Защита шва при сварке

Обновлено: 08.07.2024

Далеко не все задумываются о том, что сварные швы нуждаются в дополнительной защите от коррозии. Какой бы вид сварки вы не использовали, от нагрева в местах соединения деталей защита металла слабеет перед коррозией. Даже если до этого вы защищали участок самым современным и надежным антикоррозийным покрытием. Сварные швы в любом случае нуждаются в восстановлении цинкового покрытия после сварки.

Не стоит забывать, что сварные швы – это основа прочности конструкции, именно на них приходится основная нагрузка при дальнейшей эксплуатации. Поэтому именно сварные швы должны быть максимально защищены от коррозии, в первую очередь, чем вся остальная конструкция.

К счастью, сегодняшние технологии позволяют без особого труда и быстро нанести защиту на сварные швы, которая прослужит не один десяток лет, как и вся конструкция.

Нужно ли готовить сварной шов под нанесение покрытия?


Для качественной антикоррозийной защиты сварных соединений специалисты рекомендуют защищать сварные швы от коррозии не позднее 3 дней после сварки, так что затягивать с этой процедурой не стоит. Перед нанесением покрытия сварные швы тщательно зачищают наждачным кругом, металлической щеткой или специальным аппаратом для очистки. После очистки швы промывают, протирают и просушивают. Если остались сварочные брызги, остатки шлака, неровности, острые грани, остатки грязи, то рекомендуется их удалить. В общем, поверхность сварных швов должна соответствовать ГОСТам – очистки и подготовки металла под покраску.

Чем защищают сварные швы от коррозии?

Так как сварные швы – самое слабое место перед коррозией в металлической конструкции, то защищать его с помощью простых красок или даже специальных антикоррозийных составов – не целесообразно. Если вы хотите сохранить конструкции не один десяток лет, то необходимо использовать только цинкование.

Самыми эффективными и долговечными являются методы горячего и холодного цинкования. После сборки конструкций и сваривания их частей, применение горячего метода невозможно. А вот холодное цинкование как раз приходит на помощь сварным швам.

Холодное цинкование – это защита от коррозии на 25-50 лет, удобство нанесения, как обычные краски и экономия, за счет отсутствия оборудования, низкой стоимости составов, применения на месте эксплуатации своими силами

Кроме того, существует состав холодного цинкования, идеально подходящий для защиты сварных швов от коррозии – Барьер-Цинк.

Как наносить защиту на сварные швы?

Нанесение холодного цинкования на сварные швы происходит так же, как и при защите обычного участка металла. Можно использовать кисти, валики, аппараты воздушного или безвоздушного распыления. Но, если вы не являетесь профессионалом, а сварные швы у вас небольшого диаметра, то рекомендуем вам применять средство из аэрозольного баллончика. Кстати, Барьер-цинк выпускается и в виде спрея.

Наносить холодное цинкование рекомендуется примерно через 24 часа после непосредственной сварки. Так как швы должны полностью остынуть и «схватиться».

Нужно ли наносить финишное покрытие на сварные швы после холодного цинкования?


Холодное цинкование прекрасно справляется с защитой от коррозии, а вот от ультрафиолета и атмосферных явлений не помешает дополнительная защита. К тому же, холодное цинкование имеет серый матовый цвет. В итоге сварные швы будут сильно отличатся по цвету и выделятся на фоне остальной конструкции. С помощью финишного покрытия вы можете придать сварным швам тот же цвет, что и у всей конструкции, а так же дополнительно защитить конструкцию от ультрафиолета и других явлений природы.

Кстати, холодное цинкование прекрасно сочетается с 99% всех красок любых составов. Особой популярностью пользуются алюминиевые краски, в которых сочетаются – привлекательный блестящий цвет и мощные защитные характеристики. К тому же, блестящий алюминиевый цвет – это очень близкий цвет к горячему цинкованию. Если остальные части конструкции были защищены именно таким способом, то алюминиевая краска вам просто необходима. Рекомендуем также воспользоваться составом в аэрозольном баллончике.

Сколько стоит защитить сварные швы от коррозии?

При использовании Барьер-Цинка, покрытие одного метра сварного шва обойдется вам примерно в 5,5 рублей. Совсем немного, правда? Особенно по сравнению с ценой замены всей конструкции, если она разрушится от коррозии.

Кому стоит позаботиться о защите сварных швов от коррозии?

Защищать сварные швы от коррозии выгодно для всех. Любые конструкции, применяемые как в промышленности, так и для хозяйственно бытовых нужд, прослужат дольше на десятки лет, если защитить сварные швы. Вы сможете сэкономить на замене конструкций и их ремонте, как у себя на даче, так и в бюджете своего предприятия.

Для тех, кто занимается производством и продажей кованых изделий и металлических конструкций, защита сварных швов особо выгодна. Изделия и конструкции, созданные вами, прослужат у их покупателей не 3-5, а десятки лет. Их не нужно будет подкрашивать, дополнительно защищать от коррозии, годами бороться с ее появлением. Все это послужит вам и вашему предприятию отличной рекламой. Кроме того, вы можете дополнительно продавать услугу – защиту сварных швов конструкции от коррозии. Сварщики также могут включать в список своих умений такую выгодную услугу, как защита сварных швов.

Борьба с трещинами в сварочном шве

Трещины при сварке – это один из видов дефектов, приводящий к разрушению сварного соединения. Возникают такие элементы сразу после окончания накладки шва или впоследствии, по мере остывания металла. Каждый сварщик должен знать виды сварных трещин, причины их появления и методы устранения, а также предупреждения, чтобы создавать надежные соединения.

Виды трещин по форме и локации

Трещины при сварке могут иметь различную форму, ориентацию в материале и локацию. Различают следующие виды трещин:

продольные в шве (обычно длинные, иногда через весь стык);

поперечные в шве (зачастую короткие и зигзагообразные);

продольные в околошовной зоне (длинные и тонкие, как нитка, едва заметные);

поперечные в околошовной зоне (расходятся от краев шва по материалу заготовки);

поперечные внутри основного материала под швом (короткие);

продольные внутри толщи присадочного металла.

Порой наружные трещины могут образовываться в кратере, при завершении шва, если резко разорвать электрическую дугу. Тогда они расходятся «паутинкой» от центра и ослабляют «замок» сварного соединения. Если стык выполнялся «под воду», высокая вероятность протекания в этом месте. В конструкциях, где герметичность не важна, трещины ослабляют надежность соединения, влекут разрушение стыка, ускоряют разрыв шва.

Виды трещин по времени появления

Трещины

Трещины в сварочном шве и околошовной зоне условно делятся по времени появления на горячие и холодные. Горячие возникают при температуре металла около 1000-1300 С, когда одни части начинают застывать, а другие еще остаются жидкими. Визуально их можно увидеть на красном металле шва и в темной околошовной зоне.

Холодные трещины образуются позже. Сразу после отрыва электрода, дуга гаснет и соединение выглядит целостным. Но потом слышится треск и появляются дефекты. Обычно это происходит при температуре детали 200-300 С.

Причины появления горячих трещин

Различают несколько причин возникновения горячих трещин при сварке:

Жесткая фиксация заготовок. Если детали плотно зафиксированы, то при нагреве от сварки и последующем остывании возникает напряжение, влекущее разрыв материала. Поскольку участки, где велась сварка, наиболее разогреты и мягче других, трещины возникают именно в них.

Включения посторонних веществ. В сварочную ванну попадают окислы (пленка с поверхности заготовки), краска, шлак, сера, фосфор, что делает сплав неоднородным. При кристаллизации вещества застывают с разной скоростью. В результате одни элементы уже твердые, а другие – жидкие. Последние рвутся от стягивания и усадки металла, приводя к трещинам. Особенно дефекты возникают из-за наличие кислорода и водорода.

Неправильные пропорции дополнительных легирующих элементов. Когда в присадочный металл добавляют хром, молибден, ниобий, бор и другие элементы для компенсации выгоревших, завышенные пропорции делают кристаллическую решетку отличной от основного материала, что вызывает разницу по твердости и температуре остывания, приводя к трещинам.

Разная температура плавления соединяемых деталей. При соединении углеродистой и малоуглеродистой стали, у которых температура плавления 1535 и 1300 С, один металл уже твердый, а второй – еще жидкий, поэтому появляются горячие трещины. Еще больше дефект проявляются при соединении чугуна со сталью (температура плавления чугуна 1147-1200 С). Этот же эффект будет, если сваривать две половинки чугуна обычными электродами для углеродистой стали.

Причины появления холодных трещин

Холодные трещины менее заметны, поскольку раскрываются не так сильно, как горячие. У них не широкая «паутина», а тонкие «ниточки». Зачастую образуется дефект из-за включения водорода, накапливающегося в определенных зонах. Он делает металл более хрупким, вызывая разрывы при остывании, когда заготовка достигает температуры 200 С. Среди других причин образования холодных трещин:

Малый диаметр электрода. Приводит к недостаточному количеству наплавленного металла. В результате шов получается тонкий и легко рвется от внутренних термических деформаций.

Низкая сила тока. Не позволяет достаточно глубоко проплавить место соединения. Шов получается поверхностным и трескается от напряжения.

Слишком узкий сварочный шов. Слабо захватывает стороны заготовки, поэтому когда они расходятся при остывании, нередко возникает трещина рядом со швом.

Быстрое охлаждение детали после сварки. Если после отрыва дуги сразу полить деталь водой, кристаллическая решетка не успевает полноценно сформироваться и возникает разрушение связей в структуре металла.

Внутренние напряжения. Когда деталь многократно нагревалась в одном и том же месте, внутри возникает напряжение. Оно возрастает, если остальные части конструкции были соединены перед сваркой с применением силы, а не сведены без усилий. Тогда, по мере остывания, возможны трещины как самого шва, так и прилегающей зоны.

Методы контроля сварного шва

После окончания сварки и остывания металла сварщик самостоятельно осматривает швы на наличие трещин. Для этого необходимо очистить соединение от шлака и пыли щеткой. Порой применяется обдув сжатым воздухом. Чтобы отличить риску наплыва металла от трещины, используют увеличительное стекло.

Остальные методы проверки применяются по необходимости, если того требуют условия выпуска продукции. Это может быть просвечивание швов рентгеновским излучением, которое покажет внутренние трещины, а не только наружные. Для трубопроводов, сосудов и других конструкций, по которым будет протекать жидкость или газ, применяется опрессовывание сжатым воздухом, проверка керосином или аммиаком. Все это помогает выявить скрытые трещины, поры и свищи.

Чистка шва

Как устранить трещины

Если после сварки выявлена трещина в шве или околошовной зоне, необходимо выполнить подготовительные действия для ее устранения. Распространенная ошибка – просто наложить шов сверху. Это устраняет дефект лишь поверхностно и косметически. Внутри разрыв материала остается. В таком случае высокая вероятность, что соединение снова треснет при остывании или под нагрузкой.

Для начала нужно понять, что привело к дефекту. Если это разная температура плавления металлов, то используют другие электроды, обеспечивающие лучшую свариваемость и кристаллизацию веществ в месте стыковки. Когда причина в напряжениях, изделие предварительно прогревают при помощи резака, газовой горелки или паяльной лампы.

Стоит уделить внимание и самой трещине. Если дефект 10 см и более в длину, то, чтобы он не разошелся дальше, пока будет накладываться новый шов, необходимо зафиксировать края трещины. Для этого их засверливают на всю глубину стыка сверлом по металлу и дрелью. Далее нужна разделка трещины, выполняемая болгаркой и отрезным диском. Углубитесь кругом на 5 мм. Это создаст достаточно места для проплавления и заполнения новым присадочным металлом.

Концу шва уделяют дополнительное внимание. Важно настроить спад силы тока, чтобы сварочная ванна постепенно застыла, а кристаллическая решетка правильно сформировалась. Если возможности сварочного аппарата не поддерживают такие настройки, просто постепенно увеличивайте воздушный зазор. Электрическая дуга станет выше, а температура воздействия ниже.

Заканчивайте шов всегда на другом шве, создавая своего рода «замок». Здесь меньше вероятности образоваться кратерным трещинам. Некоторые опытные сварщики выводят конец шва на цельный металл (в бок, где не велась сварка), поскольку там сплошное сечение стали и гарантированно не появится сквозная трещина или свищ.

Как не допустить появления трещин

Важно изначально соблюдать режимы сварки и правильно готовить детали. Ведь устранение трещин ведет к потере времени, перерасходу материалов, удорожанию конечного изделия или снижению получаемой за его изготовление прибыли. Для предупреждения проблемы соблюдайте следующие рекомендации:

Подбирайте правильно сварочный ток и диаметр электрода. Сила тока и диаметр проволоки или электрода должны соответствовать сечению металла. Ориентировочная таблица по настройке аппарата в зависимости от пространственного положения шва и диаметра электрода присутствует на каждой упаковке расходных материалов.

Используйте присадочные материалы, соответствующие основному металлу заготовки. Для этого вникайте в состав проволоки и стержня электрода, обмазки. Для сварки нержавейки выбирайте электроды и проволоку для легированной стали. Чугун варится отдельными электродами со специальным покрытием. Для медных сплавов выпускают проволоку и прутки из меди. Если хотите сваривать алюминий, задействуйте электроды и проволоку для полуавтомата, рассчитанные для такого применения.

Подавайте в зону сварки флюсы с минимальным количеством серы и фосфора. Лучше использовать флюсы на кремниевой основе.

Выполняйте предварительный прогрев заготовок. Это уменьшит перепад температур между зонами, где будет вестись сварка и другими участками, предупредит деформацию и напряжение металла.

Разделывайте кромки толстых деталей. При сечении от 5 мм и выше снимайте фаску под 45⁰, чтобы стороны имели V или Y-образное соединение. Это увеличит глубину шва и площадь соприкосновения наплавленного и основного металла, повысив прочность стыка.

Варите многопроходными швами. Выполните несколько проходов на средней скорости. Это лучше, чем один высокий шов на медленной скорости. Допускается чередование ведения горелки или электрода в разные стороны при многопроходных швах, что только усиливает структуру наплавленного металла.

Не охлаждайте детали сразу после сварки водой, не бросайте их в снег или на лед.

Сварка деталей

К охлаждению водой прибегают, когда нет времени дожидаться естественного остывания и нужна дальнейшая сборка конструкции. Используйте для удержания горячих деталей сварочные рукавицы повышенной толщины или специальные приспособления для сварки. Есть много зажимов, позволяющих захватить круглую или профильную заготовку разных диаметров и присоединить ее к другой конструкции для сборки и прихватки. Магнитные фиксаторы помогут обойтись без посторонней помощи, ведь некоторые модели выдерживают до 34 кг.

Как сварить ГБЦ или блок ДВС без трещин

Трещины в головке блока цилиндров возникают, как правило, между седлами клапанов, и приводят к перепусканию картерных газов. Герметичность нарушается при резком перегреве и охлаждении ГБЦ, например в момент долива антифриза в работающий мотор. Блок двигателя может лопнуть в любом месте, если использовалась охлаждающая жидкость с небольшой температурой замерзания. Встречаются характерные повреждения при ДТП.

Чтобы заварить трещины ГБЦ или блока ДВС, необходим инвертор TIG, способный переключаться с постоянного тока на переменный. Обозначаются такие аргонодуговые аппараты как AC/DC и могут быть на 220 и 380 В. Именно переменное напряжение в аргоновой сварке вольфрамовым электродом обеспечивает разрушение высокотемпературной оксидной пленки снаружи алюминия и аккуратную сварку основного металла. При работе постоянным током качественно выполнить стык не получится.

Трещина ГБЦ

Используйте присадочную проволоку для алюминия. Необходима разделка трещины отрезным кругом болгарки, чтобы увеличить глубину проплавления. Если повреждение имеет длину 1-2 см, можно сразу вести сварку после расшивки и обезжиривания. При более крупных трещинах ГБЦ необходим предварительный подогрев металла, чтобы снизить напряжение и температурные деформации. Тогда шов не лопнет по мере остывания.

Дождитесь охлаждения металла до 50-60 ⁰С, после чего приступайте к шлифовке, удаляя лишний металл. Обязательно опрессуйте блок, чтобы убедиться в герметичности. В случае ГБЦ некоторые перестраховываются и выполняют гильзовку каналов.

Правильно подготавливая металл под сварку и выбирая соответствующий режим, получится избежать трещин в шве. Используйте присадочные расходные материалы близкие по составу к основному металлу. Если трещина все же возникла, воспользуйтесь советами из этой статьи по ее удалению, а главное проанализируйте, почему образовался дефект, чтобы предупредить его появление в будущем.

Ответы на вопросы: борьба с трещинами в сварочном шве

Когда нет электроинструмента, трещину можно расшить при помощи зубила и молотка. Устанавливайте зубило не строго вертикально, а под наклоном 60-70⁰. Меняйте сторону наклона. Так получится вырубить канавку, куда будет затекать присадочный металл.

Трещина может появиться как при сварке покрытым электродом, горелкой полуавтомата, так и вольфрамовым электродом. Здесь больше сказывается состав основного и присадочного металлов, режим сварки, наличие внутренних напряжений, включения посторонних веществ с поверхности заготовки и пр.

Такое нередко бывает при сварке чугуна или нержавейки с неправильно подобранными электродами/проволокой. Замените расходные элементы, счистите болгаркой предыдущий наплавленный металл до основного. В случае чугуна прогрейте деталь паяльной лампой или газовой горелкой.

Металл шва более прочный и быстрее застывает, чем основной материал. Выберите менее тугоплавкий электрод или проволоку, хорошо очистите поверхность от краски, масла, ослабьте фиксацию детали.

Если при опрессовке через шов с трещиной не проходит жидкость, значит дефект не глубокий, а поверхностный. Но от вибрации, ударов, перепадов температур трещина может расти как в длину, так и в глубину, поэтому соединение лучше переделать.

Защита сварных швов от коррозии

Сварное соединение и зона около шва, независимо от марки стали, ее назначения и сложности изделия является наиболее уязвимым местом по отношению к остальной конструкции. Химическая и электрохимическая коррозия сварных соединений наиболее опасные виды разрушений, которым они подвержены.

Защита шва от коррозии

Защита шва от коррозии

Причины появления коррозии при сварке

Появление коррозии в первую очередь на сварных соединениях, объясняется двумя причинами:

  1. разрывом первичных межкристаллических связей и получением новых, отличных по своим механическим свойствам от прежних, а также появление напряжений в структуре металла.
  2. изменением химического состава, появлением оксидов (эндогенных неметаллических включений), являющихся концентраторами напряжений в структуре;
  3. образованием гальванической пары за счет изменений в хим. составе сварного шва.

Влияние вышеперечисленных изменений возрастает пропорционально степени и интенсивности, количеству и размерам. Скорость протекания реакции окисления дополнительно определяется условиями работы: климатической составляющей, физико-химическим воздействием (рабочей средой).

Виды коррозии сварочного шва

На данный момент достаточно изучили, какие существуют виды коррозионного разрушения сварных соединений и в зависимости от характера их действия, к ним применяются соответствующие меры защиты.

По характеру разрушения коррозия подразделяется на 3 типа:

Преобладает преимущественно в углеродистых нелегированных или мало легированных сталях с однородной структурой. Шов, вне зависимости от марки стали, всегда разрушается более интенсивно, чем целостная плоскость.

Внешний вид сплошной коррозии

Внешний вид сплошной коррозии

К такому виду разрушения предрасположена сталь неоднородная по своему химическому составу. Такая коррозия развивается в слабо ржавеющих сталях типа Х12МФ или в сварных швах, обедненных хромом. Обуславливается также и условиями эксплуатации.

Местная коррозия металла

Местная коррозия металла

Наиболее опасный вид коррозии. Разрушение происходит по границам зерен металла по всей толщине. Подвержены этому «заболеванию» аустенитные (нержавеющие) стали, подвергающиеся продолжительному нагреву свыше 600 ºС, в том числе и свариванию.

Межкристаллитная коррозия металла

Межкристаллитная коррозия металла

Гальваническая пара также способствует этому виду разрушения: сварное соединение после расплавления меняет свой химический состав и при воздействии на него электролита, в качестве которого может выступать даже вода, истощается в первую очередь. Такой вид коррозии «работает» одновременно может работать на большой площади металла, который разрушается даже при небольшой нагрузке.

Первостепенная задача, после термомеханической обработки — защита сварных швов от коррозии всех видов.

Способы защиты соединений от коррозии

Защита сварных швов от коррозии ГОСТ 9 402-2004 проводится двумя типами покрытий:

  • неметаллическим: лакокрасочными материалами, дополнительно придающими эстетичный внешний вид;
  • металлическим: анодирование, лужение, наплавление коррозионно-стойких материалов, лакокрасочные материалы на металлической основе.

Наносится антикоррозионная защита сварных соединений после многостадийной обработки поверхности, которая направлена на устранение оксидной пленки и мелкодисперсной пыли впоследствии вызывающие подпленочную коррозию.

Эффект от антикоррозийного покрытия шва

Эффект от антикоррозийного покрытия шва

Процесс может состоять из нескольких этапов:

  1. Механическая обработка поверхности.
  2. Химическая или электрохимическая обработка поверхности с образованием устойчивых соединений, увеличивающих коэффициент сцепления между двумя разнородными материалами:
    1. для черных металлов: фосфатирование, хроматирование, пассивирование, воронение;
    2. для цветных металлов: лужение, щелочное травление + осветление.

    Для аустенитных сталей проводится дополнительная термомеханическая защита сварных швов от коррозии, нержавейка в этом отношении зависит от содержания хрома. При процентном содержании хрома до 12 %, он находится в зерне металла, а на его границах это количество снижено, что приводит к увеличению карбидных и интерметаллидных соединений. В то время как само зерно остается в пассивном состоянии, границы начинают свободно реагировать. Для стабилизации структуры проводят термическую обработку стали, нагревая ее до 600 ºC и быстро охлаждая, что приводит к упрочнению межкристаллитных связей за счет образования карбидов хрома на границах.

    Защита сварных швов от коррозии на авто являет собой совершенно другой принцип. Это низкоуглеродистый штампованный металл, с большим количеством внутренних напряжений. Здесь технология выбирается в зависимости от характера и размера повреждения. Главным критерием является, испытывают ли детали какую-либо нагрузку. Обработка швов корпуса автомобиля проводится двумя способами:

    • металлическими припоями (лужение):
      • олово–свинцовые — используются для ненагруженных деталей;
      • латунные — используются для стыков, подвергающихся механическим нагрузкам;

      Лужение сварочного шва представляет собой заполнение неровностей латунным или оловянно–свинцовым припоем (олово в чистом виде при температуре -10º С окисляется и превращается в серый порошок).»

      Перед нанесением поверхность очищается от ржавчины, мелкодисперсной пыли, после чего на поверхность наносят флюс, исключающий окисление, и нагревают горелкой. Припой изготавливается в виде прутков. Температуры нагретого металла превышает температуру плавления припоя, который сразу же схватывается с поверхностью. Лишний материал снимают рашпилем и шлифуют поверхность.

      Защита сварных швов от коррозии под землей заключается в термической обработке (отпуску) сварного соединения, как правило, это относится к магистральным трубопроводам, которые изготавливаются из углеродистого легированного металла или нержавеющей стали. Углеродистый металл общего назначения, не требует такой обработки и сразу подвергается изоляции материалами, изготовленными на основе битума, стекла, полимеров.

      Защита сварных швов от коррозии в авиации основывается на технических свойствах алюминиевых сплавов, которые являют собой основу всего самолетостроения. Алюминий, являясь наиболее близко расположенным к кислороду элементом, проявляет высокую активность при взаимодействии, что исключает возможность сваривания металла в незащищенной атмосфере. В самолетостроении важно максимально точно сохранить однородность сплава, для чего используют магнитно–импульсную сварку. Особенность ее заключается в мгновенном расплавлении (0,1-0,2 сек) и соединении двух частей, при котором очень плотное прилегание двух поверхностей исключает влияния чужеродных примесей на зону плавления. Эту же технологию применяют для труб ответственного значения.

      Вывод

      Существующие технологии представляют собой две стадии защиты:

      • Стабилизацию структуры термической обработкой (используется ограниченно, в легированных сплавах);
      • Нанесение различных коррозионно-устойчивых покрытий на защищаемую поверхность (применяется для всех видов сплавов).

      Задача покрытия состоит в том, чтобы создать максимально прилегающий к основе слой, исключить на него воздействие кислорода. По-сути это можно назвать изоляционным слоем. Тем не менее, устранить корродирование полностью невозможно, все направленные меры способны только увеличить длительность этого процесса во времени.

      ЦЕНТР ЗНАНИЙ ЭСА


      Основными задачами защитного газа являются защита сварочной ванны от воздействия атмосферы, а именно от окисления и поглощения азота, а также стабилизация электрической дуги. Выбор защитного газа может также повлиять на характеристики профиля провара шва.

      Защитные газы

      Защитные газы для процессов MIG/GMAW сварки

      Основным газом для MIG/MAG сварки является аргон (Ar). Гелий (He) можно добавлять для увеличения глубины проплавления и текучести сварочной ванны. Аргон или смесь аргона с гелием можно использовать для сварки всех сортов стали. Однако для стабилизации дуги, улучшения текучести, а также для улучшения качества наплавленного металла, как правило, требуется незначительное добавление кислорода (O2) или углекислого газа (CO2). Также для сварки нержавеющей стали имеются газы с небольшим содержанием водорода(H 2).

      В таблице ниже приводится список подходящих защитных газов для MIG/MAG сварки, в зависимости от типов нержавеющей стали и типов дуги.

      Основной металл (тип материала)

      Аустенитная нержавеющая сталь

      Дуплексная нержавеющая сталь

      Супердуплексная нержавеющая сталь

      Ферритная нержавеющая сталь

      Высоколегированная нержавеющая сталь

      Ar + 30% He + (1-2)% CO 2 d

      a) Предпочтительно для импульсной MIG сварки.
      b) Более высокая текучесть сварочной ванны по сравнению с добавлением CO2.
      c) За исключением 22.12.HT и 27.31.4.LCu, где предпочтительнее Ar.
      d) Не подходит для сварки в режиме струйного переноса, где требуется сверхнизкое содержание углерода.
      e) Лучшие показатели сварки короткой дугой и позиционной сварки по сравнению с Ar + (1-2)% O2.
      f) Более высокая текучесть сварочной ванны по сравнению с Ar. Лучшие показатели сварки короткой дугой и позиционной сварки по сравнению с Ar + (1-2)% CO2.
      g) Для сортов стали, легированных азотом.

      Защитные газы для процессов TIG/GTAW сварки

      Основным газом для TIG сварки является аргон (Ar). Гелий (He) можно добавлять для увеличения глубины проплавления и текучести сварочной ванны. Аргон или смесь аргона с гелием можно использовать для сварки всех сортов стали. В некоторых случаях можно добавлять азот (N2) и/или водород (H2) для получения определенных свойств. Например, добавление водорода оказывает.

      схожий с добавлением гелия эффект, но намного сильнее. Тем не менее, водород не следует использовать при сварке мартенситных, ферритных или дуплексных сортов стали.

      Кроме того, в случае добавления азота можно улучшить свойства наплавленного металла при сварке сплавов, легированных азотом. Окисляющие добавки не используются, так как они разрушают вольфрамовый электрод. В таблице ниже проводятся рекомендации по выбору защитного газа для TIG сварки разных сортов нержавеющей стали. При плазменно-дуговой сварке типы газов с добавлением водорода в основном используются в качестве плазменного газа, а чистый аргон - в качестве защитного.

      Читайте также: