Какие металлы содержатся в жестком диске

Обновлено: 19.05.2024

Золотая лихорадка запомнилась одним интересным случаем — играя в ручье возле своего дома, двенадцатилетний мальчик Конрад Рид нашел массивный желтоватый булыжник. И долгое время семья подпирала дверь дома золотым камнем весом в 7 кг. А потом слиток продали за впечатляющую цену — 3$.

Поразительно, но многие из нас поступают столь же нерационально, выбрасывая на свалку бытовую технику, старые материнские платы и микросхемы.

В каких деталях компьютера больше всего золота и как его извлечь: 2 способа + законно ли это

Есть ли драгметаллы в компьютерах

Если приблизительно подсчитать вес всего ранее добытого (легальным путем) золота, цифра получится внушительной — 189 000 тонн. И около 10% этого веса приходится на электротехнику.

Однако если разобрать современный компьютер на составные части и детально выяснить, что ценного, помимо информации, находится внутри, результаты будут неутешительными: все «золотоносные» детали компьютера в сумме содержат не больше тридцати миллиграмм золота. А вот детали древнего мастодонта — ЭВМ начала девяностых — содержали до 3 грамм драгметалла.

Так есть ли смысл заниматься золотодобычей из вычислительной техники? Если вы кинетесь разбирать свой игровой компьютер на части в поисках золота, то общая сумма добытого не превысит сотни рублей. А вот если у вас имеется собственная мастерская компьютерной техники, а под столом накопился ворох нерабочих микросхем — выбрасывать их не стоит.

Какие детали компьютера содержат золото

Золото — инертный металл, практически не подвергается коррозии и окислению. К тому же отличный проводник. Поэтому им покрывают контакты, разъемы, слоты памяти, порты, перемычки. Конденсаторы, платы, видеокарты, даже компьютерные вентиляторы и клавиатура содержат драгоценные металлы, причем не только Au, но и Ag, Pt, Pd.

Я расскажу подробней, какие детали самые золотосодержащие.

Материнские платы

Материнская плата — основная деталь любого компьютера. Именно здесь осуществляется контроль над взаимодействием всех составных частей машины. Ее контроллеры, микросхемы чипсета, разъемы и контакты содержат львиную долю (если так можно назвать 3 мг) золота компьютера. Если присмотреться, на этом фото видны позолоченные детали материнской платы:

Нерабочие материнки — неплохой источник Au, если у вас их скопилось несколько десятков.

Процессоры

Процессор — главная деталь программного обеспечения компьютера. Он выполняет всю вычислительную работу. Здесь также много позолоченных деталей. Содержание золотого песка в микропроцессоре intel Pentium pro — свыше 2 мг.

Посмотрите это видео, где показан аффинаж золота из процессора.

А вот в 1 кг микропроцессоров Pentium pro содержится 11,4 гр. золота. Простому обывателю вряд ли удастся собрать столько, а для сисадмина это не проблема.

Жесткие диски

Основной накопитель информации, хард драйв также содержит металлы платиновой группы. Так, золота в одном винчестере — 0,034 гр., а серебра — 0,013 гр.

Чем старше запоминающее устройство — тем больше в нем драгметаллов. И дело даже не в пресловутом качестве приборов советского производства, а в элементарном техническом прогрессе. Стоит вспомнить эволюцию дисков — от массивных виниловых пластинок до микро-CD карточек современных смартфонов.

Сегодняшние детали гораздо тоньше и легче. Соответственно, и золота в них содержится в разы меньше.

Цены на лом плат

Микс разносортных плат 80/20


1. Не более 20% Мониторки 2. На отечественных платах более 75% элементной базы должны быть на месте Сырье должно быть без засора


GSM платы от сотовых станций с желтыми дорожками Батарейки, элементы питания, металлические части, пластиковые крепления, радиаторы и др. должны быть удалены.

Платы от серверов


Платы от серверов (широкие желтые разъемы, несколько сокетов под процессоры) Батарейки, элементы питания, металлические части, пластиковые крепления, радиаторы и др. должны быть удалены.

Материнка «старая» и от ноутбуков


Материнские платы для ноутбуков и материнские платы до поколения (и не включая) Pentium 4 Батарейки, элементы питания, металлические части, пластиковые крепления, радиаторы и др. должны быть удалены.


Материнские платы после поколения Pentium 4 (включая Pentium 4). Батарейки, элементы питания, металлические части, пластиковые крепления, радиаторы и др. должны быть удалены.

Платы HDD от жестких дисков


Платы снятые с компьютерных жестких дисков металлические части, пластиковые крепления должны быть удалены.

Видео, сетевые и звуковые карты


Видео, аудио и сетевые карты (все платы с желтыми ламелями для ПК) Без металла, пластика и алюминиевых радиаторов


Платы управления от оргтехники и импортных приборов Без металла, пластика и алюминиевых радиаторов

Богатые платы управления


Платы управления от медицинских и сложных импортных приборов с желтыми разъемами Без металла, пластика и алюминиевых радиаторов

Память «желтая» c позолоченными кантами


Память желтая Без алюминиевых радиаторов

Память «белая» c серебряными кантами


Память белая Без алюминиевых радиаторов


Мониторные платы и любые платы питания Платы должны быть очищены от металла, пластика, трансформаторов.


Платы от советских бытовых устройств Без металла, пластика и алюминиевых радиаторов


Платы управления военными и советскими приборами СССР Без металла, пластика и алюминиевых радиаторов

Разъемы ШР, ШРГ (СССР)


Разъемы ШР, ШРГ от советских промышленных и военных приборов Без проводов

Золотые разьемы импорт


Позолоченные разьемы, снятые с комутационных плат Таких, как например GSM


Керамические процессоры Без алюминиевого радиатора

Сколько золота содержится в ноутбуке

Ноутбук, как и любая вычислительная техника, содержит драгоценные металлы. Для него применимы все выводы, которые мы с вами сделали в отношении обычного ПК, однако в лаптопе золота еще меньше в силу его размеров. Его количество не превышает 0,3 мг. Существует легенда, что элитные ноутбуки VIP-класса содержат золота в разы больше.

Фактически добыча золота из компьютеров имеет смысл только в промышленных масштабах. На утилизационных заводах счет добытого солнечного металла высшей пробы идет на килограммы.

Легальность подобной добычи

Мнение эксперта Всеволод Козловский 6 лет в ювелирном деле. Знает все о пробах и может определить подделку за 12 секунд Если вы всерьез решили добывать золото из старой компьютерной техники, стоит почитать административный кодекс РФ, поскольку согласно закону все золото, находящееся в электронике, принадлежит государству.

Задача пользователей, если техника вышла из строя, — утилизировать ее соответствующим образом. Проще говоря, не выбрасывать на свалку, загрязняя окружающую среду, а сдать в специальные пункты приема, которые потом отвезут партию на утилизационный завод:

  • рабочие вручную разберут и отсортируют все детали, которые потом отправятся на переработку;
  • золотосодержащие детали измельчат и аффинируют.

Дома заняться аффинажем можно только ради интереса, поскольку процесс этот достаточно увлекательный.

Что потребуется для извлечения золота из компьютера в домашних условиях

Для аффинажа нам потребуются в первую очередь хорошие средства защиты: следует защитить руки, глаза, органы дыхания, надеть плотный фартук. Неплохо также иметь мощную вытяжку или проводить химические реакции в хорошо проветриваемом помещении либо на открытом воздухе.

Материалы и реактивы:

  • плоскогубцы;
  • отвертки;
  • газовая или бензиновая горелка;
  • точные весы;
  • фильтры;
  • химический стакан из жаропрочного стекла;
  • концентрированная соляная и азотные кислоты;
  • перекись водорода;
  • метиловый спирт;
  • электрическая плитка.

Процесс добычи

Есть несколько способов, чтобы добыть драгоценные металлы из радиодеталей. Я расскажу о самых простых. Но в любом случае для начала следует хорошо измельчить золотосодержащие детали. Максимально отделить металл от пластика.

Вариант 1

Измельченную массу опускаем в химический стакан с раствором соляной кислоты и перекиси водорода в пропорции 1/3. Напомню, что нужно наливать перекись в кислоту, а не наоборот. Не забывайте о технике безопасности и мерах защиты! Оставляем раствор на пять-семь дней.

Периодически помешиваем, чтобы ускорить реакцию. Весь не золотой. А иной металл за это время должен раствориться. Далее золото фильтруется и плавится.

Вариант 2

Способ основывается на способности царской водки (смеси соляной и азотной кислот в соотношении 1/3) растворять золото.

Итак, отсортированные и измельченные детали помещаем в царскую водку. Для ускорения процесса смесь можно немного подогреть. Не забывайте о мерах предосторожности! После полного растворения золото можно восстановить из раствора. Доступные восстановители — пиросульфит натрия и железный купорос. Добавлять восстановитель следует понемногу, поскольку реакция восстановления идет с выделением газа.

После того как золото выпадет в осадок, тщательно промываем его водой, не менее пяти раз, промываем спиртом, сушим и плавим с добавлением борной кислоты. Полученное таким образом золото получается высшей пробы.

Зачем нужна утилизация компьютерной техники

Добыча золота дома — увлекательный процесс. И использовать в личных целях его вполне можно. Но реализовать добытый таким образом желтый металл не получится — это противозаконно. Гораздо рациональней утилизировать вышедшую из строя технику согласно закону — отнести в пункт приема бытовой техники.

Пластик — настоящий бич современного общества. А одна батарейка загрязняет тяжелыми металлами 20 кубометров земли и воды. Если каждый из нас будет беречь окружающую среду, мы сможем сохранить планету для наших детей.

Компьютерная техника требует использования металлов, обладающих инертными свойствами. Поэтому активный выпуск компьютеров в конце 20 века повлек за собой переформатирования рынка легального использования золота.

Согласно статистике для производства компьютерной техники требуется сегодня до 17 000 тон этого драгметалла в год.

Компьютерное оборудование быстро обновляется. На смену старым моделям приходят новые, которые не стоит торопиться выбрасывать на помойку, так как часть деталей в нем содержит золото.

Читайте о том, где добывают золото в нашей стране.

Интересная статья о разнообразии способов добычи золота, в т. ч. и без специального оборудования.

А можно ли сделать золото своими руками, читайте на нашем сайте.

Для того, чтобы получить неплохой доход от вторичного использования драгметаллов, нужно понимать, сколько золота в процессоре. Чем старее модель, тем больший процент содержания золота и других ценных металлов в нем.

В современных компьютерах мобильного типа объем золота не превышает 25-30 мг. Самыми «золотоносными» считаются статусные модели компьютеров, в которых используется сверхдорогая материнская плата.

Сокращение содержания драгметаллов в современной электроники связано с уменьшением ее габаритов и размеров ее деталей. Поэтому самыми выгодными с точки зрения добычи и вторичного использования золота и других редкоземельных металлов считаются компьютеры выпуска 90-х годов, которых довольно много еще обращается на производстве и в быту.

Из чего сделан диск в винчестерах?

Но если б этих драгметаллов было бы действительно много… На самом деле надо покурочить немало техники, чтобы достать несколько микросхем и уже из них добыть золото. Золото из микросхем добывают, растворяя их в кислоте, и из получившейся жидкости конденсируют золото, но нужно довольно много микросхем, чтобы добыть всего лишь несколько грамм дорогого металла! Распад СССР произошёл в 1991 году. С того времени прошло 17 лет, а старой техники становится все меньше и меньше. Первыми пошли на уничтожение большие машины, и это не случайно. Я видел в интернете примерно такую информацию: в больших машинах типа ЕС могло содержаться около килограмма золота, а то и больше! Но не только золото привлекало и привлекает охотников — “металлистов”. Много компьютеров содержали сотни, а то и тысячи маленьких зелёных конденсаторов, так называемых «каэмок». Их откусывали все кому не лень и откуда только возможно, чтобы добыть из них несколько грамм палладия. Но чтобы добыть несколько грамм, надо достать много конденсаторов и, конечно, перепортить огромное количество техники. А если в технике не было драгметаллов, её ломали просто так! Например, из моторов для перемотки бобин делали вентиляторы на окна домов… Все это очень похоже на забивание гвоздей микроскопом

Кручу-верчу, запутать хочу. Разбираемся в линейках HDD


Привет, гиктаймс!

Сегодня у нас необычный материал, статья-ликбез: выбираем правильные HDD в зависимости от предполагаемых сценариев использования. Дело в том, что производители наплодили целую кучу разных линеек, и, если не следить за темой регулярно, через год-полтора можно легко забыть, какая серия к чему относится, зачем нужна и чем отличается.

Этот пост был бы неполным без небольшой теоретической части, поэтому приступим.

Устройство HDD

Все жёсткие диски устроены примерно одинаково. Внутри находятся один или несколько «блинов», приводимых в движение высокоскоростным мотором, да блок считывающих головок. Всё это спрятано в герметичной зоне, где нет пыли. По соседству с «механикой», можно найти несколько микросхем и плат, но они, скорее, относятся к электронике управления, чем непосредственно к хранению информации.


На данном изображении — старенький Seagate из конца 90-х годов. Конструктивно с тех пор почти ничего не поменялось. Когда диск раскручивается до минимально допустимых конструкцией оборотов, блок управления выводит головки в рабочее положение, и считывающий элемент начинает «парить» в долях миллиметра над магнитной поверхностью блинов.

На данном этапе отличаться может как количество оборотов в минуту у привода «блинов», так и количество самих пластин, на которых хранится информация. На своеобразной «расчёске», закреплённой между магнитными пластинами, установлены считывающие головки. Обычно их вдвое больше, чем пластин (хотя и встречаются исключения), перемещаются они все вместе. Количество самих пластин почти всегда напрямую зависит от объёма диска, но современные технологии позволяют «запихать» на один квадратный миллиметр всё больше и больше информации, увеличивая «плотность» информации в самом что ни на есть прямом смысле. Таким образом, например, можно встретить старый жёсткий диск на 1 ТБ с тремя «блинами» по 333 ГБ каждый, а можно найти новый HDD на 1.5 ТБ с двумя, но по 750.

Производители жёстких дисков

В нашем магазине сейчас представлены четыре крупных бренда: Western Digital, Seagate, Hitachi HGST (Приобретена WD) и Toshiba. Своё производство жёстких дисков есть было и у Samsung (да и много ещё у кого, в Википедии насчитывается более 200 компаний, занимвашихся производством HDD), фактических же производителей железа и того меньше. Свои сборочные линии есть только у Seagate, WD и Toshiba. Все остальные комании, так или иначе, либо были перекуплены крупными производителями, либо покинули рынок HDD.

Какие бывают HDD?

Казалось бы, жёсткий диск и жёсткий диск, выбрал нужный объём, посмотрел на цену, устраивает — пошёл и купил. Естественно, в жизни всё несколько сложнее. Параметров у жёстких дисков больше, чем «цена» и «сколько на него влезает».

Основные характеристики HDD таковы:

Ёмкость – собственно, «сколько на него влезает» – это значение характеризует количество информации, которое можно записать на диск. При этом хитрые производители используют десятичные приставки обычной метрической системы: в 1 килобайте у них 1000 байт, в мегабайте, соответственно, миллион, в терабайте — триллион. В операционной же системе килобайт, мегабайт и прочие единицы измерения кратны 1024. Из-за такой, казалось бы, небольшой разницы, накапливается приличная «погрешность», разумеется, не в нашу с вами пользу: если на красивой этикетке диска указана ёмкость в 1 терабайт, то на практике пользователю доступно примерно 931-932 ГБ полезного пространства.

Скорость вращения шпинделя – основная характеристика, отвечающая за скорость работы диска при последовательном чтении или записи информации. Чем быстрее вращается мотор, тем быстрее пролетают под «головкой» сектора блинов. Основные популярные значения — 5400, 7200, 10000 и 15000 оборотов в минуту, хотя есть модели и с промежуточными значениями.

Объём кеш-памяти – объём специального высокоскоростного буффера, в котором оседают файлы на чтение или запись, прежде чем диск или система выполнит предыдущую операцию. Чем больше объём кеш-памяти, тем проще диску работать с большим количеством маленьких файлов.

Интерфейс подключения – способ связи жёсткого диска с остальным железом вашего компьютера. Самые популярные на сегодняшний день — SATA 2 (300) и SATA 3 (600) для дисков «внутреннего» назначения, и USB 2.0 / 3.0 для «внешних» накопителей.

В большинстве случаев от этих аппаратных возможностей зависят показатели скорости чтения и записи, долговечность самого диска, уровни шума и энергопотребления. Различное сочетание данных характеристик позволяет производителю влиять на непосредственно скоростные и надёжностные свойства HDD. Нас с вами интересуют следующие показатели:

Количество операций ввода-вывода в секунду (IOPS) — в двух словах — возможности жёсткого диска по чтению и записи определённого количества блоков (обычно, по 4 килобайта) информации за одну секунду. Подробнее об этой характеристике можно почитать в Википедии, информация в статье просто исчерпывающая. Чем больше значение IOPS — тем быстрее диск может проводить операции с файлами.

Время произвольного доступа — то есть то время, которое требуется для позиционирования головки считывающего / записывающего устройства на произвольный участок магнитного диска. Чем меньше — тем быстрее «отклик» у жёсткого диска на запросы системы.

Для чего можно использовать HDD?

В наше время высокоскоростные диски SSD успешно отвоёвывают роль системных носителей. Несмотря на высокую цену, достаточно скромные (по сравнению с HDD) ёмкости и риск безвозвратной утери данных, диски на основе микросхем (а не движущихся частей), всё чаще становятся носителями OS и чувствительного к скорости обмена данными с диском софта. Дело в том, что их показатели IOPS и времени произвольного доступа в разы выше, чем у «классических» жёстких дисков. К счастью, списывать проверенную временем технологию рано. Во-первых, по соотношению количества сохраняемой информации к цене у жёсткого диска практически нет равных, а уж тем более в условиях домашнего использования. Во-вторых, цены на SSD и так были не самыми радостными, а теперь ещё и этот кризис… В общем, HDD пока жив и живее всех живых. Так как же можно его применять?

  • Как универсальный диск «для всего»: системы, софта, игр, хранения данных;
  • Как диск сравнительно небольшого (от 300 ГБ до 1 ТБ) объёма для приложений, чувствительных к скорости обмена данными с дисковой подсистемой;
  • Как диск для долговременного хранения данных, не представляющих высокой ценности и не требующих высоких скоростей доступа: музыки, фильмов, фотографий, игр, резервных копий и всего того, что одинаково будет работать хоть на старом железе, хоть на новом;
  • Диск для использования под Torrent-закачки. Обычно такие диски испытываю либо постоянные (чуть ли не 24/7) или почти постоянные нагрузки: вечно что-то пишется, что-то читается;
  • Диск для длительного хранения важной информации.

Вторая же группа, как раз, сражается с SSD за внимание пользователя. С одной стороны, соревноваться с «твердотельниками» у «классики» нет никакой возможности, с другой — даже самый простенький SSD на 64 гигабайта (чтобы хватило на систему и самый важный софт) + самый дешёвый под данные HDD стоят больше, чем один скоростной диск сравнимого объёма. От таких жёстких дисков требуется высокая скорость вращения шпинделя, хорошие показатели IOPS, надёжная вибро- и шумоизоляция.

Для хранения информации, которую можно достать ещё раз (в интернете, на другом диске) на первое место вылезает соотношение цены и объёма. Скоростные характеристики в данном случае не так важны: даже 4k2k-видео, если вы такое найдёте, не забъёт всю пропускную способность «медленных» HDD.

Диски, активно используемые для обмена файлами в пиринговых сетях, испытывают наибольшие нагрузки: торрент постоянно что-то читает, что-то пишет, делает это не по порядку, часто одновременно и «не вовремя». Сюда же, в принципе, можно отнести и всякие записи с веб-камер, особенно длящиеся 24/7. Ключевая характеристика для таких нагрузок — долговечность и рассчитанные на подобные «мытарства» элементы механики HDD: привода головки, двигателя, раскручивающего «блины», управляющей электроники.

Особняком стоят системы хранения важных данных. На самом деле, лучший вариант сохранить действительно важные файлы — поместить их в облако, создать резервную копию, следить, чтобы она была работоспособной и регулярно повторять как диагностику хранилищ, так и операции по резервному копированию. Само собой, на первое место всплывают безотказность и надёжность устройства.

Линейки HDD

Постараемся рассмотреть все модели жёстких дисков в «схожих» условиях — за основу возьмём модель на 1 ТБ.

Начнём с продукции компании Western Digital. Компания давала семействам дисков «цветовые» названия, окрашивая наклейки в соответствующие цвета.


WD Blue — универсальная линейка дисков, в которой соблюдён баланс как скоростных, так и надёжностных характеристик. Скорость вращения зафиксирована на отметке 7200 об./мин., современные диски ёмкостью в 1 ТБ оснащаются 64 мегабайтами кеш-памяти. Отличный вариант при использовании в качестве единственного жёсткого диска, если ваш бюджет ограничен. ~4 200 рублей и диск на 1000 (ну, почти) гигабайт — ваш.

WD Green — серия «экологичных» жёстких дисков. Они не ставят рекорды скорости, но отличаются пониженным энергопотреблением, а сами «блины» вращаются со скоростью 5400 об./мин. Подобные ограничения позволили снизить и тепловыделение, и уровень шума и вибраций. Ставить систему на такой диск мы не советуем, а вот для хранения данных, не требовательных к скорости доступа (фото, видео, музыки, дистрибутивов программ, документов и архивов) — самое то.

Цены начинаются от 4 560 рублей за версию на 1 ТБ, заканчиваются не совсем гуманными ~10400 рублей за 4 ТБ.

WD Black — «заряженные» диски, предназначенные для установки системы, «тяжёлого» ПО, игр. От WD Blue их отличают более высокие скоростные характеристики (при этом диски остаются в пределах технически комфортных 7200 оборотов в минуту) и улучшенные показатели по времени произвольного доступа: всё это позволяет диску быстрее управляться с большим количеством маленьких файлов, что актуально как при загрузке ОС, так и при работе в условиях высоких нагрузок и постоянных обращений к новым порциям данных на HDD. Платой за подобные характеристики являются повышенный уровень шума и потребляемой электроэнергии.

Купить WD Black можно за 5 300 рублей (1 ТБ). Кроме того, существуют также версии на 2, 3 и 4 ТБ (а также 320, 500, 750 ГБ), но их цена никого не радует, да и покупать диски «чёрной» серии такого объёма надо с чётким пониманием, зачем оно надо.

WD Red — специальная линейка жёстких дисков, предназначенная для работы в условиях 24/7 и установки в NAS дома или в небольшом офисе. Диски WD Red разработаны с учётом специфики использования в сетевых хранилищах. Разработчики постарались сократить потребление электроэнергии, увеличить защиту от механических повреждений, вибраций и перегрева. Увеличен запас прочности всей механики диска. Реальная скорость вращения — 5400 об./мин., однако производитель заявляет производительность, сравнимую с 7200. На практике диски несколько медленнее, но для их сферы применения скорость более чем достаточная.

Цены начинаются от ~4 800 рублей за версию с 1 ТБ, самая же ёмкая версия, на внушительных 6 ТБ, стоит около девятнадцати с половиной тысяч.

WD Purple — специальные диски для использования в системах видеонаблюдения. Western Digital заявляют кучу новых и полезных алгоритмов, уменьшающих шансы того, что видео будет «битым», ещё более высокую, чем у WD Red виборзащищённость. Для домашнего использования, в принципе, диски пригодны, но их специфика работы не позволит ставить ни рекорды скорости, ни наслаждаться тишиной. Цена — от ~4 500 за 1 ТБ.

Кроме «цветных» серий, у WD существую ещё три:

WD SE — предназначена для офисных систем хранения данных. Это быстрые, холодные, но шумные диски, разработанные с учётом офисной эксплуатации «и в хвост, и в гриву».

WD RE — для офисных рабочих станций. Высокоскоростные диски для корпоративного сегмента, в основном, отличающиеся наличием «софтовых» фич и интерфейсов по администрированию / управлению HDD.

WD VelociRaptor — для тех, кому мало скорости. «Велоцирапторы» — это сверхскоростные HDD со скоростью вращения 10 000 об./мин. Диск шумный, быстрый и горячий. Цена соответствует характеру — 1 терабайт обойдётся вам в 12 300 рублей. Применяется обычно там, где обычных WD Black недостаточно, а на сравнимые по ёмкости SSD не хватает средств.


Seagate — такой же крупный игрок на рынке, как и WD: фактически, они почти поровну «скупили» или «объединили» в себе других производителей HDD.

Seagate Barracuda 7200.14 — самый популярный и универсальный вариант. Аналог WD Blue — и швец, и жнец, и вообще отличный парень! Диск достаточно холодный, отличается от 1 ТБ конкурентов тем, что у него всего один «блин» внутри, из-за чего шум и вибрации сведены к минимуму. Скорость вращения — 7200 об./мин., объём кеш-памяти — 64 МБ.

Цена начинается с ~4 300 рублей за 1 ТБ и заканчивается внушительными ~7 300 за 3 ТБ.

Seagate HDD.15 — модель, предназначенная для хранения данных, не критичных к скорости записи/чтения. Во многом, аналог линейки WD Green, но отличается чуть более высокой скоростью вращения шпинделя: 5900 оборотов в минуту против 5400 у «зелёных».

К сожалению, цены за терабайт у нас нет, зато есть цена за 4. ~10700 рублей за тихий и холодный диск, который вы устанете забивать информацией, — не так уж и много.

Скоростным хранением данных компания Seagate не озаботилась, зато для NAS и прочих высоконагруженных условий дисков хоть отбавляй.

Seagate NAS HDD – тут, собственно, название говорит само за себя. Диск предназначен для установки в сетевые хранилища. Холодный, тихий, надёжный, с низким энергопотреблением. Ёмкость дисков — от 2 до 4 ТБ, цены, соответственно, от ~6 700 до ~11 750 рублей за штуку.

Для систем c высокими нагрузками, потоковой записи больших объёмов данных и видеонаблюдения предназначено сразу несколько моделей:

Seagate SV35 ST1000VX000, ST2000VM003, Surveillance HDD ST4000VX000 и Seagate Video 3.5 HDD, ST1000VM002. Первые три модели — просто жёсткие диски повышенной надёжности, отличающиеся увеличенным ресурсом подвижных частей и расчитанные на потоковую работу 24/7. Последний же — специализированная версия для организации систем видеоконтроля. В принципе, модели вполне употребимы и в «домашних» условиях в качестве дисков под высоконагруженную систему хранения больших данных, но особой потребности в таких монстрах дома обычно нет.

Не забыли в Seagate и про корпоративный сегмент.

Seagate Constellation CS — популярная серия дисков повышенной надёжности, устроенных по той же схеме, что и 7200.14: один терабайт — один «блин». Скорость вращения шпинделя — 7200 об./мин., 64 мегабайта памяти, до 80 000 часов (чуть больше девяти лет) официально заявленной наработки на отказ. Цена удовольствия — от ~5 600 рублей за 1 ТБ и до ~10 200 рублей за 3 ТБ. Гарантия производителя — 3 года.

У этой модели есть «старший брат» — серия Seagate Constellation ES.3. Она отличается увеличенным до 128 МБ кешем и увеличенным до 5 лет сроком гарантийного обслуживания. Разница в цене есть, но не так существенна. 1 ТБ обойдётся почти в ~6 000 рублей, а 4 ТБ — во внушительные ~15 300 рублей.


Технически, Hitachi Global Storage Technologies — куплена компанией Western Digital в 2011 году. Тем не менее, на дворе 2015-й, а жёсткие диски всё ещё производятся и продаются, но ориентированы они, в первую очередь, на корпоративный сегмент, а сама компания сменила бренд на HGST.

HGST Ultrastar 7K4000 — обычный жёсткий диск для рабочих станций, классические 7200 оборотов в минуту, 64 мегабайта кеш-памяти, и заявленные совершенно сумасшедшие 2 миллиона(!) часов наработки на отказ. Ко всему прочему — пятилетняя гарантия производителя. За модель с 2 ТБ памяти придётся отдать ~8300 рублей, в то время как за 4 ТБ — уже ~15 300.

Вторая линейка, HGST Deskstar NAS — предназначена для систем хранения данных. Доступные объёмы — от 3 до 6 ТБ, цены — от ~8 800 до ~20 100 рублей. Диск не ставит рекордов по скорости чтения и записи, но обладает трёхлетней гарантией и заявленным временем наработки на отказ в 1 000 000 часов.


Сегодня Toshiba производит как доступные и простые жёсткие диски, без излишеств, так и специальные диски для NAS’ов.

«Домашняя» линейка представлена одной моделью DT01ACA, объёмом от 500 ГБ до 3 ТБ. Диски часто ставят в компьютеры, которым важно просто наличие HDD, c которым не будет проблем. Вся серия очень тихая, не греется, да и цена не может не радовать ~4 000 рублей за 1 ТБ и «всего» ~7 500 за 3 ТБ.

Серия дисков для NAS, MC04ACA, имеет достойные характеристики — 7200 оборотов в минуту, 128 мегабайт кеша, до 800 000 часов наработки на отказ. Цена 2 ТБ начинается с ~7 950 рублей, максимальный же объём, 4 ТБ, обойдётся уже в ~13 700 рублей.

Старая электроника — ваш личный золотой запас


С ростом объёмов информации, обрабатываемых компаниями, растут и серверные парки. Всё это обилие крупной техники со временем устаревает, списывается и… зачастую выбрасывается или простаивает мёртвым грузом на складах. Однако серверы, как и любая электроника, содержат в своём составе большое количество вредных веществ, поэтому их необходимо грамотно перерабатывать. Казалось бы, это довольно скучное и затратное занятие, но если подойти к нему с умом, то можно добывать из старых серверов золото. В буквальном смысле. И не только из них.

Не секрет, что при производстве электроники используются самые разнообразные металлы. И в том числе — золото. Считается, что в одной метрической тонне электронных отходов его содержится от 250 до 450 гр. И всё больше энтузиастов не выкидывают устаревшие и сломанные гаджеты, а накапливают их для последующего извлечения ценных металлов. Конечно, удельная доля золота и платины в ноутбуке или сервере невелика, но переработав несколько десятков старых гаджетов, выкинутых за ненадобностью, можно собрать того же золота на вполне себе неплохой слиточек, чья стоимость перекроет ваши старания.

Кроме золота определённую ценность представляет медь, из которой изготавливаются дорожки печатных плат. К слову, этот металл — одна из причин кражи кондиционеров, в теплообменнике которых используются медные трубки. Немало меди можно извлечь и из блоков питания.


Если вы уже схватились за отвёртку и алчно поглядываете на старые системные блоки, сваленные в кладовке, то не забудьте о том, что электроника содержит и массу вредных для здоровья веществ. Например, кинескопы телевизоров и мониторов «порадуют» ваш организм свинцом, барием и стронцием. А в целом обычный смартфон содержит в себе почти треть таблицы Менделеева.


Используемые при извлечении металлов химикаты тоже очень далеки от безопасных. Например, для растворения золота и платины может применяться царская водка — смесь концентрированных азотной и соляной кислот. Так что надёжная защита тела, очки, качественный респиратор и хорошо проветриваемое помещение — совершенно необходимые условия при добывании драгметаллов из электроники.

Где больше всего ценных металлов?

Основные места компьютеров и серверов, где сконцентрированы драгоценные металлы: материнские платы, процессоры, модули памяти, карты расширения и позолоченные штекеры кабелей.

Возьмём, для примера, материнскую плату и карту расширения:



А — Внутри северного и южного мостов находятся тончайшие золотые проводочки, а также позолоченные дорожки, связывающие разные уровни платы.
B — Позолоченные контакты разъёмов.
С — Позолоченные контакты слотов памяти и PCI.
D — Интегрированные платы могут содержать тончайшие золотые проводочки.
E — Монолитные керамические конденсаторы (SMD, Surface mount device) могут содержать палладий, а в некоторых случаях — ещё и серебро.

Видимые невооружённым глазом позолоченные контакты в пояснениях не нуждаются.

Имеет смысл пройтись по друзьям и знакомым, собрать у них старые компьютеры, сломанные телефоны, разбитые планшеты, неработающие ноутбуки, старые советские магнитофоны, радиоприёмники, телевизоры. Особенно повезёт сисадминам, в чьих компаниях проводится обновление серверного парка со списанием оборудования: древние серверы — богатый источник золотосодержащих компонентов.

Обратите внимание: чем старше гаджет, тем больше в нём содержание драгметаллов. Особенно много золота и серебра в электронике 1940-60 годов.

Как извлечь золото?

Итак, вам понадобятся:

  • Ненужная электроника.
  • Резиновые перчатки.
  • Резиновый фартук.
  • Очки.
  • 3%-ый раствор перекиси водорода (купите в аптеке).
  • 31%-ый раствор соляной кислоты.
  • Метиловый спирт (используют в качестве автомобильного антифриза).
  • Воронкообразный фильтр (можно использовать от кофе-машины).
  • Две большие стеклянные банки.
  • Пластмассовые или стеклянные палочки для перемешивания.
  • Весы с точностью примерно до 5 мг.
  • Газовая горелка.
  • Бура (тетраборат натрия).
  • Глиняные горшки или другие сосуды, материал которых имеет способен выдержать температуру на 500 градусов Цельсия выше температуры плавления золота.
  • Мерный сосуд.

Соберите побольше золотосодержащих компонентов, включая процессоры, штекеры от кабелей и т.д. Затем отсортируйте электронику: платы, нуждающиеся в очистке, позолоченные разъёмы, позолоченные пины и контактные гребёнки, и т.д. Для сортировки стальных позолоченных компонентов можно использовать магнит.






В одну стеклянную банку сложите позолоченные гребёнки и очищенные платы, в другой смешайте две части соляной кислоты и одну часть перекиси водорода. Полученную смесь налейте в первую банку, чтобы жидкость полностью покрыла её содержимое. Ждите неделю, ежедневно перемешивая.



А пока эти обрезки замачиваются, займёмся купелированием. Это процесс извлечения золота или серебра из сплавов на основе свинца, меди, цинка или иных металлов. Принцип в том, что драгметаллы не окисляются и не вступают в химическую реакцию, в отличие от базовых металлов сплава, которые при нагреве образуют шлаки и другие соединения, а драгметаллы отделяются от них. Купелирование известно с Бронзового века и используется по сей день для извлечения золота и серебра. Однако этот процесс не позволяет отделить серебро от золота, но в нашем случае это и не нужно.

По сути, купелирование представляет собой выжигание с помощью горелки шлака из сплава, пока не образуется красивый жёлтый кусочек металла, который останется только остудить.





Прошла неделя, пора проверить наши замоченные в кислоте компоненты. Жидкость потемнела от растворившихся в ней веществ, и на дне можно заметить крохотные чешуйки золота.



Сливаем содержимое через фильтр, который задерживает чешуйки. Сохраните слитый раствор, не выливайте его в канализацию. Фильтр с частичками золота промываем сначала струёй воды, а потом метиловым спиртом. Он гораздо лучше очищает золото, в отличие от воды, капельки которой будут оставаться на чешуйках и золотой пыли и увеличивать их вес при взвешивании.






Вываливаем и сортируем их — очищенные от золота в мусор, неочищенные откладываем для повторного замачивания в кислоте.



Теперь займёмся переплавкой собранных чешуек и пыли из золота. Есть два метода — с использованием ртути (нам не подходит из-за ядовитости её паров) или буры.

Бура издревле применялась в кустарной добыче золота, позволяя снизить температуру плавления содержащегося в руде металла. В обычной ситуации золото плавится при температуре 1064 градуса Цельсия, что с трудом достижимо в домашних условиях. Если же поместить золотой порошок в буру, то можно выплавлять слитки при более низкой температуре. Более того, этот метод даёт более высокий выход золота, чем при использовании ртути.

Помещаем керамический горшок над газовой горелкой, нагреваем его, насыпаем буру, после её расплавления добавляем золотой порошок и ещё буры, и продолжаем нагревать.

Анатомия накопителей: жёсткие диски

image

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить, надёжно и стабильно, чтобы мы могли иметь к ним доступ и изменять за мгновение ока. Забудьте о Железном человеке и Торе — мы говорим о жёстких дисках!

Итак, давайте погрузимся в изучении анатомии устройств, которые мы сегодня используем для хранения миллиардов битов данных.

You spin me right round, baby

Механический накопитель на жёстких дисках (hard disk drive, HDD) был стандартом систем хранения для компьютеров по всему миру в течение более 30 лет, но лежащие в его основе технологии намного старше.

Первый коммерческий HDD компания IBM выпустила в 1956 году, его ёмкость составляла аж 3,75 МБ. И в целом, за все эти годы общая структура накопителя не сильно изменилась. В нём по-прежнему есть диски, которые используют для хранения данных намагниченность, и есть устройства для чтения/записи этих данных. Изменился же, и очень сильно, объём данных, который можно на них хранить.

В 1987 году можно было купить HDD на 20 МБ примерно за 350 долларов; сегодня за такие же деньги можно купить 14 ТБ: в 700 000 раз больший объём.

Мы рассмотрим устройство не совсем такого размера, но тоже достойное по современным меркам: 3,5-дюймовый HDD Seagate Barracuda 3 TB, в частности, модель ST3000DM001, печально известную своим высоким процентом сбоев и вызванных этим юридических процессов. Изучаемый нами накопитель уже мёртв, поэтому это будет больше похоже на аутопсию, чем на урок анатомии.



Перевернув накопитель, мы видим печатную плату и несколько разъёмов. Разъём в верхней части платы используется для двигателя, вращающего диски, а нижние три (слева направо) — это контакты под перемычки, позволяющие настраивать накопитель под определённые конфигурации, разъём данных SATA (Serial ATA) и разъём питания SATA.

Serial ATA впервые появился в 2000 году. В настольных компьютерах это стандартная система, используемая для подключения приводов к остальной части компьютера. Спецификация формата претерпела множество ревизий, и сейчас мы пользуемся версией 3.4. Наш труп жёсткого диска имеет более старую версию, но различие заключается только в одном контакте в разъёме питания.

В подключениях передачи данных для приёма и получения данных используется дифференцированный сигнал: контакты A+ и A- используются для передачи инструкций и данных в жёсткий диск, а контакты B — для получения этих сигналов. Подобное использование спаренных проводников значительно снижает влияние на сигнал электрического шума, то есть устройство может работать быстрее.

Если говорить о питании, то мы видим, что в разъёме есть по паре контактов каждого напряжения (+3.3, +5 и +12V); однако большинство из них не используется, потому что HDD не требуется много питания. Эта конкретная модель Seagate при активной нагрузке использует менее 10 Вт. Контакты, помеченные как PC, используются для precharge: эта функция позволяет вытаскивать и подключать жёсткий диск, пока компьютер продолжает работать (это называется горячей заменой (hot swapping)).

Контакт с меткой PWDIS позволяет удалённо перезагружать (remote reset) жёсткий диск, но эта функция поддерживается только с версии SATA 3.3, поэтому в моём диске это просто ещё одна линия питания +3.3V. А последний контакт, помеченный как SSU, просто сообщает компьютеру, поддерживает ли жёсткий диск технологию последовательной раскрутки шпинделей staggered spin up.

Перед тем, как компьютер сможет их использовать, диски внутри устройства (которые мы скоро увидим), должны раскрутиться до полной скорости. Но если в машине установлено много жёстких дисков, то внезапный одновременный запрос питания может навредить системе. Постепенная раскрутка шпинделей полностью устраняет возможность таких проблем, но при этом перед получением полного доступа к HDD придётся подождать несколько секунд.


Сняв печатную плату, можно увидеть, как она соединяется с компонентами внутри устройства. HDD не герметичны, за исключением устройств с очень большими ёмкостями — в них вместо воздуха используется гелий, потому что он намного менее плотный и создаёт меньше проблем в накопителях с большим количеством дисков. С другой стороны, не стоит и подвергать обычные накопители открытому воздействию окружающей среды.

Благодаря использованию таких разъёмов минимизируется количество входных точек, через которые внутрь накопителя могут попасть грязь и пыль; в металлическом корпусе есть отверстие (большая белая точка в левом нижнем углу изображения), позволяющее сохранять внутри давление окружающей среды.


Теперь, когда печатная плата снята, давайте посмотрим, что находится внутри. Тут есть четыре основных чипа:

  • LSI B64002: чип основного контроллера, обрабатывающий инструкции, передающий потоки данных внутрь и наружу, корректирующий ошибки и т.п.
  • Samsung K4T51163QJ: 64 МБ DDR2 SDRAM с тактовой частотой 800 МГц, используемые для кэширования данных
  • Smooth MCKXL: управляет двигателем, крутящим диски
  • Winbond 25Q40BWS05: 500 КБ последовательной флеш-памяти, используемой для хранения встроенного ПО накопителя (немного похожего на BIOS компьютера)

Открыть накопитель просто, достаточно открутить несколько болтов Torx и вуаля! Мы внутри…


Учитывая, что он занимает основную часть устройства, наше внимание сразу привлекает большой металлический круг; несложно понять, почему накопители называются дисковыми. Правильно их называть пластинами; они изготавливаются из стекла или алюминия и покрываются несколькими слоями различных материалов. Этот накопитель на 3 ТБ имеет три пластины, то есть на каждой стороне одной пластины должно храниться 500 ГБ.


Изображение довольно пыльное, такие грязные пластины не соответствуют точности проектирования и производства, необходимого для их изготовления. В нашем примере HDD сам алюминиевый диск имеет толщину 0,04 дюйма (1 мм), но отполирован до такой степени, что средняя высота отклонений на поверхности меньше 0,000001 дюйма (примерно 30 нм).

Базовый слой имеет глубину всего 0,0004 дюйма (10 микронов) и состоит из нескольких слоёв материалов, нанесённых на металл. Нанесение выполняется при помощи химического никелирования с последующим вакуумным напылением, подготавливающих диск для основных магнитных материалов, используемых для хранения цифровых данных.

Этот материал обычно является сложным кобальтовым сплавом и составлен из концентрических кругов, каждый из которых примерно 0,00001 дюйма (примерно 250 нм) в ширину и 0,000001 дюйма (25 нм) в глубину. На микроуровне сплавы металлов образуют зёрна, похожие на мыльные пузыри на поверхности воды.

Каждое зерно обладает собственным магнитным полем, но его можно преобразовать в заданном направлении. Группирование таких полей приводит к возникновению битов данных (0 и 1). Если вы хотите подробнее узнать об этой теме, то прочитайте этот документ Йельского университета. Последними покрытиями становятся слой углерода для защиты, а потом полимер для снижения контактного трения. Вместе их толщина составляет не больше 0,0000005 дюйма (12 нм).

Скоро мы увидим, почему пластины должны изготавливаться с такими строгими допусками, но всё-таки удивительно осознавать, что всего за 15 долларов можно стать гордым владельцем устройства, изготовленного с нанометровой точностью!

Однако давайте снова вернёмся к самому HDD и посмотрим, что же в нём есть ещё.


Жёлтым цветом показана металлическая крышка, надёжно крепящая пластину к электродвигателю привода шпинделя — электроприводу, вращающему диски. В этом HDD они вращаются с частотой 7200 rpm (оборотов/мин), но в других моделях могут работать медленнее. Медленные накопители имеют пониженный шум и энергопотребление, но и меньшую скорость, а более быстрые накопители могут достигать скорости 15 000 rpm.

Чтобы снизить урон, наносимый пылью и влагой воздуха, используется фильтр рециркуляции (зелёный квадрат), собирающий мелкие частицы и удерживающий их внутри. Воздух, перемещаемый вращением пластин, обеспечивает постоянный поток через фильтр. Над дисками и рядом с фильтром есть один из трёх разделителей пластин: помогающих снижать вибрации и поддерживать как можно более равномерный поток воздуха.

В левой верхней части изображения синим квадратом указан один из двух постоянных стержневых магнитов. Они обеспечивают магнитное поле, необходимое для перемещения компонента, указанного красным цветом. Давайте отделим эти детали, чтобы видеть их лучше.


То, что выглядит как белый пластырь — это ещё один фильтр, только он очищает частицы и газы, попадающие снаружи через отверстие, которое мы видели выше. Металлические шипы — это рычаги перемещения головок, на которых находятся головки чтения-записи жёсткого диска. Они с огромной скоростью движутся по поверхности пластин (верхней и нижней).

Посмотрите это видео, созданное The Slow Mo Guys, чтобы увидеть, насколько они быстрые:

В конструкции не используется чего-то вроде шагового электродвигателя; для перемещения рычагов по соленоиду в основании рычагов проводится электрический ток.


Обобщённо их называют звуковыми катушками, потому что они используют тот же принцип, который применяется в динамиках и микрофонах для перемещения мембран. Ток генерирует вокруг них магнитное поле, которое реагирует на поле, созданное стержневыми постоянными магнитами.

Не забывайте, что дорожки данных крошечны, поэтому позиционирование рычагов должно быть чрезвычайно точным, как и всё остальное в накопителе. У некоторых жёстких дисков есть многоступенчатые рычаги, которые вносят небольшие изменения в направление только одной части целого рычага.

В некоторых жёстких дисках дорожки данных накладываются друг на друга. Эта технология называется черепичной магнитной записью (shingled magnetic recording), и её требования к точности и позиционированию (то есть к попаданию постоянно в одну точку) ещё строже.


На самом конце рычагов есть очень чувствительные головки чтения-записи. В нашем HDD содержится 3 пластины и 6 головок, и каждая из них плавает над диском при его вращении. Для этого головки подвешены на сверхтонких полосках металла.

И здесь мы можем увидеть, почему умер наш анатомический образец — по крайней мере одна из головок разболталась, и что бы ни вызвало изначальный повреждение, оно также погнуло один из рычагов. Весь компонент головки настолько мал, что, как видно ниже, очень сложно получить её качественный снимок обычной камерой.


Однако мы можем разобрать отдельные части. Серый блок — это специально изготовленная деталь под названием «слайдер»: когда диск вращается под ним, поток воздуха создаёт подъёмную силу, поднимая головку от поверхности. И когда мы говорим «поднимает», то имеем в виду зазор шириной всего 0,0000002 дюйма или меньше 5 нм.

Чуть дальше, и головки не смогут распознавать изменения магнитных полей дорожки; если бы головки лежали на поверхности, то просто поцарапали бы покрытие. Именно поэтому нужно фильтровать воздух внутри корпуса накопителя: пыль и влага на поверхности диска просто сломают головки.

Крошечный металлический «шест» на конце головки помогает с общей аэродинамикой. Однако чтобы увидеть части, выполняющие чтение и запись, нам нужна фотография получше.


На этом изображении другого жёсткого диска устройства чтения и записи находятся под всеми электрическими соединениями. Запись выполняется системой тонкоплёночной индуктивности (thin film induction, TFI), а чтение — туннельным магнеторезистивным устройством (tunneling magnetoresistive device, TMR).

Создаваемые TMR сигналы очень слабы и перед отправкой должны проходить через усилитель для повышения уровней. Отвечающий за это чип находится рядом с основанием рычагов на изображении ниже.


Как сказано во введении к статье, механические компоненты и принцип работы жёсткого диска почти не изменились за многие годы. Больше всего совершенствовалась технология магнитных дорожек и головок чтения-записи, создавая всё более узкие и плотные дорожки, что в конечном итоге приводило к увеличению объёма хранимой информации.

Однако механические жёсткие диски имеют очевидные ограничения скорости. На перемещение рычагов в нужное положение требуется время, а если данные разбросаны по разным дорожкам на различных пластинах, то на поиски битов накопитель будет тратить довольно много микросекунд.

Прежде чем переходить к другому типу накопителей, давайте укажем ориентировочные показатели скорости типичного HDD. Мы использовали бенчмарк CrystalDiskMark для оценки жёсткого диска WD 3.5" 5400 RPM 2 TB:


В первых двух строчках указано количество МБ в секунду при выполнении последовательных (длинный, непрерывный список) и случайных (переходы по всему накопителю) чтения и записи. В следующей строке показано значение IOPS, то есть количество операций ввода-вывода, выполняемых каждую секунду. В последней строке показана средняя задержка (время в микросекундах) между передачей операции чтения или записи и получением значений данных.

В общем случае мы стремимся к тому, чтобы значения в первых трёх строчках были как можно больше, а в последней строчке — как можно меньше. Не беспокойтесь о самих числах, мы просто используем их для сравнения, когда будем рассматривать другой тип накопителя: твердотельный накопитель.

Читайте также: