Аустенитная сталь что это такое

Обновлено: 03.05.2024

Человечество, с момента начала обработки и использования железной руды пыталось улучшить свойства получаемого металла. Прочность, гибкость, сопротивляемость слишком низким и чересчур высоким температурам – самые желаемые параметры, для сталеваров тех эпох. Но пока не было разработано легирование металла существовало слишком мало способов получить качественные сплавы.

Структура аустенита

Суть любой модификации вносимого посредством такого способа – изменение кристаллической решетки железа, для получения необходимых свойств. Выполняется путем добавления в изначальный расплав или шихту руды примесей, которые тем или иным способом замещают частицы в атомарной структуре Fe, придавая ей при определенных тепловых режимах различные формы. Кроме того, добавки позволяют также стабилизировать полученный результат, для сохранения его при более низких температурах. Ведь при изменении уровня нагрева железа – вид решетки опять меняется, принимая другие формы без закрепления желаемых свойств.

Одна из фаз структуры, возникающих при температуре выше 733°С (для легированных смесей) или при 910—1401 °C для чистого расплава железной руды для углеродных сталей – аустенит, названная так по части фамилии открывшему ее ученого – Уильяма Чандлера Робертс-Остина (англ. William Chandler Roberts-Austen, 1843-1902). Кристалл железа получаемый в этих пределах нагрева имеет кубическую форму, в которой все атомы структурного состояния вещества располагаются на равных расстояниях друг от друга, образовывая сам аустенит. Так как при снижении температуры стали кристаллические решетки аустенита разрушаются, изменяясь, – в состав вводятся добавки металлов никеля, хрома, углерода, молибдена, марганца, азота атомы которых частично замещают изначальные элементы железа, не допуская распада. Частицы этих металлов имеет меньший размер относительно Fe, и вытесняя его, но сохраняя силу притяжения между элементами системы, они не дают при изменении температурных условий ввести в кристалл новые атомы железа, которые разрушат его.

Превращение аустенита при непрерывном охлаждении

Такая форма кристаллов Y-Fe придает новые, очень необходимые технике свойства сплавов, что обеспечивает их использование от строительства корпусов транспортных средств и до электроники:

  • частично или полностью сталь утрачивает способность к магнитному воздействию;
  • повышается сопротивление температуре плавления и изменения свойств металла при нагреве;
  • железо менее подвержено взаимодействию с кислородом – окислением, причем вне зависимости от изначальной среды, в которой оно происходит — влага, воздух или чистый газ;
  • меньшее влияние на результирующий состав оказывают агрессивные вещества – кислоты и щелочи;
  • структура металла меньше меняется от агрессивного падения температуры, сохраняя плотность взаимодействия между кристаллами вещества.

В зависимости от состава, само часто используются марки стали аустенит-фазы:

  1. 03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т – хром+никель+молибден.
  2. 02Х8Н22С6, 15Х18Н12C4Т10 – с высоким содержанием кремния.
  3. 08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10 – хром + никель.
  4. 07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T – хром+марганец и хром+марганец+никель.

К сожалению, выловить именно металлы, содержащие большее количество элементов аустенитовой части физики процесса довольно сложно, все дело в неоднородности остывания и нагрева металлических изделий. Собственно, когда он происходит – получается, как бы несколько слоев разных форм кристаллов, в зависимости от времени воздействия температуры на ту или иную фазу и какое количество дополнительных атомов присутствовало при этом. В любом материаловедении указывается, что кроме аустенита есть формы решетки характерные для различных фазовых состояний:

  1. Феррит – отвердевшая смесь кристаллов, содержащих большое количество углерода и других атомов добавок, используемых в лигатурном процессе при получении аустенита. Собственно, это и есть сплав железа, без изменения его свойств. Он подвержен магнетизму, относительно мягок, взаимодействует с активными веществами во всех средах, где находится.
  2. Цементит – очень твердая, подобная стеклу структура. Разрушается при определенном воздействии на него. Кристаллы его обладают орторомбической формой, формируясь в процессе расплава между элементами фаз феррита и аустенита.
  3. Мартенсит – кристаллические элементы, пересыщенные углеродом, которые возникают в основном при закалке аустенита.

Схема изменения структуры стали

Единственные способы определения количественного наличия остаточного аустенита в готовом металле, от которого зависит его маркировка и последующее использование – рентгеноструктурный анализ, электронная сквозная микроскопия, испытания проникающими красителями и вихревыми токами.

Аустенитная сталь

Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.

Аустенитные стали

Свойства аустенитных сталей

Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:

  1. Ферритизаторы: титан, кремний, молибден, ниобий. Они стабилизируют структуру аустенитов и формируют объемноцентрированную кубическую решетку.
  2. Аустенизаторы: азот, марганец и углерод. Они присутствуют в избыточных фазах, формирующихся во время термообработки железных сплавов.

Решетка аустенита в сравнении с мартенситом

По свойствам материалов аустенитные модификации железа делятся на следующие типы:

  1. Коррозионностойкие (нержавеющие). В их состав входит хром (18%), никель (30%) и углерод (0,25%). Эти высоколегированные стали применяются в промышленном производстве с 1910 г. Их главным преимуществом является устойчивость к коррозии. Материал сохраняет это свойство даже при сильном нагревании, что обусловлено низким содержанием углерода. Коррозионностойкие железные сплавы производятся, согласно ГОСТ 5632-2014. В них могут присутствовать добавки из кремния, марганца, и молибдена.
  2. Жаростойкие. Они обладают ГЦК-решеткой и устойчивы к воздействию высоких температур. Этот материал можно нагревать до 1100 °C. Жаропрочные аустенитные стали применяются при изготовлении печных устройств, турбин роторов электростанций и иных приборов, работающих при помощи дизельного топлива. При производстве данной модификации железа используются дополнительные добавки из бора, ниобия, ванадия, молибдена и вольфрам. Эти химические элементы повышают жаропрочность материала.
  3. Хладостойкие. В составе этих высоколегированных сталей присутствуют хром (19%) и никель (25%). Главным достоинством материала является высокая вязкость и пластичность. Также эта модификация железа располагает высокой стойкостью к коррозии. Хладостойкие металлы сохраняют данные свойства даже при резком понижении температуры. Их главным недостатком является низкая прочность во время работы при комнатной температуре.

Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.

Структура аустенитной стали

В аустенитных сталях могут осуществляться следующие разновидности превращений:

  1. Образование феррита при нагреве железного сплава до высоких температур.
  2. При нагреве до температуры 900 °C из аустенита начинают выделяться избыточные карбидные фазы. Во время этого процесса на аустенитной поверхности образуется межкристаллическая коррозия, постепенно разрушающая материал.
  3. Во время охлаждения аустенита до температуры 730 °C происходит эвтектоидный распад. В результате образуется перлит – модификация железных сплавов. Его микроструктура представлена в виде небольших пластин или округлых зерен.
  4. При резком понижении температуры металлического изделия формируется мартенсит – микроструктура, состоящая из пластин игольчатого или реечного вида.

Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.

Методы получения аустенита

Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.

Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.

При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.

Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.

При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Марки стали и их состав

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Жаропрочные аустенитные стали

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Марки аустенитной стали

Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:

3 вида сталей аустенитного класса и методы их сварки

У стали есть один минус — она обладает магнитными свойствами, которые далеко не всегда являются полезными. Этого недостатка лишена аустенитная сталь. Подобные сплавы практически не обладают магнитными свойствами, они не ржавеют, хорошо выдерживают механическую деформацию. Аустениты используются для производства радиооборудования, турбин, морозостойких конструкций. Какие бывают аустенитные стали? Как выполняется сварка различных деталей на их основе?

аустенитные стали

Общие сведения

Аустенитная сталь — особая разновидность нержавеющей стали. Стали аустенитного класса содержат железо, а также различные легирующие компоненты — никель, марганец, азот, алюминий, хром, молибден.

Железо и легирующие элементы в стали образуют кубическую кристаллическую решетку. Подобную структуру называют аустенитом. Кристаллическая решетка обусловливает ряд характерных физических свойств аустенита — сохранение твердости при тепловой обработке, почти полное отсутствие магнитных свойств материала, высокая химическая инертность.

Для удобства аустенитные стали делят на два условных класса. В первую категорию попадают материалы с большим содержанием никеля. Во вторую категорию включаются материалы с большим содержанием марганца и азота, а также с незначительным содержанием никеля.

Вторые материалы обладают более высокой прочностью, однако стоят они на порядок дороже. К тому же аустенит на основе никеля лучше переносит воздействие агрессивных химических сред (кислоты, щелочи, сильные соли, радиоактивные вещества).

Из стали-аустенита делают различную технику, вещи, оборудование. Это могут быть приборы учета, столовые приборы, металлические балки, турбины, конструкционные элементы, автомобильные детали, специальную технику для нужд химической промышленности и так далее.

Еще одна крупная сфера применения аустенита — изготовление радиооборудования. Отсутствие магнитных свойств в данном случае идет на пользу — обычные стальные сплавы могут вносить в радиосигнал определенные искажения, тогда как аустенит будет передавать сигнал без задержек, потерь, искажений.

стали аустенитного класса

Физические свойства

  • Высокая прочность. Материал при обычных условиях эксплуатации сохраняет свою прочность, упругость, устойчивость. Поэтому сталь сможет выдержать высокие нагрузки. Прочность также сохраняется в случае изменения температуры — резкое похолодание, сильные морозы, воздействие прямых солнечных лучей летом, локальный небольшой нагрев и другие ситуации.
  • Магнитная инертность. Кристаллическая структура практически полностью нейтрализует магнитный потенциал железа и легирующих элементов. Поэтому при контакте магнитного элемента с аустенитом образуется очень слабое магнитное поле, которое никак не влияет на свойства материала.
  • Коррозийная устойчивость. При нормальных температурных условиях сталь-аустенит не вступает в контакт с атмосферным кислородом, азотом, углекислым газом, а также с водой. Поэтому риск образования разрушительных коррозийных оксидов минимален. Из аустенитной стали можно делать детали, которые будут использоваться на морских объектах (корабли, мосты, турбины, приборы учета).
  • Химическая инертность. Сталь при нормальных температурных условиях также не вступает в реакцию с различными веществами, обладающими высокой химической активностью. Поэтому этот материал можно применять для хранения, работы с кислотами, щелочами, солями, радиоактивными веществами. Химического инертность сохраняется даже в случае длительного контакта. Поэтому аустенит при длительном контакте с реактивами не лопается, не ржавеет, сохраняет свои физические свойства.

Виды сталей аустенитного класса

По составу и физическим свойствам различают 3 вида стали-аустенита:

Антикоррозийный аустенитный класс стали

В эту категорию включаются сплавы с большим удельным содержанием хрома, никеля. В незначительных количествах в сплав также могут входить кремний, марганец, молибден. Особенность сплавов этой группы — минимальный риск коррозии при любых температурах.

Высокая устойчивость обеспечивается за счет двух факторов. Первый фактор — это большое содержания хрома, который создает защитную пленку на поверхности стали. Второй фактор — низкое содержание углерода (менее 0,3%). Комбинация этих факторов приводит к тому, что материал не вступает в контакт с кислородом, азотом, водой, различными химическими веществами.

Устойчивость сохраняется даже при нагреве либо охлаждении, поскольку хром при изменении температур сохраняет свои физические свойства.

превращения аустенита

Жаростойкий класс

В эту категорию включаются сплавы с большим содержанием никеля, бора, ниобия, ванадия, молибдена, вольфрама. Легирующие компоненты делают материал более прочным, минимизируют риск образования пор между отдельными атомами железа. Поэтому жаростойкий аустенит сохраняет свою форму при нагреве до 1100 градусов.

Жаростойкий материал-аустенит подходит для изготовления различных печей, станков, фабричного оборудования. В состав некоторых сплавов также включается большое количество хрома. В результате образуется жаростойкий антикоррозионный сплав, который не только выдерживает нагрев, но и не покрывается коррозией.

Хладостойкий класс

В эту категорию входят сплавы, с большим удельным содержанием хрома и со средним содержанием никеля. В качестве дополнительных легирующих добавок могут использоваться алюминий, марганец, ванадий, вольфрам.

Хладостойкие сплавы выдерживают очень низкие температуры, отлично переносят резкие перепады температур. Однако при нормальной комнатной температуре хладостойкая сталь-аустенит обладает посредственными физическими свойствами — невысокая прочность, слабая химическая инертность.

Поэтому из хладостойких сплавов делают специальную технику, оборудование для регионов с очень холодными климатом. Еще одна сфера применения — изготовление деталей, изделий, оборудования для нужд космической промышленности.

Сварка аустенитной стали

Для соединения изделий из аустенита может применяться сварочная технология. Соединение металлов может осуществляется всеми основными методами сварки (электрошлаковая, дуговая, в среде защитных газов).

Сварка аустенитных сталей имеет множество особенностей и нюансов, о которых сварщику нужно знать заранее. Особенность — серьезное изменение физических свойств металла-аустенита при нагреве. Это налагает ряд требований относительно проведения сварки. Ведь при неправильном нагреве металла серьезно страдает качество сварного шва, что плохо скажется на прочности соединения.

как превращается аустенитная сталь

Особенности нагрева аустенита

Однако сварщик должен избегать появления трещин, неровностей, отверстий в области сварного шва. Чтобы решить эту проблему, на детали в области шва наплавляется небольшой металлический слой, который обладает другим химическим составом.

Для слоя-заплатки нужен металл, обладающий повышенной жаропрочностью, высокой коррозийной стойкостью. Заплатка будет выступать в качестве защитного слоя, который будет препятствовать растрескиванию шва. Защитный слой рекомендуется обжечь при температуре +800 градусов, чтобы избежать появления трещин при повышенном уровне нагрузки.

Электрошлаковая сварка

Электрошлаковая технология сварки подходит для соединения как больших, так и мелких изделий на основе аустенита. Главные плюсы этой технологии — минимальный риск образования трещин, отсутствие деформации на стыках, удобство проведения сварочных работ.

Сварку рекомендуется проводить быстро и при небольших температурах. Ведь при длительном нагреве металла выше температуры 1200 градусов могут образовываться локальные трещины, что может привести к разрушению металла.

  • Сварку рекомендуется выполнять с помощью проволоки, толщина которой составляет 2-4 миллиметра. Главный минус подобного подхода — качественная проволока расходуется быстро, а стоит она достаточно дорого.
  • Для соединения толстых деталей следует применять пластинчатые электроды (оптимальная толщина — 5-15 миллиметров). Электроды обладают более высокой ценой, однако разрушаются они гораздо медленнее.
  • При работе со сплавами, обладающими повышенной коррозийной стойкостью, рекомендуется делать закалку либо отжиг — это поможет избежать появления ножевой коррозии.

структура аустенитной стали

Дуговая сварка

Дуговая сварка для соединения аустенитной стали имеет множество недостатков.

  1. Во время сварочных работ происходит нагрев локальной области металла-аустенита. Нагрев приводит к двум опасным вещам, которые негативно влияют на прочность.
  2. Первый момент — это появление оксидов железа в области шва. Физика этого процесса следующая: при серьезном нагреве железо начинает вступать в контакт с атмосферным воздухом, что и приводит к образованию оксидов.
  3. Второй момент — это появление трещин рядом со швом. При высоком нагреве резко возрастает хрупкость материала при уменьшении общей пластичности, что способствует образованию небольших трещин.

Фтористокальциевые электроды

Существует ряд приемов, которые позволяют обойти ограничения дуговой сварки. Самый популярный метод — это применение фтористокальциевых электродов малого диаметра (оптимальный диаметр сечения — 3-5 миллиметров).

Подобные стержни обладают низкой пластичностью, поэтому во время сварочных работ электроды не совершают лишних колебаний. Благодаря этому снижается контакт расплавленного металла с воздухом, а также снижается риск образования трещин вследствие повышения хрупкости.

За 1,5-2 часа до проведения сварочных работ рекомендуется выполнить прокалку фтористокальциевых электродов при небольшой температуре (200-300 градусов). Это помогает минимизировать риск возникновения пор в электроде.

Электродуговая сварка должна выполняться строго на обратнополярном постоянном токе. В противном случае стабильность электрода не гарантируется.

структура аустенита

Сварка в среде защитных газов

Сварка аустенитных сталей с применением защитных газов — лучший способ соединения аустенитов. Эта методика позволяет соединить детали различных форм, а сварка может проводиться в любых пространственных положениях.

Применение защитных газов минимизирует вероятность образования трещин, налета, ржавчины, окалины, что делает сварное соединение очень прочным. В качестве защитной среды может применяться любой газ — аргон, гелий, азот, углекислый газ и другие. Для сварки обычно применяются плавящиеся либо вольфрамовые стержни, которые подходят для создания небольших прочных швов (оптимальная толщина — 5-10 миллиметров).

Особенности сварки аустенита в среде защитных газов

  • Для проведения сварочных работ можно применять как импульсную, так и горящую дугу. Однако опытные сварщики рекомендуют использовать именно импульсную дугу. Это уменьшает толщину шва, минимизирует вероятность дробления кромок. Благодаря этому удается получить ровный прочный шов, который не растрескается при длительной эксплуатации изделия.
  • Сварку аустенита рекомендуется проводить с помощью постоянного тока, который имеет прямую полярность. При необходимости полярность тока можно поменять — это никак не скажется на качестве сварного шва. При выборе горелки нужно обратить внимание на тип переключения полярности. Ведь большинство горелок работают с устройствами, которые переключают полярность автоматически. Если Вы хотите менять полярность вручную, необходимо обязательно прочитать инструкцию к горелке, чтобы убедиться, что она поддерживает такой режим работы. Также обратите внимание, что в случае сварки аустенита с большим содержанием алюминиевых присадок рекомендуется использовать горелку с переменным током.
  • Для проведения импульсно-дуговой сварки рекомендуется использовать плавящиеся электроды. Такой способ соединения подойдет для соединения конструкций, обладающих небольшой толщиной. Это могут быть металлические листы, тонкие балки и так далее. Применение плавящегося электрода минимизирует риск образования трещин в шве, что благоприятно скажется на сроке годности подобного сварного соединения.
  • Плазменная сварка аустенитных сталей допускается в ситуациях, когда толщина отдельных сварных элементов составляет менее 15 миллиметров. В случае плазменной сварки крупных объектов резко возрастает риск образования подрезов-щелей, что негативно сказывается на прочности сварного соединения.

аустенитная сталь ГОСТ

ГОСТы

Эти документы определяют все основные моменты, которые касаются аустенитных сталей — изготовление, маркировка, категории, марки, особенности транспортировки и так далее.

В соответствии с нормами ГОСТ для определения содержания ферритных (железных) компонентов в каких-либо изделиях на основе аустенита может применяться металлография либо магнитная технология. Для проведения проверки из аустенита вырезаются небольшие прутки (не менее 2 штук).

Алгоритм проверок

  • Определение содержания железа методом металлографии. На прутках делаются небольшие шлифы, которые подвергаются электролизу или химическому травлению. После этого шлифы помещаются под мощный микроскоп, где визуально определяются содержание железистых соединений. По результатам исследований выставляется оценка, которая определяет концентрацию железа в основном сплаве. Чтобы увеличить точность исследований, рекомендуется взять несколько независимых проб с нескольких прутков.
  • Определение содержания железа магнитным методом. На прутках делаются микрошлифы, которые проходят шлифовку, зачистку с помощью абразивных материалов. После этого проводится серия замеров с помощью ферритометров, обладающих высоким порогом чувствительности. Минимальное количество замеров — 40 штук. В конце полученные сведения обрабатываются с помощью методов математической статистики и моделирования. Для увеличения точности исследования рекомендуется взять несколько независимых проб.

сварка аустенитных сталей

Заключение

Подведем итоги. Аустенитная сталь — специальная разновидность стального сплава. Основное отличие подобной стали от других материалов — это наличие особой кристаллической структуры, которую называют аустенитом. С физической точки зрения аустенитные стали обладают следующими свойствами — отсутствие магнитных свойств, высокая прочность, отличная коррозийная устойчивость, химическая инертность.

Из аустенита обычно делают различное оборудование специального назначения — турбины, детали для радиоэлектроники, космическое оборудование, арктические печи и так далее.

Основным компонентом аустенитных сталей является железо и различные легирующие добавки (никель, хром, алюминий, вольфрам, ниобий и другие). В зависимости от состава различают несколько разновидностей аустенита — жаростойкие, морозостойкие, антикоррозийные и другие.

Для соединения деталей на основе аустенитной стали используется сварка. Допускаются все основные виды сварки — дуговая, в среде инертных газов, плазменная и другие. При проведении сварки нужно помнить о температурных режимах аустенита (в противном случае Вы можете получить некачественный сварной шов с трещинами).

Изготовление, маркировку, состав аустенитных сталей регулируют нормы ГОСТ. В соответствии с государственными нормами проверка содержания железа в сплаве может осуществляться двумя методами — металлография либо магнитная технология.

Аустенитная сталь

Аустенитная сталь практически лишена магнитных свойств, и потому ее высоко ценят в различных отраслях производства. Кроме того, она не подвержена коррозии и хорошо выдерживает механическую деформацию. Чем же обусловлены такие свойства?

Аустенитная сталь представляет собой модификацию железа с высокой степенью легирования и гранецентрированной кристаллической решеткой. Она появляется в процессе термообработки, но до закалки. Как же ее производят и где такая сталь применяется?

Основные свойства аустенитных сталей

Разберемся, что такое аустенитная сталь по-простому. Аустенитные сплавы составляют самую многочисленную группу высоколегированных сталей. Чаще всего в их состав включены более 16 % хрома и более 7 % никеля, придающих сплаву устойчивость к коррозии, жаропрочность, а при содержании хрома свыше 20 % сплав приобретает жаростойкость. Также в состав аустенитной стали могут входить молибден, ванадий, титан и ниобий.

Чтобы понимать, что значит аустенитная сталь, следует помнить, что однофазная решетка, образуемая ею при кристаллизации, не меняет своего строения, даже будучи охлажденной до температуры ниже +200 °С. Аустенитные сплавы железа содержат в качестве основных составляющих большую долю хрома и никеля. Содержанием этих металлов в сплаве определяются его основные свойства. Аустенитная сталь отличается своей технологичностью, прочностью и жаростойкостью, а также высокой пластичностью.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Аустенитные железные сплавы в зависимости от свойств могут быть трех основных типов:

  1. Коррозионно-стойкая аустенитная сталь содержит 18 % хрома, 30 % никеля и 0,25 % углерода. Такую сталь начали использовать в промышленности с начала XX века. Благодаря относительно низкому содержанию углерода эта сталь проявляет свою устойчивость к коррозии при экстремальных температурах. В состав сплава также нередко включают кремний, марганец и молибден.
  2. Гранецентрированная кубическая решетка жаропрочной аустенитной стали делает ее устойчивой к температуре свыше +1 100 °С, благодаря этому такие сплавы нашли широкое применение при изготовлении турбин, печей и других агрегатов, использующих в работе дизельное топливо. Жаростойкость сплава нередко дополнительно усиливают, включая в его состав бор, ниобий, ванадий, вольфрам и молибден.
  3. Высоколегированная хладостойкая аустенитная сталь содержит 19 % хрома и 25 % – никеля. Помимо отличной коррозионной устойчивости даже при резком охлаждении, она отличается повышенной вязкостью и пластичностью. Однако такая сталь не может похвастаться высокой прочностью при обычной температуре.

Высокое содержание таких добавок, как никель и хром, делает высоколегированные аустенитные железные сплавы одними из самых дорогостоящих. При использовании дополнительных легирующих примесей, придающих стали те или иные требуемые областью применения свойства, ее стоимость может существенно повышаться.

Структура аустенитной стали

Аустенитные стали при термической обработке могут претерпевать различные изменения:

В зависимости от содержания в сплаве углерода и количества легирующих добавок изменяется время, в течение которого аустенитные сплавы модифицируются. Также от количества добавок зависит скорость охлаждения материала.

Как получают аустенитную сталь по ГОСТу

Расскажем, что значит «аустенитная сталь» и какие процессы необходимы для ее получения. Для превращения сплава обязательным является образование и рост зерен в структуре металла. Изначально появление зернистости затрагивает только поверхность сплава в фазе образования карбидов, в дальнейшем меняя строение всей его толщи.

Как получают аустенитную сталь по ГОСТу

Еще одна технология выработки аустенитных сталей основана на разогреве перлитных модификаций железа, производимом после эвтектоидного распада. Результатом такого распада являются цементит и феррит, причем в сплаве должно быть не менее 0,66 % углерода. При нагреве до более +900 °С начинается переход ферритной структуры в аустенитную, сопровождаемый полным растворением цементита. Такой способ дает возможность получить высококачественный материал.

Также часто практикуется вариант с использованием титановой смеси. Для получения аустенита здесь необходимо нагревать исходную смесь компонентов в вакууме при помощи индукционной печи. Заготовка долго выдерживается в печи при высокой температуре, что позволяет удалить из ее состава атомы азота. Время, необходимое для деазотирования, определяется, исходя из массы металла. Далее следует постепенное добавление в сплав титана и других легирующих добавок для образования нитридов.

Самый распространенный вариант получения сплава – добывание так называемой аустенитной высоколегированной хромоникелевой стали. После добавления в состав тугого раствора легирующих добавок, которыми выступают хром и никель, смесь долгое время выдерживают при высокой температуре. Такая термическая обработка позволяет добиться:

  • коррозионной стойкости,
  • жаростойкости,
  • прочности,
  • высокого содержания карбидов.

При помощи добавления фосфора и молибдена стали придают вязкость и усталостную прочность.

Легирующие добавки для аустенитной стали

Добавки, которые содержат легированные стали, оказывают разное влияние на конечный сплав, степень которого напрямую зависит от их концентрации в составе материала.

Легирующие добавки для аустенитной стали

Рассмотрим их влияние подробно:

  • Добавление хрома в концентрации 13–19 % создает на поверхности металла оксидную пленку, придающую ему коррозионную устойчивость. Однако важно учитывать, что хром дает такой эффект только при низкой концентрации углерода. Вступая в реакцию, эти два компонента образуют карбид, который в свою очередь вызывает обратный эффект, активизируя коррозию.
  • Никель часто добавляют в сплавы в качестве легирующей добавки в концентрации, достигающей половины массы металла. Хотя для выработки аустенита вполне хватает 9–19 %. Хром существенно повышает пластичность сплава и уменьшает зернистость, увеличивая прочность аустенитной стали.
  • Для значительного повышения прочности металла достаточно десятых и даже сотых долей углерода, добавление которого ведет к образованию карбидов.
  • Чтобы полученный сплав был устойчивым к воздействию электричества или агрессивной химической среды, углерод заменяют азотом.
  • Для уменьшения зернистости сплава и повышения его пластичности в качестве добавки обычно в очень малых долях применяют бор.
  • Чтобы стабилизировать аустенитный сплав и придать ему дополнительную прочность, добавляют марганец и кремний.
  • В производстве хладостойкого сплава чаще всего используют в качестве добавки ниобий и титан.

Области применения аустенитной стали

Аустенитные стали широко применяют в устройствах с высокими рабочими температурами (свыше +200 °С). Это могут быть генерирующие пар установки, сварочное оборудование, различные роторы и турбины. Для того чтобы избавить сталь от таких недостатков, как относительно невысокая прочность, в состав сплава вводят дополнительные компоненты: ванадий и ниобий.

Области применения аустенитной стали

Это позволяет предохранить железные сплавы, контактирующие при работе агрегата с гидроокисями различного рода, от образования микротрещин, приводящих к выходу деталей из строя. Добавки образуют карбиды, которые существенно повышают прочность аустенитного сплава.

Часто аустенитные сплавы находят применение в производстве труб, устойчивых к коррозии. Посредством сварки при их соединении образуется шов с монолитной структурой, защищенной от воздействия экстремальной температуры и коррозии. Сварка аустенитной стали нередко осложняется ее относительно невысокой теплопроводностью и высоким коэффициентом линейного расширения, что ведет к деформации металла из-за неравномерного нагрева.

Благодаря повышенной устойчивости к воздействию электромагнитного излучения аустенитные сплавы находят широкое применение в производстве радиоэлектроники. Прочные детали из этого материала сохраняют свои рабочие свойства при воздействии электромагнитных полей и позволяют добиться долговечности устройств и высокой точности при приеме сигналов.

Из-за устойчивости к коррозии аустенитные сплавы часто применяются в агрегатах, которые работают в воде. Здесь аустениты служат защитным покрытием. Нужное сочетание в сплаве таких легирующих добавок, как хром и никель, способствует образованию тонкого слоя, который предотвращает изнашивание деталей под воздействием влаги. Однако по мере вымывания никеля из поверхности металла аустенитный сплав может полностью утратить коррозионную устойчивость.

При производстве корпусов турбин применяют аустенитные стали с высокими показателями текучести, которые не позволяют металлу коробиться и повышают его прочность. Крупнозернистая структура металла позволяет в данном случае дополнительно укреплять роторы турбин. Единственным, но немаловажным недостатком таких технологий выступает их относительная дороговизна.

Марки аустенитной нержавеющей стали

Составы аустенитных модификаций железа регламентируются ГОСТ 5632-2014. Этот стандарт относится к сталям:

  • 12Х18Н9Т,
  • 08Х18Н10Т,
  • 12Х18Н10Т,
  • 12Х18Н9,
  • 17Х18Н9,
  • 08Х18Н10,
  • 03Х18Н11.

В наименовании сплава указано в процентах содержание в нем таких добавок, как хром, никель и углерод. К примеру, сталь 08Х18Н10 содержит до 0,08 % углерода, 18 % хрома и 10 % никеля. Также в маркировке может присутствовать до 1 % титана, для обозначения которого используется буква Т в конце. Это выглядит так: 08Х18Н10Т.

Марки аустенитной нержавеющей стали

Маркировка аустенитных сплавов несет информацию об их основных свойствах. Присутствующие в составе никель и хром отвечают за коррозионную стойкость и жаропрочность, процентное содержание углерода дает возможность вычислить диапазон температуры, при которой в сплаве имеет место межкристаллическая коррозия.

Особенности термообработки аустенитной стали

Аустенитные стали имеют высокие показатели прочности и тяжело поддаются механической обработке. Для того чтобы облегчить металлообработку, применяют две основные технологии:

  • Отжиг – кристаллическую решетку изменяют нагревом и долгой выдержкой. Далее заготовки охлаждают маслом или водой либо же они остывают при комнатной температуре. Такая процедура позволяет снизить твердость материала.
  • Двойная закалка. Суть технологии в том, что после металлообработки деталь дополнительно закаляют до необходимых показателей прочности.

Рекомендуем статьи

В масштабах производства металлобработку аустенитных сталей осуществляют на станках высокой мощности, что обусловлено высокой вязкостью металла. Использование оборудования недостаточной мощности может приводить к образованию длинных стружек и деформации заготовки.

Аустенитные сплавы лишены существенного количества недостатков обычных сталей, обладающих магнитными свойствами, что далеко не всегда является плюсом. Также среди несомненных достоинств такого вида стали следует еще раз выделить их устойчивость к коррозии и механическим деформациям.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

4 группы коррозионностойкой стали

Коррозионностойкая сталь (нержавеющая) – это сталь, стойкая по отношению к коррозии. Такое свойство приобретает железосодержащий металл, когда к основному химическому элементу – Fe добавляют хром в значительном количестве. Получают сплав, характеризующийся новыми качествами, главным из которых является повышенная коррозионностойкость, то есть невосприимчивость к окислительным процессам, происходящем на воздухе или в других средах.

коррозионностойкие нержавеющие стали

Поиском способов защиты стального материала от коррозии занимались давно, покрывая его различными составами и красками. Действительно эффективный способ был найден в 1913 году англичанином Г. Бреарли, который получил патент на изобретение стали с высоким содержанием хрома, что позволяло материалу сопротивляться процессам коррозии.

Химическая основа коррозионностойких сплавов

Нержавеющие сплавы железа основаны на правиле, в соответствии с которым при добавлении к неустойчивому к коррозии металлу другой металл, который образует с ним твердый раствор, то стойкость к процессам ржавления возрастает скачкообразно, а не пропорционально.

  • При наличии 13% хрома и выше сплавы не ржавеют в обычных условиях и в средах, которые принято относить к слабоагрессивными.
  • Если в составе хрома 17% и больше, коррозионностойкие качества проявляются в агрессивных окислительных, щелочных и др. растворах.

Химическая основа сопротивляемости коррозии заключается в образовании на поверхности предмета из нержавеющей стали пассивирующей пленки окислов благодаря хрому. Эта пленка не пропускает кислород и останавливает окислительные процессы от проникновения внутрь. Эффективность защиты зависит от состояния поверхности металла, отсутствия дефектов и внутренних напряжений в материале.

Элементы., которые сопутствуют железу в стальных сплавах: С – углерод, Si – кремний, Mn – марганец, S – сера, P – фосфор и другие

Легирование стали, то есть улучшение её физико-механических характеристик, проводится и другими химическими элементами, помимо Cr. К таким элементам относятся металлы различных групп.
В нормативной документации условные обозначения элементов даются на русском языке: Ni – никель (Н), Mn – марганец (Г), Ti – титан (Т), Co – кобальт (К), Mo – молибден (М), Cu – медь (Д).

Для стабилизации аустенитной структуры стали, то есть укрепления кристаллической решетки железа, добавляется никель. Прочность закрепляется добавками углерода. Устойчивость к перепадам температуры обеспечивается присадками титана. В особенно агрессивных средах, к примеру – кислотных, действуют сложнолегированные сплавы с присадками никеля, молибдена, меди и других компонентов.

коррозионностойкие стали

Маркировка нержавеющих видов стали

В маркировке металлов используются буквы и цифры.

Существует российская классификация марок стали, которая используется в технических и нормативных документах. Параллельно бытует распространенная в мире группа стандартов, разработанных институтом Американским институтом стали и сплавов – AISI (American Iron and Steel Institute) для легированных и нержавеющих сталей.

Российские стандарты используют следующую схему. Для примера приведена аустенитная сталь 12Х15Г9

Элемент маркировкиДвузначное числоБуквыЦифрыБуквыЦифры
Что означаетКоличество углерода – С в сотых долях процентаЛегирующие элементыПроцентное содержание легирующих металлов (округленно до целого числа)Легирующие элементыПроцентное содержание легирующих металлов (округленно до целого числа)
Пример12Х (Хром)15 (15%)Г (Марганец)9 (9%)

В системе AISI материалы обозначаются тремя-четырьмя цифрами: две первые – группа сталей, две другие — среднее содержание углерода. Буквы могут находиться после второй цифры, впереди или за цифрами.

Примеры: 410, 410S, 1045.

Коррозионностойкая сталь — основные виды

Коррозионостойкие сплавы определяют по их способности противостоять под действием большого набора естественных и искусственных коррозионных сред: атмосферных, подводной, грунтовой (подземной), щелочной, кислотной, солевой, среды блуждающих токов.
Стойкость проявляется к воздействиям химической, электрохимической, межкристаллитной коррозии.

Классификация нержавеющих сплавов регулируется нормативными документами ГОСТ, в которых описывается сталь в соответствии с производственными процессами и применением.

Сплавы делятся на несколько групп по критерию структуры. Они различаются по процентному содержанию углерода и составу легирующих компонентов. Эти соотношения определяют, где и каким образом может применяться тот или иной тип стали.

  1. Ферритные
  2. Мартенситные.
  3. Аустенитные.
  4. Комбинированные.

сварка коррозионностойких сталей

Ферритная группа

К группе ферритов относятся хромистые стали. Они маркируются литерой F. Стали с большим содержанием хрома — до 30%, и небольшим углерода – до 0,15%. Обладают ферромагнитными свойствами, то есть характеризуются намагниченностью за пределами магнитного поля при низкой критической температуре.

Для достижения оптимальных свойств регулируется и находится баланс между содержанием углерода и хрома.

Плюсы – высокая прочность и столь же высокая пластичность.

  • Хорошая деформируемость в условиях холодной деформации.
  • Высокая коррозийная стойкость.
  • Может подвергаться термообработке методом отжига.

Идет на производстве трубопроката, листовых и профилированных промежуточных и конечных изделий.

  • Химическая и нефтехимическая промышленность. Оборудование и конструкции для работы в кислотной и щелочной среде.
  • Тяжелое машиностроение.
  • Энергетика.
  • Приборостроение для промышленности.
  • Производство бытовой аппаратуры и приборов.
  • Пищевая промышленность.
  • Медицинская промышленность.

Примеры марок сталей по ГОСТ и их применения:

Сталь 08Х13 – ферритный хромистый сплав. Применяется для производства столовых приборов.

Сталь 12Х13 – ферритный хромистый сплав. Используется для хранения алкогольсодержащих продуктов.

Сталь 12Х17– ферритный хромистый жаропрочный сплав. В емкостях из него проводится высокотемпературная обработка пищевых продуктов.

обработка коррозионностойких сталей

Мартенситная группа

Под мартенситом понимается структура, которая получается в результате закалки заготовки или слитка металла с последующим отпуском. Закалка заключается в нагреве до температуры, которая превышает критическую, отпуск – последующее быстрое охлаждение металла.
В результате этого процесса перестраивается кристаллическая решетка, делая материал более твердым. Но может повыситься и хрупкость.

Такая процедура дает сплавы, в которых сочетаются

  • Высокая твердость.
  • Высокая прочность.
  • Хорошая упругость.
  • Устойчивость к коррозии.
  • Жаропрочность.

Если повысить содержание углерода в сплаве, увеличиваются качества твердости и устойчивости к изнашиванию.

Сталь предназначена для изготовления металлоизделий для функционирования в агрессивных средах средней и слабой интенсивности. Свойство упругости позволяет изготавливать такие компоненты оборудования, как пружины, фланцы, валы. Из мартенситной и мартенситно-ферритной комбинированной стали изготавливают режущие элементы — ножи для конструкций в химической промышленности, а также в пищевой.

Сталь 20Х13, 30Х13, 40Х13 – мартенситный сплав. Применяется в производстве кухонного оборудования.

Сталь 14Х17Н2 — мартенситно-ферритный комбинированный сплав, содержит никель. Используется для производства компрессоров, оборудования для эксплуатации в агрессивных средах и при пониженной температуре.

Аустенитная группа

Аустенитный класс нержавеющих сталей отличается химическим строением, внедрением атомов углерода в молекулярную решетку железа. Содержит большой процент хрома и никеля – до 33%. Это высоколегированные металлы. Немагнитность позволяет применять сплавы в широком спектре производственных процессов.

  • Пластичность в холодном и горячем состоянии.
  • Прочность.
  • Свариваемость на высоте.
  • Стойкость к агрессивным средам, пример которых — азотная кислота.
  • Экологическая чистота.
  • Устойчивость к электромагнитным излучениям.

Для получения стабильного аустенита, гранецентрированной кристаллической решетки железа, сталь легируют никелем, повышая его содержание до 9%. Легирование проводится титаном и ниобием для повышения устойчивости к межкристаллитной коррозии. Такие сплавы получили наименование стабилизированных.

Коррозионностойкие стали группы относятся к труднообрабатываемым металлам. Для облегчения работы с ними применяют методы термообработки: отжиг и двойную закалку.
Отжиг проводится нагреванием до 1200 гр. С около 3-х часов. Остывание проходит в воде или масляной жидкости, или на открытом воздухе. Таким способом повышается гибкость сплава за счет снижения твердости.
Двойная закалка предполагает процесс нормализации твердого раствора металла при температуре 1200 гр. С. Вторично закалка проходит при 1000 гр. С. Происходит увеличение пластичности и жаропрочности – устойчивости к высоким температурам.

сталь коррозионностойкая гост 5632

Применение

  • Разнообразные емкости.
  • Строительные конструкции.
  • Трубы из коррозионностойкой стали.
  • Агрегаты для нефтехимии и химического производства.
  • Конструкции для нефтяных вышек, очистительных станций.
  • Механизмы, работающие под водой, такие как, турбины.
  • Силовые приборы в энергетической сфере.
  • Компоненты и агрегаты для автомобилей, самолетов.
  • Оборудование для продуктов питания.
  • Медицинская, фармакологическая аппаратура.
  • Элементы крепежа.
  • Сварные конструкции.
  • И другие виды продукции.

Сталь 12Х18Н10Т — высоколегированный хромистый сплав, с присадками никеля и титана. Из нее делают оборудование для нефтепереработки и химической промышленности.

Сталь 12Х18Н10Т — аустенитная хромистая сталь с присадкой никеля. Из нее изготавливаются трубопроводы для химической и пищевой индустрии с ограничениями по температуре.

Сталь 12Х15Г9НД — высоколегированный сплав, содержащий хром, марганец, никель, медь. Применяется в производстве трубопроводных систем и ёмкостей, работающих с органическими кислотами умеренной агрессивности

Комбинированные сплавы

Сочетают структуру и свойства аустенитно-мартенситной или аустенитно-ферритной категорий.

Аустенитно-ферритные стали содержат небольшое количество никеля, в них высокое содержание хрома (более 20%), легирование проводится ниобием, титаном, медью. После прохождения термической обработки отношение феррита и аустенита становится равновесным. Такие сплавы более прочные, чем аустенитные, отличаются пластичностью, устойчивостью к межкристаллической коррозии. Они хорошо выдерживают ударные нагрузки.

Аустенитно-мартенситная группа металлов с содержанием хрома в границах 12-18%, никеля в границах 3,7 -7,5%. Могут использоваться присадки алюминия. Упрочнение проводится закалкой при температуре более 975 гр. С, и последующим отпуском при температуре 450-500 гр. С. Они обладают повышенным показателем предела текучести: характеристики, которая указывает на напряжение, при котором рост деформации продолжается без роста нагрузки. Сплавы демонстрируют хорошую свариваемость и хорошие механические качества.

листовая сталь

Типология сталей по хромовым и никелевым присадкам

Среди сталей коррозионностойкого ряда популярны хромистые и хромоникелевые.

Антикоррозионные железосодержащие материалы, в которых находится хром, иначе называют хромистыми сталями.

  • Теплоустойчивые мартенситные хромистые (Cr менее 10%).
  • Хромистые антикоррозийные. (Cr в составе не превышает 17%).
  • Антикоррозионные и сложнолегированные (Наличие Cr в границах 12-17%).
  • Хромо-азотистые и кислотоупорные ферритного типа (Состав Cr в границах между 16% и 17%).
  • Жаростойкие легированные: с добавками алюминия, молибдена, кремния и иных металлов.

Для хромистых сплавов в целях усиления пластичности и стабилизации кристаллической решетки применяются стабилизирующие элементы, которые снижают содержание углеродной составляющей.

  • Аустенитные с низким процентным показателем углерода и стабилизирующими элементами.
  • Кислотостойкие, содержащие присадочные металлы.
  • Жаропрочные, в составе которых процент никеля и хрома – свыше 20%.
  • Аустенитно-мартенситные и аустенитно-ферритные с показателями никеля и хрома на среднем уровне.

Особенности производства коррозионностойких сталей

Все производственные процессы в металлургии регулируются нормативными документами ГОСТ и ТУ.

Это касается и металлов с антикоррозийными свойствами.

  1. Максимальная твердость по шкале Бринелля (НБ). Этот метод подразумевает испытание с помощью вдавливания с использованием способа восстановленного отпечатка или невосстановленного отпечатка и определяется по таблице.
  2. Относительное удлинение, измеряемое в %. Параметр определяет пластические свойства металла. Относительное удлинение – увеличение длины испытываемого образца после прохождения предела текучести до разрушения.
  3. Предел текучести в Н/м2. Характеристика механических особенностей материала, связанных с напряжением, при котором деформация увеличивается, когда нагрузка закончилась. Единица измерения – паскаль или ньютон на м квадратный.
  4. Сопротивление на разрыв или предел прочности в Н/м2. Максимальное значение напряжений материала перед тем, как он разрушится.
  5. Допуска по отклонениям процентного отношения химических элементов в готовой продукции
  • Пределы процентного содержания химических элементов.
  • Нижний предел массовой доли отдельных легирующих компонентов, таких как марганец.
  • Процентное отношение вредных примесей цветных металлов: олова, свинца, висмута, сурьмы, кадмия, мышьяка и других.

трубы из коррозионностойкой стали

Магнитные характеристики антикоррозионных сплавов

Параметр магнитности характерен для некоторых металлов. Он зависит от таких характеристик, как основная структура металла, состав и особенности сплавов.

Комбинации этих переменных предопределяют уровень магнитных характеристик.

Ферриты и мартенситы задают ферромагнитные характеристики сплавов. Они настолько же магнитные, как и углеродистая сталь. Магнитные виды материалов легко подвергаются сварке и штамповке, годятся для изготовления р инструментов с режущими поверхностями и столовых приборов.

Немагнитные сплавы – аустенитные и аустенитно-ферритные хромистых и марганцевых марок.

Отличаясь большой прочностью и коррозийной устойчивостью, широко применяются в строительной сфере и в разнообразных производственных процессах.

Читайте также: