Хром молибденовая сталь свойства

Обновлено: 19.05.2024

Молибден подобно вольфраму и хрому сужает v-область, т.е. повышает критическую точку железа A3 и понижает точку A4. При содержании молибдена 2,5-3,5% на диаграмме состояния железомолибденовых сплавов область твердых растворов v-железа замыкается. Сплавы с содержанием молибдена более 3,5% являются ферритными и критических точек не имеют. С железом молибден образует твердые растворы и два интерметаллических соединения: Fe3Mo2 с 53,2%Мо и FeMo с 63,2% Мо. Молибден понижает концентрацию углерода в перлите, т.е. сдвигает точку S на диаграмме Fe-C влево. При нагреве доэвтектоидной стали молибден повышает точку A3, а на точку A1 оказывает слабое влияние.

Процесс карбидообразования в молибденовых сталях происходит следующим образом: специальные карбиды образуются только в температурной области перлитного превращения благодаря достаточной диффузионной подвижности атомов молибдена при длительных выдержках. В сталях с высоким содержанием молибдена выделение специальных карбидов в очень тонкодисперсной форме происходит сразу же после превращения в верхней перлитной области около 700 °С.

При превращении в промежуточной области вплоть до температур порядка 500 °С выделяется только карбид Fe3C, содержащий молибден. При длительных выдержках в районе 500 °С выделяются специальные карбиды Mo2C, которые благодаря неравновесному состоянию обладают крайне высокой дисперсностью.

Коэффициент диффузии молибдена в и a-железе очень мал, причем в a-железе во много раз больше, чем в v-железе. В присутствии углерода коэффициент диффузии молибдена в v-растворе увеличивается. В то же время молибден уменьшает коэффициент диффузии углерода в v-растворе ниже 1000 °С, но в интервале 1000-1200 °С он практически не влияет на коэффициент диффузии углерода, а при более высоких температурах даже увеличивает. В присутствии молибдена самодиффузия железа замедляется, вследствие чего повышается температура рекристаллизации а-железа.

В литых сталях положение мартенситной точки от содержания молибдена практически не зависит. В доэвтектоидных сталях добавки молибдена значительно замедляют образование перлита и примерно на 100 °С повышают температуру максимальной скорости превращения. Все содержащие молибден стали имеют высокую скорость превращения в промежуточной области и сравнительно невысокую - в перлитной. Молибден уменьшает критическую скорость охлаждения в значительно большей степени, чем хром. Молибденовые стали имеют высокую прокаливаемость и мало склонны к перегреву.

Молибден повышает устойчивость сталей против отпуска, особенно после закалки с высоких температур, что обусловлено выделением в критической температурной области тонкодисперсных специальных карбидов. В порошковые стали молибден вводят для увеличения прочности, износостойкости и коррозионной стойкости. Небольшие добавки молибдена улучшают пластичность порошковой стали.

Двойные Fe-Mo сплавы практического применения не нашли, что вероятно, объясняется быстрым ростом зерна в железе под влиянием молибдена, а также большой усадкой. Кроме того, молибден задерживает начало эвтектоидного превращения в стали и, следовательно, оказывает существенное влияние на закалочные свойства сталей.

Влияние молибдена (табл. 14) на свойства железографитового материала ЖГр1 в спеченном состоянии и после химикотермической обработки - цементации в твердом карбюризаторe при температуре 920 °С с закалкой в масло и последующим низким отпуском при 180 °С - исследовано в работе. Исходными компонентами служили порошки карбонильного железа с крупностью частиц 3 мкм, коллоидальный графит марки C-1 с размером частиц 7,6 мкм и молибден крупностью 0,9 мкм. Спекание проводили в водороде при температуре 1150 °С в течение двух часов.




Испытание материалов с различным содержанием молибдена показало, что в отличие от хрома молибден благоприятно влияет на антифрикционные свойства железографитовых материалов: уменьшаются коэффициент трения и износ, повышается максимальная нагрузка до схватывания. Особенно это влияние заметно на материалах, подвергнутых химикотермической обработке. Такое благоприятное воздействие молибдена на антифрикционные свойства объясняется его несколько отличным от хрома влиянием на формирование структуры как в процессе спекания и химико-термической обработки, так и в процессе трения.

Так как в присутствии углерода коэффициент диффузии молибдена в v-железе выше, чем коэффициент диффузии хрома, структура материалов, легированных молибденом, более однородна и представляет в спеченном состоянии легированный перлит с карбидами, а после химико-термической обработки - мартенсит с остаточным аустенитом и карбиды

типа Me23С6 и Me3С. Микротвердость основы сталей по мере увеличения в них концентрации молибдена непрерывно растет. Более высокая однородность молибденовых сталей по сравнению с хромистыми объясняется также еще и тем, что карбид хрома образуется при температурах 900-950 °С, в то время как образование карбида молибдена начинается лишь при температурах 1100 °С и выше. Таким образом, растворение молибдена осуществляется диффузией молибдена в железо, в то время как в хромистых сталях сначала образуется карбид хрома, а потом уже начинается его растворение в железной основе.

Так, структура стали ЖГр1М10 в спеченном состоянии представляет собой сорбитообразный перлит, в то время как в стали ЖГр1Х10 можно обнаружить весь спектр структур от ферритной до троостито-мертенситной. В сталях, легированных молибденом, объемная доля карбидов больше, а их средний размер значительно меньше, чем в хромистых сталях. Это связано, очевидно, с более интенсивным выделением в молибденовых сталях мелких вторичных карбидов из пересыщенного твердого раствора при охлаждении. Так в интервале температур 400-500 °С из пересыщенного твердого раствора выделяется крайне дисперсный карбид (Fe,Mo)2C, появление которого существенно влияет на средний размер карбидов. Мелкие карбиды молибдена, очевидно, более энергоемки, чем карбиды хрома, что подтверждается и существенной разницей в их микротвердости (1080-1230 HV имеют карбиды молибдена и 800-900 HV карбиды хрома).

Увеличение энергии связи и образование мелких износостойких карбидов, которые в процессе трения не выкрашиваются, как карбиды хрома, а образуют удобные пятна касания, что существенным образом сказывается на уменьшении износа стали, легированной молибденом. В хромистых сталях, подвергнутых химико-термической обработке, в процессе испытания количество остаточного аустенита увеличивается, в то время как в сталях ЖГр1М5, ЖГр1М10 эти зависимости носят убывающий характер. По-видимому, при воздействии скорости и нагрузки молибден способствует протеканию направленного аустенитно-мартенситного превращения, подобно аустенитным литым сталям, которые упрочняются в процессе трения.

Обычно Mo добавляется в спеченные стали вместе с другими легирующими элементами, такими как Ni, Cu, Mn. Это обусловлено, прежде всего тем, что Мо-дорогостоящий элемент. Фишер показал, что добавление 1%Мо в сталь, содержащую 2%Ni, 1%Мп и 0,4%С, увеличивает предел прочности на растяжение на 130 МПа.

В работе было обнаружено значительное повышение твердости стали, содержащей медь и никель, по мере добавления в нее молибдена. В табл.15 представлены свойства стали, содержащей l,75%Ni, 1,5%Сu, 0,5%Мо, полученной из частично легированного порошка (DISTALOIYSA) и порошковой смеси. В том и другом случае было добавлено 0,6% графита. Давление прессования 589 МПа.

Численные значения в табл.15 представляют собой среднюю величину, взятую из пяти измерений.



Влияние молибдена на свойства спеченной стали, легированной 2%Си и l%Ni, изучено в работе. Сталь получали прессованием и спеканием при 1200 С в течение 1,5 ч В качестве исходных материалов использовали восстановленный железный порошок, электролитический медный порошок, карбонильный никель и ферромолибден. Влияние содержания молибдена и углерода на механические свойства сталей в спеченном состоянии приведены на рис. 10. Понижение предела прочности и пластичности стали с увеличением содержания молибдена и углерода связано с образованием хрупких специальных карбидов в процессе спекания. Сталь, содержащая 0,4% Мо и 0,6% С, имеет одновременно наиболее высокую прочность и пластичность.



Термическая обработка, заключающаяся в закалке с 870 °С в масле с последующим отпуском, значительно повысила прочностные свойства (рис. 11). Закалка с отпуском при 200 °С почти в два раза повышает предел прочности стали оптимального состава, но относительное удлинение при этом снижается до 1%. Наилучший комплекс механических свойств Достигается после отпуска при 650 °С: прочность возрастает по сравнению со спеченным состоянием на 15-20%, а пластичность остается на том же уровне (~ 3%).


В работе изучены свойства сплавов Fe-Ni-Mo, в которые добавляли фосфор и углерод (табл. 16). Часть образцов получали путем двойного прессования и спекания. Первое спекание проводили при температуре 850 °С, второе -при температуре 1250 °С. Образцы спекали в атмосфере осушенного водорода. Давление прессования было выбрано 589 МПа.

Эспер в работе отмечал, что при спекании сталей с содержанием никеля от 2,5 до 3,5%, молибдена от 2,5 до 4,5% и фосфора в количестве 0,45% при температуре 1250 С в сухом водороде можно получить следующие свойства: предел прочности на растяжение более 600 МПа, предел текучести более 450 МПа, ударную вязкость более 60 Дж.


В работе отмечалось, что углерод улучшает свойства Fe-0,45P-2Cu-2Ni прессовок после спекания, а введение фосфора и углерода в отдельности повышает прочность Fe-Mo-Ni прессовок. В работе исследовано совместное влияние фосфора и углерода на свойства порошковых молибденовых сталей. Предварительно была приготовлена смесь Fe-0,45P-C. Содержание углерода составляло 0,4 и 0,8%, а содержание молибдена варьировалось между 1 и 4%. Затем смеси прессовали при давлении 691 МПа.

Плотность после прессования составляла (6,9 ± 0,05) г/см . Прессовки спекали в течение 30 мин в сухом водороде (точка росы -40°С). Скорость нагрева 8 К/мин, скорость охлаждения 20 К/мин.

В процессе спекания происходило уменьшение содержания углерода на 0,1±0,02%. Установлено, что во всех исследованных образцах прочность и линейная усадка возрастают с увеличением содержания и температуры спекания (рис. 12 и рис. 13).

Удлинение уменьшается с введением молибдена, но с повышением температуры спекания возрастает (рис.12, 13). Повышение содержания углерода увеличивает пределы прочности и текучести при растяжении и уменьшает пластичность и линейную усадку (рис. 12). Из полученных результатов видно, что при введении соответствующего количества углерода и молибдена можно избежать изменения размеров.


Металлографический анализ показал, что при температуре спекания 1120 °С стали с содержанием 0,8 и 1%С имеют структуру, близкую к перлитной с рассеянными ферритными выделениями. Из анализа диаграммы состояния системы Fe-C-P следует, что при наличии 0,8%С и 0,45%Р в железных прессовках спекание происходит в аустенитном состоянии.

При введении более 1,2% Mo ферритная фаза становится стабильной в температурном интервале от 1050 до 1200 °С. Углерод хорошо известен как стабилизатор аустенитной фазы. Таким образом, при содержании 4% Мо спекание происходит в смешанной а+v-фазе, поэтому и структура является неоднородной - с зернами феррита и перлита. При содержании углерода выше 1% образуется жидкая фаза в сплаве Fe-Mo-C при температуре спекания выше 1200 °С. При этом происходит заметная гомогенизация.

Таким образом, одновременное добавление углерода и фосфора в Fe-Mo композицию повышает предел прочности на растяжение и предел текучести, но уменьшает пластичность. Добавляя в Fe-0,45%Р прессовки углерод (от 0,4 до 0,8%) и молибден (от 1 до 4%) наблюдалось повышение прочностных свойств с одновременным уменьшением пластичности.

Описание стали X50CrMoV15

Сталь с маркировкой X50CrMoV15 является немецкой, нержавеющей. Производитель данного материала – Krupp Stainless Steel. Это очень хороший и высококачественный вид металла, который относится к категории высоколегированных. Именно этот материал используется в производстве отличных ножей Rondell. В сегодняшней статье рассмотрим подробное описание стали марки X50CrMoV15.

Состав

В содержании высококачественного сплава с маркировкой X50CrMoV15 присутствуют следующие химические элементы, определяющие его свойства и характеристики.

  • Углерод. Этот компонент, входящий в состав рассматриваемой стали, улучшает уровень удержания кромки, повышает показатели вязкости. Кроме того, углерод способствует увеличению твердости сплава, сопротивления к изнашиванию. Однако углерод способствует снижению пластичности стали X50CrMoV15. Если этот компонент присутствует в избытке, то стойкость к образованию коррозии тоже понижается.
  • Хром. Благодаря нему повышается уровень твердости металла, его сопротивление растяжению. Вместе с этим возрастает и плотность стали, а также устойчивость к коррозии.
  • Марганец. Благодаря этому химическому элементу повышается уровень прокаливаемости стали, а также ее вязкость. Марганец выступает в роли раскисляющего компонента и дегазатора, убирающего из состава металла кислород.
  • Молибден. Сталь X50CrMoV15 является молибден-ванадиевой. Молибден, присутствующий в ее содержании, увеличивает степень твердости и прочности, способствует повышению показателей прокаливаемости. Кроме того, молибден улучшает коррозионную стойкость металла, способствует легкости его обработки.
  • Никель. В сплаве марки X50CrMoV15 имеется и такой химический элемент, как никель. Этот компонент прибавляет ударной вязкости, способствует повышению коррозионной устойчивости, но при этом сокращает степень твердости металла.
  • Фосфор. Этот составной элемент относится к категории нежелательных примесей. Фосфор может растворяться в феррите, благодаря чему возрастает прочность металла, однако уменьшаются степень его пластичности и ударная вязкость. Таким образом, сталь становится более хрупкой.
  • Кремний. Благодаря нему возрастает прочность стали. Кремний выступает в качестве раскислителя, убирающего кислород по ходу плавления металла.
  • Сера. Как правило, считается ненужной и вредной составляющей металлов. Однако ее негативное воздействие может быть сокращено посредством марганца, присутствующего в составе стали.
  • Ванадий. Этот компонент отвечает за рост прочности металла, а также его стойкость к изнашиванию. Благодаря ванадию сталь становится более плотной и вязкой, не подвергается коррозии.
  • Вольфрам. Также способствует росту прочностных показателей металла, улучшает степень его вязкости, показатели прокаливаемости. Благодаря вольфраму сталь X50CrMoV15 остается достаточно жесткой даже под воздействием очень высоких температурных значений.
  • Кобальт. Еще один химический элемент, способствующий росту прочности металла. Позволяет проводить процедуру закалки при более высоких температурных показателях. Кроме того, кобальт может усиливать эффект остальных элементов в сложных металлах.
  • Ниобий. Не дает разрастаться карбидам, ограничивает обрабатываемость материала.
  • Азот. Этот компонент выступает вместо углерода в матрице стали.



Плюсы и минусы

Рассматриваемый сплав с маркой X50CrMoV15 отличается очень высоким качеством. Рассмотрим главные преимущества, которыми он обладает.

  • Сталь X50CrMoV15 отличается прекрасной коррозионной устойчивостью.
  • Клинки, производимые с применением сплава X50CrMoV15, не изменяют своей расцветки под воздействием агрессивных внешних влияний и сред. Благодаря этому подобные вещи могут сохранять внешнюю привлекательность в течение всего срока эксплуатации.
  • Сплав с маркировкой X50CrMoV15 идеально подходит для изготовления лезвий ножей, поскольку может обеспечивать оптимальный уровень их твердости.
  • Продукты, производимые из рассматриваемого сплава, демонстрируют высокую стойкость к изнашиванию.
  • Даже при частых и интенсивных трениях стальные детали не теряют своей правильной формы.
  • На лезвиях из металла X50CrMoV15 крайне трудно оставить сколы или другие повреждения подобного типа.

Материал с маркировкой X50CrMoV15 имеет не только плюсы, но и определенные минусы. Обозначим главные:

  • если лезвия, сделанные из сплава марки X50CrMoV15, покрываются грязными пятнами, их не всегда помогает удалить даже самая тщательная очистка;
  • с течением времени клинки, изготовленные из рассматриваемого сплава, часто утрачивают первозданный привлекательный блеск;
  • лезвия из металла X50CrMoV15 могут быстрозатупиться.

Характеристики и свойства

Ознакомимся с главными характеристиками и свойствами стального сплава марки X50CrMoV15.

  • Показатель предела прочности рассматриваемого сплава представляет собой напряжение, выше которого он начинает разрушаться. В случае со сплавом X50CrMoV15 актуальным является значение 655 Мпа.
  • Параметр предела текучести стали X50CrMoV15 подразумевает вероятность деформирования металла без изменения показателей напряжения. Предел текучести металла рассматриваемой марки составляет 415 Мпа.
  • Пластичность является важным параметром, который без изменения структуры дает возможность придавать металлическим изделиям различные формы.
  • Вязкие свойства, характерные для стали марки X50CrMoV15, демонстрируют способность этого металла к сопротивлению нагрузкам динамического типа.
  • Твердость сплава марки X50CrMoV15 находится в пределах 54-65 HRC. Некоторыми производителями заявляется другая степень твердости, которая составляет 58 HRC.
  • Испытания материала на растяжение демонстрирует значения, находящиеся в пределах 100-130 KSI.
  • Модуль упругости рассматриваемого сплава равняется E=190-210 Гпа.
  • Показатель плотности стали с маркировкой X50CrMoV15 находится в пределах p=7,7-8,1 кг/дм3.
  • Важным является показатель коэффициента Пуассона. В случае со сталью X50CrMoV15 он будет находиться в пределах 0,27-0,30, исходя из непосредственной природы материала.
  • Теплопроводность стали X50CrMoV15 представлена такими показателями: k=11,2-48,3 Вт/мК.
  • Температурное значение, при котором происходит плавление стали X50CrMoV15, находится на уровне 1416 градусов Цельсия.
  • Рассматриваемый сплав может подвергаться ковке. Обработка под воздействием давления проходит без разрушений. Материал может деформироваться из-за давления или ударов, совершенных специальным молотом.
  • Сталь X50CrMoV15 относится к категории свариваемых.
  • Допустима и обработка стали посредством резания. Обычно таким образом убираются все лишние частички изделий, чтобы заготовки приобретали аккуратный и необходимый вид.



Аналоги

Высококачественная немецкая сталь, которой присваивается маркировка X50CrMoV15, имеет множество не менее качественных аналогов, которые обладают похожими характеристиками и параметрами. Отличные металлы-заменители производятся в Польше, Чехии, США и так далее.

Ознакомимся со списком лучших аналогов качественного сплава X50CrMoV15:

  • хорошие американские металлы с похожими характеристиками имеют такие маркировки: 440B, 440C, 440FSe;
  • польский металл-аналог – H18;
  • качественный аналогичный металл производится в Чехии, ему присваивается маркировка 17042;
  • аналоги немецкой стали имеются и на территории России, к примеру, сплав 65х13;
  • лучший японский аналог – SUS440C;
  • немецкий аналог – 1.4116;
  • металл с похожими параметрами производится во Франции, его марка – Z100CD17.






Несмотря на то, что перечисленные аналоги имеют очень много общего с качественной сталью X50CrMoV15, выбор в пользу конкретного варианта всегда делается строго индивидуально.

Применение

Очень широкое применение высококачественный сплав марки X50CrMoV15 приобрел в областях, где главную роль играют гигиенические требования. Именно поэтому подобный материал идеально подходит для производства современного медицинского оборудования, различных аксессуаров, фармацевтических продуктов. В пищевой и перерабатывающей промышленности сталь X50CrMoV15 тоже оказывается весьма востребованной. Очень хорошие и практичные ножи, сделанные из подобного сплава, применяются в кулинарии. Кроме того, их покупают для охоты, рыболовства, путешествий.





Обработка

Заготовки из стали X50CrMoV15 могут подвергаться термообработке. Такая процедура сказывается на качестве изделий, а также их эксплуатационных характеристиках. Для сплава маркировки X50CrMoV15 нынешние производители выбрали обработку в виде закалки. Реализуется эта операция в несколько этапов.

  1. Сперва стальную заготовку подогревают до температурного значения в +1200 градусов Цельсия.
  2. После этого изделия охлаждают, чтобы установилась температура в +25 градусов.
  3. После этого стальные заготовки из сплава X50CrMoV15 подвергают заморозке посредством жидкого азота. При этом должна установиться температура на уровне -70 градусов Цельсия.
  4. На следующем этапе температурный режим изменяют, повышая температуру до значения в +300 градусов Цельсия.



Описанный процесс формирует отличные режущие свойства в сплаве однородного типа.

Особенности хромованадиевой стали

Иногда на инструментах (гаечные ключи, отвертки, пассатижи) имеется небольшая надпись в виде ChV. Немногие знают, что именно таким способом производители оповещают, что конкретный инструмент сделан из хромованадиевой стали. Этот материал наделен определенными физическими и механическими свойствами. Для того чтобы более детально разобраться в этом вопросе, рекомендуется ознакомиться с составом сплава, а также другими немаловажными параметрами.


Общее описание

Хромованадиевая сталь – это отдельный вид материала, который получается благодаря входящим в состав легирующим элементам. Такая сталь используется для производства инструментов, а также толстой проволоки.

Образование сплава осуществляется в том случае, если в составе присутствуют все основные и вспомогательные компоненты. Процент содержания каждого из них может изменяться, и от этого будут зависеть свойства и характеристики полученного металла.


Основным компонентом в этом сплаве выступает именно хром. Его содержание в сплаве варьируется от 0,80 до 1,10%. Вторым по количеству компонентом выступает ванадий. Содержание в большинстве случаев 0,18%. Третий относительно крупный по содержанию компонент – марганец. Присутствие в диапазоне от 0,70 до 0,90%.

Кроме того, в сплав входят дополнительные ингредиенты, среди которых углерод, кремний и другие химические элементы. В случае изменения их количества сталь начинает изменять свои свойства в ту или иную сторону.



Для того чтобы эту сталь можно было использовать в качестве основного материала при производстве инструментов, необходимо соблюдать пропорции требуемого состава. Только в этом случае сталь будет обладать необходимыми характеристиками.

Твердость – этот параметр является обязательным техническим свойством для стали любых марок. Именно твердость является определяющей при выборе области применения стали. В качестве измерительного инструмента выступает шкала Роквелла. Конкретно этот сплав имеет твердость С 41-55.

Листовая хромованадиевая сталь легко поддается вальцовке и формовке. При этом после обработки первоначальные свойства не утрачиваются.

В зависимости от марки сталь используется в той или иной отрасли. Для примера, 6150 чаще всего применяется для изготовления пружин. 6195 чаще используется при производстве подшипников.

Минимальный предел прочности на разрыв варьируется от 190 до 300 единиц в зависимости от марки и химического состава. Относительно других сплавов этот показатель является весьма высоким.



Еще одна характеристика, о которой также не следует забывать, модуль упругости.

Сферы применения

Хромованадиевая сталь чаще всего используется в качестве материала для изготовления инструментов, а также проволоки разной толщины. Все изделия из этого материала имеют специфическую пометку в виде надписи – Chrome Vanadium. Они по праву считаются одними из самых качественных во всем мире. Отличительными чертами изделий являются: высокая прочность, привлекательный внешний вид и повышенная устойчивость к появлению коррозии на поверхности.


Несмотря на множество весомых преимуществ, имеются некоторые недостатки. Они заключаются в относительно высокой стоимости. Она объясняется тем, что изначально высока цена на хромованадиевую сталь как на первичный материал. Из-за высокой стоимости в продаже имеется множество подделок. Именно поэтому необходимо покупать изделия из этого материала только в проверенных торговых точках.



Хромованадиевая сталь используется также в сфере строительства. Там она применяется в различных формах: сплав, сталь или хромированное покрытие. Такой материал отлично подходит для создания труб различного назначения, крепежных элементов и корпусов для бытовой техники (листовой вариант).

Все инструменты делают из той стали, которая предварительно подвергается легированию. Это означает, что в состав сплава дополнительно включают специальные легирующие добавки. Они предназначены для того, чтобы в разной степени менять механические и физические свойства материала.

Для того чтобы более детально разобраться в обработке, необходимо понять, какой из составляющих элементов вносит изменения.

Если добавить в сплав увеличенное количество хрома, то автоматически улучшаются антикоррозийные свойства.

С увеличением никеля увеличивается пластичность материала.

Титан в составе уменьшает зернистость, а также повышает прочность и плотность.

Молибден увеличивает прокаливаемость.

Вольфрам автоматически повышает стойкость, и снижает уровень хрупкости.

Марганец увеличивает степень раскисления.

Прочность инструментов, изготовленных из этой стали, зависит от множества внутренних и внешних факторов. А качественные характеристики материала неразрывно связаны с присутствием в составе тех или иных легирующих компонентов.

В зависимости от состава материал маркируется. Маркировка как раз отображает состав и позволяет покупателю узнать характеристики и свойства конкретного товара. Приобретать изделия рекомендуется непосредственно у компаний-производителей или их официальных представителей.

Что такое хромомолибденовая сталь и где ее применяют?

Хромомолибденовая сталь – материал высокой прочности, созданный путем соединения хрома и молибдена. Результатом такого сочетания стало повышение прочностных свойств нового материала и снижение его стоимости, что сделало металл востребованным на рынке. Стоит подробнее рассмотреть его особенности.

Что это такое?

Хромомолибденовая сталь представляет собой прочный и устойчивый к различным воздействиям материал, изготовленный из низколегированного металла. В основном подобный материал используют в промышленности и строительстве, где требуются устойчивые к абразивному износу элементы, способные перенести длительную транспортировку.

Материал демонстрирует отличную устойчивость к ударным нагрузкам, которой удалось добиться благодаря использованию прочных металлов. Из хромомолибденовой стали часто собирают мельничные футеровки, способные выдержать чрезмерную нагрузку и обладающие долгим сроком службы.

Также с помощью подобного металла выполняют зубчатые колеса для установки в различных механизмах для оснащения транспортных средств.

Свойства и характеристики

Хромомолибденовые стали используют в основном для изготовления деталей, работающих в условиях высоких температур. В основе материала лежат хром и молибден, которые придают готовому металлу особые свойства.

Хром:

  • повышает термическую стойкость;
  • улучшает стойкость к водороду;
  • предотвращает развитие коррозии;
  • стабилизирует аустенит;
  • уменьшает электрическую проводимость и тепловое расширение.

Молибден тоже оказывает положительное воздействие:

  • улучшает показатель прокаливаемости стали;
  • повышает коррозионную устойчивость;
  • делает материал менее хрупким.

Структуру хромомолибденовой стали можно отнести к гетерогенной, которая по мере увеличения концентрации карбидообразующих элементов повышается. Также при попытках изменить структуру:

  • меняется микротвердость частиц;
  • образуются карбиды в составе;
  • ухудшаются свойства материала.

По сравнению с хромистой сталью структура хромомолибденовой более однородна, за счёт чего производителям удалось добиться долгого срока службы и устойчивости материала к внешним воздействиям. Основные свойства:

  • невысокая ударная вязкость;
  • устойчивость к абразивному износу;
  • долгий срок службы.

По сравнению с мартенситной сталью хромомолибденовая обладает меньшей твердостью, поэтому практически образует трещин при ударных нагрузках.

Результатом использования хрома и молибдена при изготовлении металла стало получение устойчивого к большинству воздействий материала, который быстро зарекомендовал себя на строительном и промышленном рынках.

Марки и их применение

Хромомолибденовая сталь делится на несколько марок, у каждой есть свои свойства и свое назначение.

  • 30ХМ, 30ХМА, 35ХМ, 34ХМ1А. Отличаются повышенной прочностью и отличным показателем вязкости. В промышленной и строительной сферах используются после прохождения процедур закалки и отпуска. Также часто применяются после нормализации и отпуска. Из сталей данных марок изготавливают детали, способные выдержать высокие нагрузки. Также материал используют для сборки сварных конструкций, способных работать в условиях высоких температур. Отличительное свойство стали – отсутствие склонности к хрупкому разрушению.





  • 30ХМ и 35ХМ стоит вынести отдельной категорией. Стали отлично поддаются механической обработке, обладают неплохой свариваемостью и способны работать при температуре до +500 градусов. Из металла изготавливают различные детали.



  • 38ХМЮА. В промышленности такую сталь подвергают азотированию, за счет чего удается повысить твердость металла и устойчивость к внешним воздействиям. Материал способен выдержать большие нагрузки, обладает долгим сроком службы и не подвергается коррозии благодаря защитной пленке. Единственный недостаток – высокая цена.

Сталь, в составе которой присутствуют хром и молибден, активно используется в промышленности, автомобилестроении и строительстве. Также есть хромомолибденованадиевые марки, которые обладают высокими техническими характеристиками.

Изготовление и сварка хромомолибденовых сталей приводят к ухудшению свариваемости материалов. В результате такого подхода становится необходимым проведение ряда технологических приемов, способных улучшить свойства измененного металла. Один из способов – термическая обработка сваренного изделия.

Хромомолибденовая сталь отлично поддается термической обработке. Один из способов подразумевает проведение следующих этапов:

  1. аустенизация;
  2. охлаждение в воде;
  3. отпуск.



Отличие от стандартной обработки заключается в нагреве при проведении процессов аустенизации до температуры Ас3+ (50-80°C). Охлаждение выполняют в воде, понижая температуру не более чем на 100 градусов.

Aisi 4140 хромомолибденовая сталь и ее российский аналог 42ХФА

Сталь 4140 — железный сплав с углеродом. Для улучшения физических, химических, конструкционных свойств изделия в состав добавляют дополнительные примеси. Каждый химический элемент приносит конкретное качество в сплав и влияет на тип и вид металлического изделия.

Aisi 4140.

Характеристики AISI 4140

Сплав содержит 0,4 процента углерода и носит название — среднеуглеродистая или углеродистая сталь. Для повышения износоустойчивости и прочности добавляют марганец и хром. Сплав хорошо поддается сварке.

Плюсы и минусы для ножей

В основном из стали этой марки изготавливают всевозможные режущие изделия. Как бытовые, так и медицинские.

Достоинства:

  1. Высокий показатель твердости, равен 56-59 HRC.
  2. Устойчивость к изгибам и ударам.
  3. Легко обрабатывается и затачивается.
  4. Обладает нержавеющими свойствами.
  5. Невысокая стоимость.

Недостатки:

  1. Деформируется при эксплуатации, незначительно.
  2. Повышенная скорость истирания.

Химический состав

Процентное содержание элементов в сплаве:

Химический элемент Название Минимальное содержание % Максимальное содержание %
Cr Хром 0,8 1,1
Mn Марганец 0,75 1
C Углерод 0,38 0,43
Si Кремний 0,15 0,3
Mo Молибден 0,15 0,25
S Сера 0,04
P Фосфор 0,35
Fe Железо 97,27

Основные добавки:

  1. Марганец. Повышает жесткость и прочность материала. Меняет фактуру стали. Она становится более крепкой в сравнении с другими металлами.
  2. Хром. Увеличивает антикоррозийные свойства сплава. Сталь получает нержавеющие свойства в водной среде. Но агрессивно-кислотная среда разрушает сталь.
  3. Молибден. Добавка отвечает за прочность материала: ломкость и хрупкость.

Расшифровка

Американская маркировка стали AISI 4140 означает, что это легированная хромомолибденовая сталь. Цифра 41 обозначает группу стали, 40 — содержание углерода х 100.

сталь Aisi 4140.

Свойства

Характеристика поведения стали при различных условиях и режимах.

Механические

Механические свойства показывают на сколько материал выдерживает влияние внешних нагрузок. Основные свойства проверяют на образцах, когда, проводят испытания различными факторами.

  1. Предел прочности — напряжение, выше которого материал разрушается — 655 Мпа.
  2. Предел текучести — деформация материала продолжается без изменения напряжения — 415 Мпа.
  3. Пластичность — помогает, не изменяя структуры, изготавливать различные формы изделий. Испытываемый образец сужают или расширяют до появления трещины.
  4. Вязкие свойства показывают способность сопротивляться динамическим нагрузкам.
  5. Твердость стали — способность сопротивляться внедрению в изделие другого материала.
  6. Испытание на растяжение показывает цифры в пределах 100-130 KSI.

Физические

Физические свойства обозначают упругость, плотность, теплопроводность.

  1. Отношение напряжения к деформации — устойчивость, упругость изделия.
  2. Модуль упругости: Е = 190-210 ГПа.
  3. Плотность — отношение массы к единице объема: ρ = 7,7-8,1 кг/дм3.
  4. Коэффициент Пуассона ν равен в пределах 0,27- 0,30, зависит от природы материала.
  5. Показывает свойства упругости, величина = поперечное сжатие / продольное растяжение.
  6. Теплопроводность показывает способность проводить тепло: k = 11,2-48,3 Вт/мК.
  7. Температура плавления — 1416 градусов С.

Технологические

Технологические свойства показывают податливость материала на разнообразные виды обработок:

  1. Литейность — в расплавленном состоянии заполняет любые формы.
  2. Ковкость — обработка давлением без разрушения. Материал деформируют под давлением пресса или ударами молота.
  3. Свариваемость — пригодность делать сварные соединения.
  4. Обработка резанием удаляет лишние части изделия в виде стружки, чтобы заготовка приобрела нужный вид. Это окончательный этап обработки.

Рекомендации по обработке

сталь Aisi 4140.

Особенности обработки улучшают и закрепляют нужные свойства.

  1. Для увеличения силы резания поверхность обрабатывают наклепом, упрочняют.
  2. Токарные операции производят при продольном точении, обрабатывании торцов и профиля.
  3. Сварочную обработку делают без предварительной тепловой обработки и подогрева.

Сталь используется в нефтяной и газовой промышленности. Делают оружейные гладкие и нарезные стволы, ресиверы, болты. Валы экскаваторов, установочные винты, штоки и детали, температурный режим работы до 400 градусов С.

Маркировка международного стандарта: А29 или А29М.

Существуют аналоги зарубежного изготовления:

  • 42CrMo4 — маркировка Евросоюза;
  • SCM440H – Японии;
  • 2244 — Швеции.

Отечественные аналоги:

Отзывы владельцев ножей

Лезвие из стали 4140 получает положительные отзывы. Достаточно износостойкая. Изделия соответствуют указанному качеству.

Сталь имеет не только типичное применение в изготовлении ножей, но и используется в различных отраслях промышленности. Производители выпускают стальные листы, стержни и готовые изделия: валы насосов, держатели инструментов, соединительные стержни, токарные шпиндели.

Читайте также: