световым лучом микрочастиц-фотонов.

При электрошлаковой сварке основной и электродный металл расплавляется теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну.

Перед сваркой между соединяемыми деталями насыпается флюс. Применяемый в этом процессе флюс способен проводить ток.
Для начала сварки между одним или более электродами и основным металлом под слоем флюса возбуждается дуга. В зону сварки электрод постоянно подается специальным механизмом, который также обеспечивает колебания электрода вперед–назад при сварке изделий большой толщины. Кроме того, механизм поднимается вверх по мере выполнения соединения. При горении дуги флюс плавится и горение дуги прекращается, но электрический ток продолжает проходить от электрода к основному металлу.
Расплавленный флюс плавит основной металл и постоянно подающийся электрод, являющийся присадочным материалом. Кроме того, флюс защищает металл от воздействия воздуха. Для того, чтобы жидкий металл и флюс не вытекали за пределы требуемой зоны сварки, используются специальные накладки с каждой стороны соединения. Накладки выполнены из меди с водяным охлаждением, которое не дает им расплавиться. Обычно накладки подвижны и поднимаются вслед за электродом.

При прохождении тока через расплавленный шлак, являющийся электропроводящим электролитом, в нем выделяется теплота, достаточная для поддержания высокой температуры шлака (до 2000°С) и расплавления кромок основного металла и электродной проволоки. Проволока вводится в зазор и подается в шлаковую ванну с помощью мундштука. Проволока служит для подвода тока и пополнения сварочной ванны расплавленным металлом. Как правило, электрошлаковую сварку выполняют при вертикальном положении свариваемых заготовок. По мере заполнения зазора между ними мундштук для подачи проволоки и формирующие ползуны передвигаются в вертикальном направлении, оставляя после себя затвердевший сварной шов.

В начальном и конечном участках шва образуются дефекты. В начале шва – непровар кромок, в конце шва - усадочная раковина и неметаллические включения. Поэтому сварку начинают на вводной, а заканчивают на выходной планках, которые затем удаляют газовой резкой.

Шлаковая ванна – более распределенный источник теплоты, чем электрическая дуга. Основной металл расплавляется одновременно по всему периметру шлаковой ванны, что позволяет вести сварку металла большой толщины за один проход.

Заготовки толщиной до 150 мм можно сваривать одним электродом, совершающим поперечные колебания в зазоре для обеспечения равномерного разогрева шлаковой ванны по всей толщине. Металл толщиной более 150 мм сваривают тремя проволоками, а иногда и большим числом проволок, исходя из использования одного электрода на 45 – 60 мм толщины металла. Специальные автоматы обеспечивают подачу электродных проволок и их поперчной перемещение в зазоре.

Электрошлаковая сварка имеет ряд преимуществ по сравнению с автоматической сваркой под флюсом: повышенную производительность, лучшую макроструктуру шва и меньшие затраты на выполнение 1 м сварного шва.

К недостаткам электрошлаковой сварки следует отнести образование крупного зерна в шве и околошовной зоне вследствие замедленного нагрева и охлаждения. После сварки необходима термическая обработка (отжиг или нормализация) для измельчения зерна в металле сварного соединения.

Электрошлаковую сварку широко применяют в тяжелом машиностроении для изготовления ковано – сварных и лито – сварных конструкций, таких, как станины и детали мощных прессов и станков, коленчатые валы судовых дизелей, роторы и валы гидротурбин, котлы высокого давления и т. п. Толщина свариваемого металла составляет 50 – 2000 мм.

Схема электрошлаковой сварки:

При газопламенной обработке металлов в качестве источника теплоты используется газовое пламя ­– пламя горючего газа, сжигаемого для этой цели в специальных горелках.

В качестве горючих газов используют ацетилен, водород, природные газы, нефтяной газ, пары бензина, керосина и др. Наиболее высокую температуру по сравнению с пламенем других газов имеет ацетиленокислородное пламя, поэтому оно нашло наибольшее применение.

Газовая сварка - это сварка плавлением, при которой метал в зоне соединения нагревается до расплавления газовым пламенем (см. рис 8).

При нагреве газовым пламенем 4 кромки свариваемых заготовок 1 расплавляются вместе с присадочным металлом 2,который может дополнительно вводиться в пламя горелки 3. После затвердевания жидкого металла образуется сварной шов 5.

К преимуществам газовой сварки относятся: простота способа, несложность оборудования, отсутствие источника электрической энергии.

К недостаткам газовой сварки относятся: меньшая производительность, сложность механизации, большая зона нагрева и более низкие механические свойства сварных соединений, чем при дуговой сварке.

Газовую сварку используют при изготовлении и ремонте изделий из тонколистовой стали толщиной 1-3 мм, сварке чугуна, алюминия, меди, латуни, наплавке твёрдых сплавов, исправлении дефектов литья и др.

При сварке место соединения нагревают до расплавления высокотемпературным газовым пламенем. При нагреве газосварочным пламенем кромки свариваемых заготовок расплавляются, а зазор между ними заполняется присадочным металлом, который вводят в пламя горелки извне. Газовое пламя получают при сгорании горючего газа в атмосфере технически чистого кислорода.

Кислородный баллон представляет собой стальной цилиндр со сферическим днищем и горловиной для крепления запорного вентиля. На нижнюю часть баллона насаживается башмак, позволяющий ставить баллон вертикально. На горловине имеется кольцо с резьбой для навертывания защитного колпака. Средняя жидкостная вместимость баллона 40 дм3. При давлении 15 МПа он вмещает ~ 6000дм3 кислорода.

Конструкция ацетиленовых баллонов аналогична конструкции кислородных баллонов. Давление ацетилена в баллоне 1,5 МПа. В баллоне находится пористая масса (активизированный уголь) и ацетон. Растворения ацетилена в ацетоне позволяет поместить в малом объеме большое количество ацетилена. Растворенный в ацетоне ацетилен пропитывает пористую массу и становится безопасным.

При газовой сварке заготовки нагреваются более плавно, чем при дуговой; это и определяет основные области ее применения: для сварки металлов малой толщины (0,2 – 3 мм); легкоплавких цветных металлов и сплавов, требующих постепенного нагрева и охлаждения, например инструментальных сталей, чугуна, латуней; для пайки а наплавочных работ; для подварки дефектов в чугунных и бронзовых отливках. При увеличении толщины металла производительность газовой сварки резко снижается. При этом за счет медленного нагрева свариваемые изделия значительно деформируются. Это ограничивает применение газовой сварки.

Техника газовой сварки.

В практике применяют два способа сварки - правый и левый (см. рис.8) При правом способе сварку ведут слева на право, сварочное пламя направляют на сваренный участок шва, а присадочную проволоку перемещают вслед за горелкой. Так как при правом способе пламя направлено на сваренный шов, то обеспечивается лучшая защита сварочной ванны от кислорода и азота воздуха, большая глубина плавления, замедленное охлаждение металла шва в процессе кристаллизации. Теплота пламени рассеивается меньше, чем при левом способе, поэтому угол разделки кромок делается не 90 , а 60-70, что уменьшает количество наплавленного металла и коробление. При правом способе производительность на 20-25 %выше, а расход газов на 15-20 % меньше, чем при левом. Правый способ целесообразно применять при сварке металла толщиной боле 5 мм и металлов с большой теплопроводностью.

При левом способе сварку ведут справа налево, сварочное пламя направляют на ещё не сваренные кромки металла, а присадочную проволоку перемещают впереди пламени. При левом способе сварщик хорошо видит свариваемый металл, поэтому внешний вид шва лучше, чем при правом способе; предварительный подогрев кромок свариваемого металла обеспечивает хорошее перемешивание сварочной ванны. Благодаря этим свойствам левый способ наиболее распространён и применяется для сварки тонколистовых материалов и легкоплавких металлов.

Мощность сварочной горелки при правом способе выбирают из расчёта 120-150 дм3/ч ацетилена, а при левом -100-130 дм3/ч на 1 мм толщина свариваемого металла.

Диаметр присадочной проволоки выбирают в зависимости от толщины свариваемого металла и способа сварки. При правом способе сварки диаметр присадочной проволоки  мм., но не более 6 мм, при левом  мм, где - толщина свариваемого металла, мм

Скорость нагрева регулируют изменением угла наклона мундштука к поверхности свариваемого металла (рис. 9, а).

Чем толще металл и больше его теплопроводность, тем больше угол наклона мундштука к поверхности свариваемого металла.

В процессе сварки газосварщик концом мундштука горелки совершает одновременно два движения: поперечное (перпендикулярно оси шва) и продольное (вдоль оси шва) (рис. 9) Основным является продольное движение. Поперечное движение служит для равномерного прогрева кромок основного металла и получения шва необходимой ширины.

Газовой сваркой можно выполнять нижние, горизонтальные (на вертикальной плоскости), вертикальные и потолочные швы. Горизонтальные и потолочные швы обычно выполняют правым способом сварки, вертикальные снизу вверх - левым способом.

Автоматическая дуговая сварка под флюсом.

Для автоматической дуговой сварки под флюсом используют непокрытую электродную проволоку и флюс для защиты дуги и сварочной ванны от воздуха. Подача и перемещение электродной проволоки, а также процессы зажигания дуги и заварки кратера в конце шва автоматизированы В процессе автоматической сварки под флюсом дуга горит между проволокой и основным металлом. Столб дуги и металлическая ванна жидкого металла со всех сторон плотно закрыты слоем флюса толщиной 30 – 35 мм. Часть флюса расплавляется, в результате чего вокруг дуги образуется газовая полость, а на поверхности расплавленного металла – ванна жидкого шлака. Для сварки под флюсом характерно глубокое проплавление основного металла. Действие мощной дуги и весьма быстрое движение электрода вдоль заготовки обусловливают оттеснение расплавленного металла в сторону, противоположную направлению сварки. По мере поступательного движения электрода происходит затвердевание металлической и шлаковой ванн с образованием сварного шва, покрытого твердой шлаковой коркой. Проволоку подают в дугу и перемещают ее вдоль шва с помощью механизмов подачи и перемещения. Ток к электроду поступает через токопровод.

Дуговую сварку под флюсом выполняют сварочными автоматами, сварочными головками или самоходными тракторами, перемещающимися непосредственно по изделию. Назначение сварочных автоматов – подача электродной проволоки в дугу и поддержание постоянного режима сварки в течение всего процесса. Автоматическую сварку под флюсом применяют в серийном и массовом производствах для выполнения длинных прямолинейных и кольцевых швов в нижнем положении на металле толщиной 2 – 100 мм. Под флюсом сваривают металлы различных классов. Автоматическую сварку широко применяют при изготовлении котлов, резервуаров для хранения жидкостей и газов, корпусов судов, мостовых балок и других изделий. Она является одним из основных звеньев автоматической линий для изготовления сварных автомобильных колес и станов для производства сварных прямошовных и спиральных труб. На рисунке 93 представлена схема сварки под флюсом.

Современное сварочное оборудование

Условия получения сварного шва высокого качества. Устройства для регулирования сварочного тока. Сварочные аппараты переменного тока. Сварка батареи отопления из труб. Материал детали и его свойства. Разработка технологического процесса сборки и сварки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 02.11.2009
Размер файла 1,3 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Раздел 1
    • 1. Назначение и конструкция изделия
    • 2. Материал детали и его свойства
    • 3. Разработка технологического процесса сборки и сварки
    • 4. Экономический вопрос
    • Раздел 2
    • 1. Безопасные приёмы труда
    • 2. Техника безопасности на строительно-монтажной площадке
    • 3. Рациональная организация рабочего места
    • 4. Требования НОТ к производственным условиям
    • Литература

    Введение

    Современное сварочное оборудование.

    Важным условием получения сварного шва высокого качества является устойчивость процесса сварки. Для этого источники питания дуги должны обеспечивать возбуждение и стабильное горение дуги.

    Возбуждение сварочной дуги начинается с короткого замыкания сварочной цепи - контакта между электродом и деталью. При этом происходит выделение теплоты и быстрое разогревание места контакта. Эта начальная стадия требует повышенного напряжения сварочного тока. В дальнейшем происходит некоторое уменьшение сопротивления дугового промежутка (вследствие эмиссии электронов с катода и появления объемной ионизации газов в дуге), что вызывает снижение напряжения до предела, необходимого для поддержания устойчивого горения дуги. При переходе капель электродного металла в сварочную ванну происходят частые короткие замыкания сварочной цепи. Вместе с этим изменяется длина сварочной дуги. При каждом коротком замыкании напряжение падает до нулевого значения. Для последующего восстановления дуги необходимо напряжение порядка 25. 30 В. Такое напряжение должно обеспечиваться за время не более 0,05 с, чтобы поддерживать горение дуги в период между короткими замыканиями. Следует учесть, что при коротких замыканиях сварочной цепи развиваются большие токи (токи короткого замыкания), которые могут вызвать перегрев в проводке и обмотках источника тока.

    Эти условия процесса сварки в основном и определяют требования, предъявляемые к источникам питания сварочной дуги. Для обеспечения устойчивого процесса сварки источники питания дуги должны удовлетворять следующим требованиям:

    напряжение холостого хода должно быть достаточным для легкого возбуждения дуги и в то же время не должно превышать нормы безопасности. Максимально допустимое напряжение холостого хода установлено для источников постоянного тока - 90 В, а для источников переменного тока - 80 В; напряжение устойчивого горения дуги (рабочее напряжение) должно быстро устанавливаться и изменяться в зависимости от длины дуги. С увеличением длины дуги напряжение должно быстро возрастать, а с уменьшением - быстро падать. Время восстановления рабочего напряжения от О до 30 В после каждого короткого замыкания (при капельном переносе металла от электрода к свариваемой детали) должно быть менее 0,05 с; ток короткого замыкания не должен превышать сварочный ток более чем на 40. 50%. При этом источник тока должен выдерживать продолжительные короткие замыкания сварочной цепи. Это условие необходимо для предохранения обмоток источника тока от перегрева и повреждения; мощность источника тока должна быть достаточной для выполнений сварочных работ.

    Кроме того, необходимы устройства, позволяющие регулировать сварочный ток в требуемых пределах.

    Промышленностью выпускаются следующие типы источников питания сварочной дуги; сварочные преобразователи, сварочные аппараты переменного тока, сварочные выпрямители.

    Сварочные аппараты переменного тока.

    Сварочные аппараты переменного тока, применяемые на заводах и строительно-монтажных площадках, подразделяют на четыре основные группы: сварочные аппараты с отдельным дросселем; сварочные аппараты со встроенным дросселем; сварочные аппараты с подвижным магнитным шунтом; сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Они отличаются по конструкции и по электрической схеме. Сварочные аппараты состоят из понижающего трансформатора и устройства-дросселя, подвижного магнитного шунта, подвижной обмотки для создания падающей внешней характеристики и регулирования сварочного тока. Трансформатор обеспечивает питание дуги переменным током напряжением 60. 70 В.

    Сварочные аппараты с отдельным дросселем (рис. 1) состоят из понижающего трансформатора и дросселя (регулятора тока). Трансформатор Тр имеет сердечник (магнитопровод) 2 из пластин, отштампованных из тонкой трансформаторной стали толщиной 0,5 мм. На сердечнике расположены первичная / и вторичная 3 обмотки. Первичная обмотка из изолированной проволоки подключается к сети переменного тока напряжением 220 или 380 В. Во вторичной обмотке, изготовленной из медной шины, индуцируется напряжение 60. 70 В. Небольшое магнитное рассеивание и малое омическое сопротивление обмоток обеспечивают незначительное внутреннее падение напряжения и высокий к. п. д. трансформатора. Последовательно с вторичной обмоткой в сварочную цепь включена обмотка 4 (из голой мерной шины) дросселя Др. Обмотка имеет асбестовые прокладки, пропитанные теплостойким лаком. Сердечник дросселя также набран из пластин тонкой трансформаторной стали и состоит из двух частей: неподвижной 5, на которой расположена обмотка дросселя, и подвижной 6, перемещаемой с помощью винтовой пары 7. При вращении рукоятки по часовой стрелке воздушный зазор а увеличивается, против часовой стрелки - уменьшается.

    При возбуждении дуги (при коротком замыкании) большой ток, проходя через обмотку дросселя, создает мощный магнитный поток, наводящий э. д. с. дросселя, направленную против напряжения трансформатора. Вторичное напряжение, развиваемое трансформатором, полностью поглощается падением напряжения в дросселе. Напряжение в сварочной цепи почти достигает нулевого значения.

    При возникновении дуги сварочный ток уменьшается; вслед за ним уменьшается э. д. с. самоиндукции дросселя, направленная против напряжения трансформатора, и в сварочной цепи устанавливается рабочее напряжение, необходимое для устойчивого горения дуги, меньшее, чем напряжение холостого хода. Изменяя зазор а между Неподвижным, и подвижным магнитопроводами, изменяют индуктивное сопротивление дросселя и тем самым ток в сварочной цепи. При увеличении зазора магнитное сопротивление магнитопровода дросселя увеличивается, магнитный поток ослабляется, уменьшается э. д. с. самоиндукции катушки и ее индуктивное сопротивление. Это приводит к возрастанию сварочного тока. При уменьшении зазора сварочный ток уменьшается. Один оборот рукоятки винтовой пары изменяет сварочный ток примерно на 20 А. По этой схеме изготовлены сварочные трансформаторы типа СТЭ. Трансформаторы СТЭ-24-У и СТЭ-34-У не сложны по устройству и безопасны в работе и поэтому их широко применяют при ручной дуговой сварке.

    На рис. 2 представлен трансформатор СТЭ-34 с регулятором (дросселем) РСТЭ-34.

    Трансформатор и регулятор 2 заключены в отдельные кожухи из тонкой листовой стали с жалюзи для естественного охлаждения и установлены на колесики для перемещения. Первичная обмотка из изолированной проволоки размешена на двух. катушках. Для включения трансформатора в сеть с напряжением 220 В обмотки катушек соединяют параллельно, а Для сети напряжением 380 В - последовательно. Вторичная обмотка из голой медной шины расположена поверх первичной обмотки на тех же катушках. При этом вторичная обмотка соединена всегда последовательно. На торцовой стенке Кожуха на клеммовой доске расположены выводы первичной обмотки, на Другой торцовой стенке - выводы вторичной обмотки.

    Сварочные аппараты со встроенным дросселем (рис.3) имеют электромагнитную схему, разработанную акад.В.П. Никитиным. Магнитопровод трансформатора состоит из основного сердечника 1, на котором расположены первичная 2 и вторичная 6 обмотки собственно трансформатора, и добавочного сердечника 4 с обмоткой 5 дросселя (регулятора тока). Добавочный магнитопровод расположен над основным и состоит из неподвижной и подвижной частей, между которыми с помощью винтовой пары 3 устанавливается необходимый воздушный зазор а. Магнитный поток, создаваемый обмоткой дросселя, может иметь попутное или встречное направление с потоком, создаваемым вторичной обмоткой трансформатора, в зависимости от того, как включены эти обмотки.

    При встречном соединении магнитные потоки, возникающие при прохождении тока во вторичной обмотке трансформатора Фт и обмотке дросселя Фд, будут направлены навстречу друг другу. При этом напряжение холостого хода Uхх = Uтх-Uдх, где Uтх - напряжение во вторичной обмотке трансформатора, В; Uдх - напряжение в обмотке дросселя, В. При попутном включении магнитные потоки Фт и Фд будут иметь одинаковое направление и напряжение холостого хода Uхх=Uтх+Uдх.

    Сварочный ток регулируют, изменяя воздушный зазор а; чем больше зазор а, тем больше сварочный ток.

    Сварочный аппарат СТН-500, представленный на рис.4, предназначен для ручной дуговой сварки. Здесь применено встречное включение вторичной обмотки трансформатора и обмотки дросселя. Обмотки трансформатора размещены на двух катушках для включения в сеть с напряжением 220 и 380 В. Сварочный ток регулируют вращением рукоятки, как и в регуляторе типа РСТЭ. На торцах кожуха сварочного аппарата установлены клеммовые доски, к которым выведены с одной стороны концы первичной обмотки, а с другой - один конец вторичной обмотки и один конец обмотки дросселя. Для облегчения перемещения аппарат устанавливают на тележку. Сварочные аппараты СТН-500-1 отличаются от СТН-500 тем, что имеют алюминиевые обмотки. Сварочные аппараты ТСД, применяемые главным образом при автоматической сварке, имеют дистанционное управление регулированием сварочного тока. Подвижная часть сердечника перемещается с помощью червячной передачи от электродвигателя, управляемого двумя магнитными пускателями. При включении одного из них сварочный ток возрастает, при включении другого - уменьшается. Для охлаждения аппарата установлен вентилятор с электродвигателем трехфазного тока мощностью 0,25 кВт.

    Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом (рис. 5) имеют целый замкнутый магнитопровод, у которого на одном стержне расположены первичная 4 и вторичная 3 обмотки трансформатора, а на другом - реактивная обмотка /. Между ними находится стержень - магнитный шунт '2. Шунт замыкает магнитные потоки, создаваемые первичной и реактивной обмотками. При этом образуются магнитные потоки рассеяния, которые создают значительное индуктивное сопротивление. Таким образом обеспечивается падающая внешняя характеристика трансформатора.

    Сварочный ток регулируют, перемещая магнитный шунт вдоль направления магнитного потока. При выдвижении шунта рассеяние магнитных потоков первичной и реактивной обмоток уменьшается, вследствие чего уменьшается индуктивное сопротивление трансформатора. При этом сварочный ток возрастает. По такому принципу работают сварочные аппараты типа СТАН и СТШ.

    Сварочные аппараты типа СТШ имеют магнитный шунт, состоящий из двух половин, которые могут сдвигаться и раздвигаться. При полностью сдвинутых половинах шунта сварочный ток будет минимальный. Если раздвигать половины шунта, то магнитный поток рассеяния уменьшается и поэтому сварочный ток возрастает. В строительстве и промышленности применяют сварочные аппараты СТШ-300, СТШ-500 и СТШ-500-80. Аппарат СТШ-500-80 отличается от первых двух типов тем, что имеет два диапазона сварочных токов (катушки обмоток могут переключаться с последовательного соединения для малых сварочных токов на параллельное соединение для больших сварочных токов).

    Для монтажных работ рекомендуются аппараты легкого типа СТШ-250 массой 44 кг.

    Характеристика сварочных аппаратов с подвижным магнитным шунтом приведена в табл.1.

    Сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Трансформатор имеет магнитопровод, на обоих стержнях которого расположены по две катушки: одна с первичной обмоткой, а вторая - со вторичной обмоткой. Катушки первичной обмотки закреплены неподвижно в нижней части сердечника, а катушки вторичной обмотки перемещаются по стержню с помощью винтовой пары. Сварочный ток регулируют изменением расстояния между первичными и вторичными обмотками. При увеличении этого расстояния магнитный поток рассеяния возрастает, а сварочный ток уменьшается.

    Сварочные аппараты

    Тема: « Сварочные аппараты.»

    1. Виды сварки. Виды сварочных аппаратов.

    1.1 Трансформаторы сварочные.

    1.2 Выпрямители сварочные.

    1.3 Инверторные сварочные аппараты.

    2 Устройство трансформатора.

    3. Расчет электросварочного трансформатора.

    В настоящее время не существует такой промышленной отрасли, в которой не применялась бы сварка. Особенно широко сварочные работы применяются в строительстве. Существует множество моделей сварочных аппаратов и каждый из них предназначен для определённого вида сварки металла, но в основе любой конструкции сварочного устройства лежит принцип преобразования характеристик ЭДС с помощью трансформатора.

    Актуальность данной работы заключается в том, что изучение электро-технического устройства сварочного трансформатора позволяет закрепить практически полученные теоретические знания.

    Целю данной работы, является изучение устройства строительного электрооборудования.

    Задачей данной работы является изучение электротехнического устройства сварочного трансформатора.

    Объектом работы является строительное электрооборудование.

    Предметом работы является сварочный трансформатор.

    Метод данной работы – изучение учебной литературы.

    В настоящее время существует большое количество видов и типов сварки, вот только некоторые из них:
    - ручная электродуговая с
    - аргонодуговая сварка
    - полуавтоматическая сварка
    - плазменная сварка
    - точечная сварка
    - газовая сварка
    - контактная сварка (сопротивлением)
    - электронно-лучевая сварка
    - лазерная сварка
    - термическая сварка варка

    Каждому виду соответствует своё специальное оборудование. Но в данной работе нас интересуют устройства, производящие сварку с помощью электрического тока. Электродуговой сварочный аппарат, как правило, представляет собой источник питания постоянного или переменного тока, сварочная цепь которого гальванически развязана от сети электропитания, выполняющий функцию дуговой сварки плавлением, контактной сварки, сварки давлением. Он может представлять собой простой трансформатор, а так же сложный высокотехнологический агрегат В течение последних 100 лет для того, чтобы получить источник питания для сварки, использовалось большинство из доступных электрических и электронных технологий: от обыкновенного трансформатора до инверторов, обеспечивающих резонанс на частоте переключения более 100 кГц, от селеновых диодов до 32-разрядных микропроцессоров.
    На данный момент существует три основных вида сварочных аппаратов для дуговой сварки:
    - трансформаторы (наиболее просты по устройству и эксплуатации) - выпрямители (более высокого уровня по сравнению с трансформаторами)
    - инвертор ( достижение в разработке сварочных аппаратов, уменьшение веса и энергозатрат).


    1.1 Трансформаторы сварочные (источники питания переменным током).

    Это специальные виды однофазных и трехфазных трансформаторов, а также электромашинные генераторы повышенной частоты (400—500 Гц). Существуют два основных принципа построения сварочных трансформаторов: с нормальным магнитным рассеянием и дополнительным индуктивным сопротивлением — дросселем и с искусственно увеличенным магнитным рассеянием.
    Трансформаторы первой группы бывают двух основных типов:

    а) в двухкорпусном исполнении с отдельным дросселем а между обмотками трансформатора и дросселя имеется только электрическая связь, а величина сварочного тока изменяется путем изменения воздушного зазора в магпитопроводе дросселя.

    б) в однокорпусном исполнении между обмотками трансформатора и дросселя существует как электрическая, так и магнитная связь; трансформаторы этого типа экономичнее и удобнее в эксплуатации.
    В трансформаторах второй группы (в однокорпусном исполнении) необходимые внешние характеристики создаются за счет изменения реактивного сопротивления трансформатора. Это достигается за счет принудительного изменения расстояния между первичной и вторичной обмотками за счет изменения величины рассеяния магнитосиловых линий при помощи магнитного подвижного шунта , вводимого в зазор между удаленными друг от друга обмотками.

    1.2 Выпрямители сварочные однопостовые (источники питания постоянным током).

    Этот сварочный аппарат состоит из трансформатора и блока вентилей. Иногда в комплект выпрямителя входит также дроссель, включенный в цепь постоянного тока для получения нормального переноса электродного металла в дуге. В основном применяют многофазные выпрямители. В выпрямителях с полого-падающей характеристикой используют трансформаторы с малым сопротивлением короткого замыкания. Для получения падающей характеристики необходимы трансформаторы с дросселями или с развитым магнитным рассеянием, аналогичные ранее описанным. В современных выпрямителях применяют преимущественно кремниевые вентили, а в ряде случаев селеновые. Селеновые выпрямители обладают большой перегрузочной способностью и необходимы для сварочных аппаратов с падающей или жесткой характеристиками.
    Кремниевые выпрямители применяют главным образом в источниках с падающими характеристиками. Они отличаются малым размером и, как следствие, очень напряженным тепловым режимом работы.

    Это последнее слово техники в сварочном производстве. Инвертор является блоком питания и генератором сварочного тока, и имеет габариты в 10 раз меньше габаритов выпрямителей и трансформаторов с теми же характеристиками, а главное инверторный аппарат имеет КПД около 90%.. Основным принципом работы сварочного аппарата инвертора является многократное поэтапное преобразование электрической энергии. Можно выделить основные этапы преобразования тока в сварочном инверторе:
    • выпрямление переменного сетевого напряжения частотой 50 Гц в первичном выпрямителе, собранном из силовых диодов по мостовой схеме;
    • преобразование полученного выпрямленного напряжения с повышенными пульсациями в переменное напряжение высокой частоты с помощью инвертирующего преобразователя;
    • понижение переменного напряжения высокой частоты импульсным высокочастотным трансформатором до значения, соответствующего напряжению сварки, с формированием необходимого вида вольтамперной характеристики;
    • преобразование вторичным выпрямителем переменного напряжения высокой частоты, имеющего величину сварочного напряжения, в постоянное напряжение со сглаживанием пульсаций тока.

    . Трансформатор — устройство, которое позволяет как повышать, так и понижать напряжение.

    Впервые трансформаторы были использованы в 1878 г. русским ученым П. Н.Яблочковым для питания изобре­тенных им «электрических свечей» — нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшим усовершенствованные трансформаторы.

    Трансформатор состоит из замкнутого железного сердечника, который изготовляют в основном из тонких пластин специальной стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.

    На него надеты две (иногда и более) катушки с проволочны­ми обмотками . Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной.

    Действие трансформатора основано на явлении электромаг­нитной индукции. При прохождении переменного тока по первич­ной обмотке в железном сердечнике появляется переменный маг­нитный поток, который возбуждает э.д.с. индукции в каждой обмотке. Причем мгновенное значение э.д.с. индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой

    е = - ? Ф/ ? t.

    Если Ф = Ф0 соs?t, то

    е = ? Ф0 sin?t, или

    е = E0 sin?t ,

    где E0= ? Ф0 - амплитуда э.д.с. в одном витке.

    В первичной обмотке, имеющей п1 витков, полная э.д.с. индук­ции e1 равна п1е.

    Во вторичной обмотке полная э.д.с. е2 равна п2

    е, где п2 - чис­ло витков этой обмотки.

    Отсюда следует, что

    e1/ е2 = п1/ п2. (1)

    Сумма напряжения u1, приложенного к первичной обмотке, и

    э.д.с. e1 должна равняться падению напряжения в первичной

    u1 + e1 = i1 R1, где

    R1 - активное сопротивление обмотки, а i1 -

    сила тока в ней. Данное уравнение непосредственно вытекает из общего

    урав­нения. Обычно активное сопротивле­ние обмотки мало и членом i1

    R1 можно пре­небречь. Поэтому

    При разомкнутой вторичной обмотке трансформатора ток в ней не течет, и имеет

    Так как мгновенные значения э.д.с. e1 и e2

    изменяются синфазно, то их отношение в формуле (1) можно заменить отношением

    дей­ствующих значений E1 и E2 этих э.д.с. или,

    учитывая равенства (2) и (3), отношением действующих значений напряжений U

    Величина k называется коэффициентом трансформации. Ес­ли k>1,

    то трансформатор является понижающим, при k 0). При активно-емкостной нагрузке (сварочный инвертор) cos опережающий и с ростом потребляемого тока напряжение возрастает тем сильнее, чем меньше cos (рис 2, X 0,015*Р (где Р - в ваттах). Для магнитопроводов отличных от тороидального следует увеличить сечение в 1,3. 1,5 раза. Затем вычисляют диаметр в мм. провода первичной обмотки: di >= 1,13 . Диаметр в мм провода вторичной обмотки вычисляют по формуле: dii>=1,13 , где i - плотность тока в А/мм2. При токе I, меньшем 100 А, принимают i равной 10 А/мм2; при токе менее 150 А - 8 А/мм2, при токе менее 200 А - 6 А/мм2. Если используют некруглый провод, его сечение должно быть равным сечению круглого. В расчете принято, что среднее суммарное время горения дуги не превышает 20 % от среднего суммарного времени пауз между периодами горения дуги.

    Теперь обычным порядком рассчитывают условия заполнения обмотками окна магнитопровода. Соотношения здесь не даны; напомним лишь о необходимости внимательно отнестись к расчету, не забыть учесть толщину слоев изоляции.

    В качестве примера можно рассмотреть следующий вариант сварочного трансформатора.. Первичная обмотка сконструирована так, чтобы возможно было варьировать число витков, включенных в сеть. Намоточные характеристики трансформатора представлены в таблице.

    Применение сварочного оборудования


    Применение сварочного оборудования обусловлено задачами, стоящими перед сварщиком или сварочным производством. В одних случаях можно обойтись ручной сваркой с минимумом дополнительных приспособлений, в другом – необходима организация целого производства с высокой долей автоматизации.

    В целом, сварочное оборудование можно разделить на основное и вспомогательное. В нашей статье мы расскажем, когда применяются различные виды сварочного оборудования и каким правилам эксплуатации должно подчиняться их использование.

    Применение сварочного оборудования в зависимости от источника питания

    Существуют следующие разновидности сварочного оборудования, которые применяют сварщики-специалисты в их профессиональной деятельности:

    Трансформатор. Это простое и надежное устройство можно назвать классикой в области аппаратов для сварки. Обладая большой силой сварочного тока такой аппарат позволяет выполнять сварные соединения толстостенных стальных листов. Предназначен для понижения сетевого напряжения.

    Современная промышленность все больше переходит на использование инверторов, но опытные сварщики до сих пор предпочитают пользоваться обычными трансформаторами. Такой тип оборудования применяют для ручной дуговой сварки с электродами. К недостаткам можно отнести их большие габариты и немалый вес, что создает определенные сложности при перемещении аппарата. Может возникнуть нестабильность горения дуги, но, как правило, это связано с профессионализмом сварщика.

    Инвертор для сварочных работ. По сути, является сварочным аппаратом нового поколения, которым могут пользоваться даже сварщики-новички. Компактные габариты, масса различных параметров и огромный выбор на рынке – возглавляют список основных достоинств инвертора.

    Тип инверторов, которыми можно сваривать детали в среде защитных газов, называется полуавтоматами. Такие понятия, как «антизалипание», «горячий старт» или «форсаж дуги» свойственны почти всем современным инверторам.


    Сварочные выпрямители. Их наряду с трансформаторами можно назвать классикой сварки. Используются для преобразования переменного тока в постоянный, с помощью которого и получается сварочный шов. В этом и заключается суть выпрямителей. В обычную комплектацию такого типа оборудования входит силовая часть и выпрямительный блок, а также регулировочные, пусковые и защитные элементы.

    Применение сварочного оборудования по типу сварки

    Применение сварочного оборудования ММА для ручной дуговой сварки.

    Базовые элементы таких сварочных аппаратов – выпрямители, трансформаторы или инверторы. Рабочим инструментом сварщика является держатель, в который вставляется плавящийся электрод. При помощи металлического стержня, служащего присадочным материалом, замыкается дуга на изделии. При расплавлении его наружной обмазки образуется газовое облако, защищающее сварочную ванну от взаимодействия с внешней средой.

    Можно использовать для соединения черных металлов. Установка электрода из нержавеющего стержня позволит сваривать легированную сталь. Но при этом производительность будет невысокой. Чтобы выполнить качественное соединение, потребуется приличный опыт, так как с уменьшением электрода необходимо постоянно контролировать длину дуги.

    VT-metall предлагает услуги:

    Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

    Применение полуавтоматического сварочного оборудования MIG/MAG.

    Сварка MIG/MAG относится к полуавтоматической, так как при ведении шва горелкой подача проволоки внутри производится с катушки специального устройства. По принципу действия схож с ММА, только вместо держателя используется компактная горелка. Соединение металла происходит за счет электрической дуги (плюсовой кабель остается на проволоке, а «масса» подсоединяется к обрабатываемой детали).

    Принцип применения. Непрерывная подача присадочного материала дает возможность выполнять непрерывные и большие по протяженности швы. Отсутствие в сварочной ванне шлака позволяет легче их контролировать. Подающийся из баллона через сопло горелки газ выполняет функцию защиты от внешней среды.


    При помощи такой скоростной сварочной технологии можно соединять металлы толщиной от 0,6 до 20 мм. Применение определенного типа проволоки позволяет выполнять сварку не только черных металлов, но также нержавейки и алюминия. Минус в том, что надо постоянно за собой возить баллон с газом. Помимо этого, при работе на улице сильный ветер может сдувать подающийся газ, и сварочная ванна будет беззащитной.

    Применение аргонодугового сварочного оборудования модели TIG.

    Сварочная технология TIG подразумевает применение инверторов. Здесь также используется принцип электрической дуги, только ее горение возникает между вольфрамовым неплавящимся электродом и изделием. Диаметр электродов, заточенных в виде острого конуса, составляет от 1,6 до 3,2 мм. Такая форма заточки позволяет делать тонкие швы. Сварное соединение можно делать не только сплавляемыми кромками, но и с помощью отдельно подаваемой присадки, находящейся в свободной руке сварщика. Выдуваемый из сопла горелки аргон выполняет функцию защиты варочной ванны.

    Область использования. При помощи постоянного тока можно сваривать нержавейку и черные металлы. Применение сварочного оборудования с функцией AC/DC позволяет сваривать алюминий. Такое оборудование обеспечивает аккуратность и экономичность, но по производительности существенно отстает от полуавтоматических сварочных аппаратов.

    Применение универсальных моделей сварочного оборудования.

    Подобные модели представляют собой комбинированные системы, состоящие из таких видов сварочного оборудования:

    • MIG/ММА. Технология представляет сварку с помощью покрытых электродов и проволоки, которая подается с барабана. Первый вариант практичен при резании электросваркой, а второй экономически оправдан при кузовном ремонте или серийном производстве деталей из листовой стали.
    • MMA/TIG. Представляет собой инвертор для сварочных работ с помощью обычных электродов и вольфрамовых стержней. Наиболее практичный вариант в случаях чередования сварки цветных и черных металлов, но только при отсутствии необходимости высокоскоростных режимов обработки.
    • MIG/TIG. Вид полуавтоматического оборудования для сварки с возможностью добавления аргоновой горелки. Режим MIG позволяет быстро накладывать швы на черном металле и нержавейке, а при переключении на TIG – производить сварку изделий из алюминия.
    • «3 в 1». Самый универсальный тип аппаратов, способный сваривать в трех режимах: MIG, TIG и ММА. Для подсоединения соответствующих горелок для выбора соответствующего режима на фронтальной панели имеются несколько гнезд. Такой вид оборудования может использоваться для выполнения самых разнообразных функций.


    Такие аппараты могут оснащаться как клещами для выполнения двухсторонней сварки, так и пистолетом с обратным молотком для одностороннего сваривания. Первым вариантом пользуются при соединении конструкций из тонколистового материала (калиток, дверей, ящиков, ворот).

    Вид оборудования для плазменной сварки

    В основе таких аппаратов используется принцип горения в сопле между анодом и катодом электрической дуги, через которую от компрессора подается сжатый воздух. В результате этого образуется плазма. При замыкании массы на изделие происходит перенос дуги, в результате чего она из дежурной превращается в режущую. Если добавить присадочную проволоку, то можно выполнять сварку деталей.

    Применение газосварочного оборудования.

    Сварочный агрегат такого типа представляет собой ацетиленовый генератор, вырабатывающий газ при химическом взаимодействии карбида с водой. В целях поддержания процесса горения при температуре пламени до +3 000 °С к нему дополнительно подсоединяют кислородный баллон. Но в последнее время чаще всего используют не аппараты, а просто сочетание двух баллонов, наполненных либо ацетиленом и кислородом, либо пропаном и кислородом. Все, что остается для сварки – приобрести пару рукавов и горелку.

    Кромку металла разогревает пламя, а присадочная проволока выполняет функцию заполнения сварочной ванны и повышения высоты шва.

    Область применения. Такой метод используется при сваривании труб и емкостей с толщиной стенок до 4 мм. Газовую сварку можно проводить в полевых условиях без всякого электричества, но есть и минус – высокая вероятность деформации детали при нагревании на низкой скорости сваривания.

    Правила эксплуатации сварочного оборудования

    Производители обязаны прописывать в руководствах все основные нормы эксплуатации любого вида выпускаемого оборудования, в том числе сварочных аппаратов и инструментов. В правилах безопасности есть четкие указания, что все виды сварочных работ необходимо проводить согласно установленным требованиям и инструкциям.

    Рекомендуем статьи

    Четкое выполнение правил при применении сварочного оборудования обеспечит не только долгую и бесперебойную работу инструментов и аппаратов, но и безопасность специалиста. А использование дополнительных защитных средств спасут сварщика от воздействия таких опасных факторов в процессе выполнения работ, как ультрафиолетовое излучение, разбрызгивание расплавленного металла и другие негативные моменты.

    Не менее жесткие требования предъявляются и к организации рабочего места сварщика. Сюда входят: соблюдение правил пожарной безопасности, порядок подключения электроустановок, а также проветривание используемого для сварочных работ помещения.

    Подключение трансформаторов или выпрямителей при электродуговой сварке также выполняют строго согласно инструкции. Необходимо обязательно сделать заземление всех нетоковедущих металлических частей сварочного оборудования и его корпуса. Рабочие плиты, столы, станки и другие подобные элементы рабочего места сварщика также необходимо заземлять.

    Система заземления представляет собой контур из медного гибкого провода, но можно использовать и другой электропроводящий металл. Следует отметить, что категорически нельзя последовательно подсоединять к конструкции заземления несколько сварочных установок.

    Необходимо знать и соблюдать правила обращения с горелками и электродными держателями. Такие инструменты строго запрещено направлять на людей. Также надо регулярно следить за их состоянием, своевременно делать ремонт и чистку комплектующих.

    Сварочное оборудование необходимо содержать только в сухом помещении. При регулярном пользовании сварочным оборудованием следует раз в полгода производить очистку, плановую ревизию, а при необходимости и ремонт. А также своевременно удалять накопившуюся пыль и грязь снаружи и внутри сварочных аппаратов. Во избежание механических повреждений нельзя допускать падений аппаратов и устройств.

    Вся ответственность за правильную эксплуатацию сварочного оборудования лежит на сварщике. В его обязанности входят: соблюдение при работе только установленных режимов, использование электросварочных установок строго по назначению, обеспечение их сохранности, а также соблюдение техники безопасности. Важно отметить, что к самостоятельной работе на сварочном оборудовании, без присмотра наставника-специалиста, могут быть допущены только сварщики-операторы, прошедшие полный курс обучения обслуживания и работы на полуавтоматическом и автоматическом сварочном оборудовании, а также вводный инструктаж по правилам безопасности.

    При несоблюдении таких условий все виды сварочных работ должны проводиться только двумя специалистами – самим сварщиком и наблюдателем.

    Применение сварочного оборудования с соблюдением норм и правил техники безопасности увеличит срок службы устройства и сведет к минимуму риск появления аварийных ситуаций.

    Виды вспомогательного сварочного оборудования

    Виды вспомогательной сварочной оснастки:

    • Передвижные каретки. Служат для перестановки в любых направлениях сварочных аппаратов, шланговых держателей, контрольных датчиков, резаков и горелок относительно изделия. Существенно облегчают контроль сварки и резку деталей. Движение кареток происходит по направляющим рельсового типа, предварительно установленным в цехах. Являются очень удобным вспомогательным оборудованием.
    • Кантователи. Предназначены для установки детали в поперечной плоскости. Позволяют закреплять изделия любого веса, хрупкости и формы. С помощью такого устройства можно свариваемую деталь повернуть на любой угол, что очень удобно при выполнении таких работ. В комплектацию входят цепные или ременные стропы. Основной технический показатель кантователя – это его грузоподъемность. При выполнении сварочных работ необходимо учесть тот факт, что устройство не рассчитано на поднятие веса свыше заданного.
    • Сварочные колонны. Функционально предназначаются для надежной фиксации и передвижении сварочных изделий. Для комфортной эксплуатации и большего удобства можно сочетать с роликовыми опорами. В устройство входят следующие элементы: подъемный механизм, опорно-поворотный элемент, перемещающий привод, каретки, консоли и тумбы. По желанию заказчика могут дополнительно комплектоваться источниками питания и сварочными колонками.
    • Опоры роликовые. Обеспечивают равномерное вращение деталей с цилиндрической формой для выполнения качественных внутренних и внешних кольцевых сварочных швов. Устройство состоит из двух секций – с приводом и без него. В первом варианте используется несколько роликовых опор, каждая из которых обладает собственным приводом вращения. Второй вариант представляет собой раму с закрепленными на ней приводными роликами. Сама секция надежно монтируется к полу.
    • Вращатели – устройства, предназначенные для закрепления заготовок в максимально удобном для сварщика положении с одновременным вращением их с определенной скоростью. Наиболее часто применяются при ремонтных работах, а также в машиностроении. В использовании довольно просты и удобны. Да и само устройство является нетяжелым и довольно компактным. Устройство функционально оснащается следующими рабочими элементами: прорезями для надежной фиксации деталей, рукоятками наклона, ножными педалями «СТАРТ\СТОП», блоком управления и кнопкой аварийного выключения.
    • Оборудование специального назначения. Может представлять собой автоматы для электродуговой сварки, агрегаты для наплавления, трубосварочные комплексы и подобные устройства. Их используют с целью увеличения эффективности и быстроты сварочного процесса в определенных промышленных условиях. Имеют самое разнообразное применение.

    В итоге грамотное сочетание основных и вспомогательных устройств позволяет проводить высокопроизводительную, качественную и безопасную сварку. Кроме этого, применение всей необходимой оснастки позволяет полностью автоматизировать сварочный процесс и увеличить объемы выполняемых работ без снижения качества продукции.

    Почему следует обращаться именно к нам

    Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

    Наши производственные мощности позволяют обрабатывать различные материалы:

    • цветные металлы;
    • чугун;
    • нержавеющую сталь.

    При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

    Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

    Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

    Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

    Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

    Читайте также: