Установка стальных продольных связей это

Обновлено: 18.04.2024

15.3.1 Отправочные элементы сквозных колонн с решётками в двух плоскостях следует укреплять диафрагмами, располагаемыми у концов отправочного элемента.

В сквозных колоннах с соединительной решёткой в одной плоскости диафрагмы следует располагать не реже, чем через 4 м.

15.3.2 В колоннах и стойках с односторонними поясными швами согласно 14.1.9 в узлах крепления связей, балок, распорок и других элементов в зоне передачи усилия следует применять двусторонние поясные швы, выходящие за контуры прикрепляемого элемента (узла) на длину

15.3.3 Угловые швы, прикрепляющие фасонки соединительной решётки к колоннам внахлестку, следует назначать по расчету и располагать с двух сторон фасонки вдоль колонны в виде отдельных участков в шахматном порядке; при этом расстояние между концами таких швов не должно превышать 15 толщин фасонки.

В конструкциях, возводимых в районах с расчётными температурами ниже минус 45°С, а также при применении ручной дуговой сварки, угловые сварные швы должны быть непрерывными по всей длине фасонки.

15.3.4 Монтажные стыки колонн следует выполнять с фрезерованными торцами, сваренными встык, на накладках со сварными швами или болтовыми соединениями, в том числе фрикционными. При приварке накладок сварные швы не следует доводить до стыка на 25 мм с каждой стороны. Допускается применение фланцевых соединений с передачей сжимающих усилий через плотное касание, а растягивающих - болтами.

ширину

ширину концевых планок - от .

15.4 Связи

15.4.2 Нижние пояса балок и ферм крановых путей пролетом свыше 12 м следует укреплять горизонтальными связями.

15.4.3 Вертикальные связи между основными колоннами ниже уровня балок крановых путей следует располагать в середине или около середины температурного блока; верхние вертикальные связи целесообразно располагать по торцам здания и в шагах колонн, примыкающих к температурным швам, а также в тех шагах, где расположены связи нижнего яруса.

При недостаточной жесткости ветвей колонн в продольном направлении здания, следует устанавливать дополнительные распорки, закреплённые в узлах связей.

При двухветвевых колоннах, если расстояние между ветвями не менее 500 мм, вертикальные связи следует располагать в плоскости каждой из ветвей колонны. Ветви двухветвевых связей следует соединять между собой решетками.

15.4.4 Система связей покрытия зависит от типа каркаса (стальной или смешанный), типа покрытия (прогонное или беспрогонное), грузоподъемности кранов и режима их работы, наличия подвесного подъемно-транспортного оборудования и подстропильных ферм.

15.4.5 В уровне нижних поясов стропильных ферм с восходящими раскосами, опирающимися на колонны нижними поясами, следует предусматривать поперечные горизонтальные связи в каждом пролете здания у торцов, а также у температурных швов здания. При длине температурного блока более 144 м и при кранах грузоподъемностью

В зданиях со стальным каркасом, оборудованных мостовыми кранами грузоподъемностью 10 т и более, и в зданиях с подстропильными фермами следует предусматривать продольные связи, располагаемые по крайним панелям нижних поясов стропильных ферм и образующие совместно с поперечными связями жесткий контур в плоскости нижних поясов ферм.

В однопролетных зданиях такого типа продольные связи по нижним поясам следует назначать вдоль обоих рядов колонн.

При наличии неизменяемого жесткого диска между стропильными фермами с нисходящим опорным раскосом в крайних узлах нижних поясов следует устанавливать только распорки.

В многопролетных зданиях при кранах грузоподъемностью 50 т, с режимом работы 7К-8К, а также в зданиях с перепадами высоты следует назначать более частое расположение продольных связей по нижним поясам ферм. Продольные связи по средним рядам колонн при одинаковой высоте смежных пролетов следует проектировать такими же, как и вдоль крайних рядов колонн.

В случае, если гибкость в горизонтальной плоскости панелей нижних поясов ферм, находящихся между двумя поперечными связевыми фермами, не удовлетворяет 10.4, то она должна быть обеспечена постановкой растяжек, закрепленных в узлах связевых ферм.

15.4.6 По верхним поясам стропильных ферм поперечные горизонтальные связи при покрытии с прогонами следует назначать в любом одноэтажном промышленном здании. Поперечные связевые фермы по верхним и нижним поясам рационально совмещать в плане.

Верхние пояса стропильных ферм, не примыкающие непосредственно к поперечным связям, следует раскреплять в плоскости расположения этих связей распорками.

15.4.7 При наличии жесткого диска кровли в уровне верхних поясов в покрытиях без прогонов (в которых крупноразмерные железобетонные плиты приварены к верхним поясам или профилированный лист покрытия прикреплен в каждом гофре) поперечные связи по верхним поясам ферм следует устраивать только в торцах здания и у температурных швов. В остальных шагах необходимы распорки у конька и у опор стропильных ферм.

При наличии жесткого диска кровли в уровне верхних поясов следует предусматривать инвентарные съемные связи для выверки конструкций и обеспечения их устойчивости в процессе монтажа.

В покрытиях без прогонов горизонтальные связи по нижним поясам следует ставить независимо от типа покрытия только в зданиях с кранами грузоподъемностью

При наличии подстропильных ферм в однопролетных покрытиях без прогонов и многопролетных покрытиях, расположенных в одном уровне, необходимо устройство продольных горизонтальных связей в плоскости верхних поясов ферм в одной из крайних панелей ферм.

15.4.8 При расположении покрытий в разных уровнях необходимо предусмотреть по одной продольной системе связей в каждом уровне.

В пределах фонаря, где прогоны по верхнему поясу ферм отсутствуют, необходимо предусматривать распорки. Наличие таких распорок по коньковым узлам ферм является обязательным.

15.4.9 Связи по фонарям следует располагать в плоскости верхних поясов (ригелей) у торцов фонаря и с обеих сторон температурных швов.

15.4.10 В местах расположения поперечных связей покрытия следует предусматривать установку вертикальных связей между фермами.

В покрытиях зданий и сооружений, эксплуатируемых в районах с расчётными температурами ниже минус 45°С следует предусматривать (дополнительно к обычно применяемым) вертикальные связи посередине каждого пролета вдоль всего здания.

Вертикальные связи следует располагать в плоскостях опорных стоек стропильных ферм, в плоскостях коньковых стоек для ферм пролетом до 30 м, а также в плоскостях стоек, находящихся под узлом крепления наружных ног фонаря для ферм пролетом более 30 м.

Между стропильными фермами с нисходящим опорным раскосом в крайних узлах нижних поясов следует устанавливать подкосы к крайнему узлу верхнего пояса.

15.4.11 Горизонтальные связи по верхним и нижним поясам разрезных ферм пролетных строений транспортерных галерей следует предусматривать раздельно для каждого пролета.

15.4.12 При применении крестовой решетки связей покрытий, за исключением уникальных зданий и сооружений, расчёт производится по условной схеме в предположении, что раскосы воспринимают только растягивающие усилия.

15.4.13 В висячих покрытиях с плоскостными несущими системами (двухпоясными, изгибно-жесткими вантами и т.п.) следует предусматривать вертикальные и горизонтальные связи между несущими системами.

В зданиях, оборудованных кранами большой грузоподъемности и режимов работы 7К и 8К, а также в случае значительных усилий в элементах связей (ветровые фермы и т.п.) крепление элементов связей следует осуществлять на монтажной сварке, а в отдельных случаях и на болтах класса точности А.

15.5 Балки

Для поясов балок с фрикционными соединениями следует применять пакеты, состоящие не более чем из трёх листов; при этом площадь сечения поясных уголков следует принимать равной не менее 30% всей площади сечения пояса.

15.5.2 Поясные швы сварных балок, а также швы, присоединяющие к основному сечению балки вспомогательные элементы (например, ребра жесткости) следует выполнять непрерывными. Поперечные рёбра жесткости должны быть с вырезами для пропуска поясных швов.

В ригелях рамных конструкций у опорных узлов следует применять двухсторонние поясные швы, протяженность которых должна быть не менее высоты сечения ригеля.

15.5.3 При применении односторонних поясных швов в сварных двутавровых балках 1-го класса, несущих статическую нагрузку, следует выполнять следующие требования:

СП 53-102-2004 Общие правила проектирования стальных конструкций

1 РАЗРАБОТАН Центральным научно-исследовательским институтом строительных конструкций им. В.А.Кучеренко (ЦНИИСК им. Кучеренко), Центральным научно-исследовательским институтом строительных металлоконструкций им. Н.П.Мельникова (ЗАО ЦНИИПСК им. Мельникова), Проектно-изыскательским и научно-исследовательским институтом по проектированию энергетических систем и электрических сетей (ОАО Институт "Энергосетьпроект") при участии группы специалистов

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

2 ОДОБРЕН и рекомендован для применения на добровольной основе Госстроем России (письмо N ЛБ-2596/9 от 20.04.2004)

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ с 01.01.2005 г. приказом ЦНИИСК им. Кучеренко N 28/00 от 10.09.2004 г.

Настоящий Свод правил содержит рекомендуемые правила расчета и проектирования стальных строительных конструкций, обеспечивающие выполнение требований нормативных документов, распространяющихся на эти конструкции.

Решение вопроса о применении данного документа при проектировании стальных конструкций конкретного объекта относится к компетенции заказчика и разработчика проектной документации.

Если для реализации приняты методы расчета и проектирования, рекомендуемые настоящим документом, все установленные в нем правила должны соблюдаться в полном объеме.

В разработке настоящего Свода правил приняли участие: В.М.Горпинченко, д-р техн. наук, проф. - руководитель темы, В.М.Барышев, д-р техн. наук, Г.Е.Бельский, канд. техн. наук, И.И.Ведяков, д-р техн. наук, Л.А.Гильденгорн, канд. техн. наук, Л.Б.Кацнельсон, инж., П.Д.Одесский, д-р техн. наук, проф., В.А.Отставнов, канд. техн. наук, Ю.Н.Симаков, канд. техн. наук, М.Р.Урицкий, канд. техн. наук, Б.С.Цетлин, канд. техн. наук (ЦНИИСК им. Кучеренко); Л.И.Гладштейн, д-р техн. наук, И.Д.Грудев, д-р техн. наук, проф., Е.П.Морозов, канд. техн. наук, Н.Ю.Симон, канд. техн. наук (ЗАО ЦНИИПСК им. Мельникова); Е.Н.Колбанев (ОАО Институт "Энергосетьпроект"); Ю.И.Кудишин, д-р техн. наук, проф., Ю.В.Соболев, канд. техн. наук, проф., Б.Ю.Уваров, канд. техн. наук (МГСУ); В.И.Моисеев, д-р техн. наук, проф. (Электростальский политехнический институт МИСиС); А.Н.Евстратов, д-р техн. наук, проф., Б.А.Шемшура, канд. техн. наук (Шахтинский политехнический институт Южно-Российского государственного технического университета); С.Д.Шафрай, д-р техн. наук, проф. (Новосибирский Архитектурно-строительный университет им. Куйбышева); Ф.В.Бобров, канд. техн. наук (Управление технормирования Госстроя России).

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий Свод правил распространяется на проектирование стальных строительных конструкций зданий и сооружений различного назначения, работающих при температуре окружающей среды не выше 100 °С и не ниже минус 65 °С. Свод правил не распространяется на проектирование стальных конструкций мостов, тоннелей и труб под насыпями.

При проектировании стальных конструкций, находящихся в особых условиях эксплуатации (например, конструкций доменных печей; магистральных и технологических трубопроводов; резервуаров специального назначения; конструкций зданий, подвергающихся сейсмическим воздействиям, интенсивным воздействиям огня, температуры, расплавленного металла, радиации, агрессивных сред; конструкций гидротехнических сооружений), конструкций уникальных зданий и сооружений, зданий атомных электростанций, а также специальных видов конструкций (например, предварительно напряженных, пространственных, висячих) кроме требований настоящего документа необходимо также соблюдать дополнительные требования, предусмотренные соответствующими нормативными документами, которые отражают особенности работы этих конструкций.

2 НОРМАТИВНЫЕ ССЫЛКИ

Перечень нормативных документов и стандартов, на которые имеются ссылки в настоящем Своде правил, приведен в приложении А.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящем Своде правил использованы термины, определения которых содержатся в нормативных документах, на которые в тексте имеются ссылки.

4 ОБОЗНАЧЕНИЯ

В настоящем Своде правил использованы буквенные обозначения величин, индексы буквенных обозначений и поясняющие их слова, приведенные в приложении Б.

5 ОБЩИЕ ПОЛОЖЕНИЯ

5.1 ОСНОВНЫЕ ТРЕБОВАНИЯ К КОНСТРУКЦИЯМ

следует соблюдать требования государственных стандартов на конструкции соответствующего вида, а также других нормативных документов (приложение А);

при необходимости следует выполнять расчет точности геометрических параметров конструкций и их элементов согласно ГОСТ 21780.

5.1.2 При проектировании стальных конструкций следует соблюдать требования к огнестойкости и коррозионной стойкости согласно СНиП 21-01 и СНиП 2.03.11.

Все конструкции, не замоноличенные в бетоне, не заделанные в кирпичной кладке и т.п., должны быть доступны для наблюдения, очистки, окраски, а также не должны задерживать влагу и затруднять проветривание. Замкнутые профили должны быть герметизированы.

5.1.3 За расчетную температуру наружного воздуха принимается температура воздуха наиболее холодных суток обеспеченностью 0,98, определенная согласно СНиП 23-01.

Расчетные технологические температуры устанавливаются заданием на разработку строительной части проекта.

5.1.4 Проектирование конструкций должно осуществляться квалифицированными специалистами. Рабочие чертежи стальных конструкций должны соответствовать требованиям по изготовлению (ГОСТ 23118) и монтажу конструкций (СНиП 3.03.01).

§ 145. КОТЛОВАННЫЙ СПОСОБ

Крепление котлованов металлическими сваями. Наиболее распространено временное крепление вертикальных стен котлована металлическими сваями (рис. 524).

Крепление котлована

Металлические сваи представляют собой двутавровые балки № 36—60, погружаемые вдоль котлована на расстоянии 0,9—1,2 м одна от другой. Профиль двутавровых балок зависит от ширины и глубины котлована и числа рядов распорок (расстрелов) между ними; наибольшее применение имеют двутавры № 40—55.

Ширину котлована принимают на 30—50 см больше ширины возводимого сооружения на случай отклонения свай при их забивке и для того, чтобы при выдергивании свай не повредить обделку тоннеля. При сборных обделках полное уширение котлована может доходить и до 2,2—2,4 м по условию устройства гидроизоляции.

Доски закладывают за полки двутавров по мере углубления котлована. Каждый последующий ряд досок подводят снизу, плотно прижигают к грунту при помощи клиньев, вгоняемых между доской и полками двутавров. Сваи распирают одним или двумя рядами расстрелов в зависимости от глубины котлована и интенсивности бокового давления. Для котлованов глубиной до 10 м, в которых может быть возведено подавляющее большинство сооружений мелко заложенной линии метрополитена, при благоприятных условиях может быть поставлен один ряд расстрелов. При глубине котлована 4—5 м возможно применение свай консольного типа.

В котлованах глубиной более 10 м ставят два ряда расстрелов. При этом нижний ряд съемных расстрелов устанавливают на высоте не менее 30 см от верха лотковой плиты, чтобы обеспечить возможность ее кладки или бетонирования; с этой же целью верхний ряд расстрелов устанавливают на высоте 50 см от верха перекрытия.

Расстрелы могут быть деревянные (из двух соединенных между собой бревен Ø 20—30 см) или металлические различных сечений: швеллерные состоящие из двух швеллеров №30 или 40 с накладками из листов через 0,8—1,2 м; трубчатые Ø 15—20 см или в редких случаях в виде сквозных ферм. Наибольшее применение имеют металлические расстрелы, употребляемые для котлованов шириной от 6 до 20 м.

В местах опирания расстрелов к сваям прикрепляют продольные пояса из швеллеров №24 или 26 для распределения усилий.

На одном или обоих концах расстрел имеет выдвижные части длиной 1,7 м из двух швеллеров, которые служат для раскрепления его на сваи посредством металлических клиньев и вкладышей.

Боковое давление грунта, воспринимаемое промежуточными сваями, передается на подкосы, имеющиеся по концам расстрелов (см. рис. 524).

Расстояние между расстрелами в продольном направлении составляет обычно от 3,6 до 4,5 м, но может быть увеличено до 6 и даже 10м при условии усиления продольных поясов.

Если ширина котлована превышает 20 м, можно применять дополнительные ряды свай и комбинированное крепление, состоящее из металлических и деревянных расстрелов (рис. 525).

Крепление широких котлованов

При сооружении тоннелей в котлованах обычно применяют следующий порядок производства работ. По длине сооружаемого участка по обеим сторонам котлована проходят разведочные траншеи шириной 0,8 м и глубиной 1,2 м. Назначение этих разведочных траншей заключается в уточнении расположения подземных городских коммуникаций и облегчении забивки свай, так как сваи забивают в грунт из этих траншей.

Сваи погружают до необходимой глубины, превышающей глубину котлована на 3—5 м, вибраторами или молотами, установленными на копрах, передвигающихся вдоль котлована по специально уложенным путям. Погружение свай на глубину 12—14 м ведет бригада из 4—5 чел. Производительность такой бригады — от 8 до 12 свай в смену. Если расчетная длина свай превышает стандартную, их выполняют сварными из нескольких стандартных секций.

Котлован глубиной до 10 м разрабатывают в два захода (рис. 526). Первую заходку делают на глубину не более 4 м с разработкой в средней части котлована траншеи глубиной 2,5 м для пропуска экскаватора под расстрелами (рис. 527). Грунт первой заходки разрабатывают драглайном. Вторую заходку до полной глубины котлована разрабатывают экскаватором (прямая лопата) или грейфером.

Схема производства земляных работ в котловане

Разработка грунта

Наиболее целесообразно применять для разработки котлована экскаваторы универсального типа, которые можно использовать как механические лопаты, драглайны и краны.

При наличии воды применяют искусственное водопонижение.

Крепление стен котлована ведут одновременно с разработкой грунта. За полки двутавров заводят доски и расклинивают их. После разработки котлована до отметки расстрелов верхнего ряда устанавливают продольную связь между сваями в виде поясов из швеллеров. Затем краном опускают расстрелы, устанавливаемые на каждую третью сваю.

Для разработки грунта второй заходки делают съезд для автомашин с уклоном до 0,01 (см. рис. 526), по которому опускают экскаваторы и автомашины. Вслед за разработкой котлована сооружают обделку с одновременным выполнением гидроизоляционных работ.

Обделки из монолитного бетона или железобетона сооружают в три приема: сначала делают лоток, затем стены и перекрытие. Бетон подают краном в ковшах по деревянным лоткам или металлическому шарнирному желобу; при этом используют инвентарную подвижную опалубку. Элементы сборных обделок укладывают козловым или стреловым краном.

После сооружения тоннеля ведут обратную засыпку котлована грунтом, выдаваемым из котлована на головных участках.

Зазор между тоннелями и креплением котлована засыпают песком слоями 30—50 см; каждый слой поливают водой и утрамбовывают. Сваи вытаскивают приспособенным для этой цели самоходным краном.

Заключительной работой является планировка строительной площадки, снос временных сооружений и асфальтирование поверхности.

Крепление котлованов стальным шпунтовым ограждением целесообразно при сооружении тоннелей в водонасыщенных и не отдающих воду породах, имеющих в основании водоупорный слой. Расположение крупных зданий на призме обрушения также вызывает необходимость применения шпунтового ограждения, как более надежного против осадок зданий. Необходимая жесткость крепи обеспечивается постановкой дополнительных расстрелов.

Наиболее удачной конструкцией являются шпунты корытообразного профиля Ларсен III, IV и V со следующими характеристиками:

Профиль Ширина профиля, мм Высота профиля, мм Момент сопротивления, см 3
III 400 290 1600
IV 410 360 2200
V 420 344 2962

Порядок производства работ при сооружении тоннелей мелкого заложения с применением стального шпунта остается таким же, как и при креплении котлована сваями. После сооружения тоннеля стальные шпунты выдергивают.

Крепление котлованов способом замораживания применяют в сложных геологических и гидрогеологических условиях при глубоком расположении водоупорного слоя и при замкнутых котлованах значительной площади, крепление стен которых сваями или шпунтами и расстрелами было бы слишком сложным. Искусственное замораживание грунта по контуру таких котлованов создает стены не только водонепроницаемые, но и воспринимающие активное давление грунта.

В котловане, освобожденном от временной крепи, создаются благоприятные условия для механизации выемки грунта и укладки бетона или готовых конструкций.

Анкерное крепление применяют в случаях разработки котлованов значительных размеров при возведении в них подземных вестибюлей или для сооружения перегонных тоннелей и станций метрополитенов. Сущность этого способа состоит в том, что обычную свайную крепь 1 котлованов заанкеривают в грунт за линией естественного откоса. Необходимость в установке расстрелов (рис. 528, а) отпадает. Наиболее целесообразно применение нагнетаемых железобетонных анкеров, обеспечивающих надежную связь их с несвязным грунтовым массивом (песок, гравий).

Конструкция и технология изготовления применяемых анкеров отличаются большим разнообразием. В качестве примера приведен анкер (рис. 528, б) в виде стержня 2 из высокопрочной стали диаметром 26—32 мм с резьбой на обоих концах для крепления к буровой коронке 4 и элементу ограждения котлована. По мере извлечения обсадной трубы d = 40÷60 мм, под защитой которой выполнялось бурение скважины, в образующееся пространство 3 нагнетают цементное молоко (В:Ц 0,4—0,6) с добавками пол давлением 30—40 кгс/см 2 .

Анкерное крепление котлованов

Усилие, воспринимаемое анкером длиной в 3—4 м, достигает 20—30 тс.

Остальную часть скважины заполняют цементным молоком под давлением 5 кгс/см 2 для образования защитной оболочки 5 вокруг стержня анкера. Эту часть анкера иногда защищают от коррозии полиэтиленовой трубкой. Через головную часть 6 анкера усилие передается на ограждение котлована.

Волков В.П., Наумов С.Н., Пирожкова А.Н., Храпов В.Г. Тоннели и метрополитены

Связи


В связи с изменениями производственной программы Саратовского резервуарного завода выпуск данного оборудования завершен.
Актуальный список товаров доступен в разделе "Продукция".

Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.

Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.

Основными элементами, которые соединяют связи, являются фермы и колонны.

Металлические связи колонн

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков – крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.

Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.

Схема вертикальных связей между колоннами

Чертеж металлических связей между колоннами

Металлические связи ферм

Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.

Горизонтальные связи ферм по нижним и верхним поясам

Схема горизонтальных связей по верхним и нижним поясам

Горизонтальные связи ферм бывают также продольными и поперечными.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.

Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.

Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.

Вертикальные связи колонн и ферм

Схема вертикальных связей колонн и ферм

Конструкции металлических связей стального каркаса

По конструкции металлические связи также бывают:

перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине

угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов

портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности

Основным типом соединения металлических связей – это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.

Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.

Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.

Прогоны


Прогоны применяются для строительства зданий и сооружений гражданского и промышленного назначения из металлических каркасов. В металлокаркасе здания прогон служит для крепления ограждающих конструкций, кровельных и стеновых конструкций к каркасу. Он является усиливающей подстропильной конструкцией, которая дополнительно воспринимает на себя климатические (ветровые и снеговые) нагрузки. Прогоны равномерно распределяют нагрузки с кровли на несущие и стропильные конструкции здания (стены, колонны, фермы, рамы).

Устройство прогона здания или сооружения

Металлический прогон представляет собой горизонтально расположенную балку, являющуюся элементом системы связей каркаса. Конструкция прогона зависит от размера крыши, от ее формы, климатических нагрузок района эксплуатации. В случае большого размера крыши конструкция прогона усиливается системой подбалок и подкосов, за счет которых достигается высокая устойчивость и жесткость системы в продольном направлении.

Для изготовления прогонов применяется прокатная сталь различных профилей после выполнения определенных расчетов, основанных на информации о собственном весе балок, массе кровли, силовой нагрузки ветра и снега и др.

Кроме того, прогоны часто применяются для прокладки инженерных сетей, имея большую высоту на опорах и в пролете.

Монтаж металлических прогонов осуществляется в узлах на верхнем поясе стропильных ферм при помощи коротышей из уголков, планок или гнутых листов стали. Листовые прокладки уменьшают перепад между смежными прогонами. Крепление прогонов к каркасу здания производится в зависимости от технических требований к конструкции сваркой или болтами.

Сплошные и решетчатые прогоны

Саратовский резервуарный завод изготавливает прогоны двух типов: сплошные и решетчатые (сквозные). Сплошные прогоны производятся из прокатных швеллеров гнутых профилей Z и С- образного сечения или двутавров. Решетчатые прогоны изготавливаются из любых типов профилей. Верхняя часть решетчатого прогона представляет собой горизонтальный пояс, а нижняя часть — ломаный или треугольный пояс из швеллеров или уголков. Прогоны решетчатого сечения тяжелее сплошных, поэтому их целесообразно использовать в каркасах при шаге стропильных ферм более 6 м.

Сплошные стальные прогоны бывают также двух видов: разрезные и неразрезные. Разрезные сплошные прогоны применяются чаще, так как они проще в монтаже и равномерно распределяют нагрузку на фермы.

Неразрезные сплошные прогоны традиционно используют при устройстве скатных крыш, в системе которых создается дополнительная нагрузка, перпендикулярная скату. Для увеличения жесткости в таких кровельных конструкциях прогоны раскрепляются стальными тяжами для уменьшения количества пролетов. При шаге фермы 6 м тяжи устанавливают в один ряд между всеми прогонами. При большем шаге фермы или в крутых кровлях тяжи устанавливают в два ряда.

Металлические прогоны решетчатого сечения имеют усиленную конструкцию, за счет чего они работают на сжатие с изгибом и воспринимают продольные нагрузки одновременно. Но при этом следует отметить, что они имеют один недостаток: так как они состоят из нескольких частей, их монтаж требует большие трудо- и энергозатраты. В связи с этим самым оптимальным вариантом исполнения решетчатых прогонов является трехпанельный прогон, состоящий из верхнего пояса (в виде двух швеллерных балок), решетки (в виде одиночного гнутого швеллера) и раскосы.

Типы прогонов

В зависимости от конструкции кровельной крыши выделяют три типа прогонов:

Коньковый прогон служит для опирания на него конька крыши (верхней части крыши). Дополнительная поддержка стропил осуществляется при помощи боковых прогонов, которые монтируют между коньком крыши и ее основанием. У основания стропил по верхнему периметру стены устанавливают мауэрлат.

Схема конструкции стальных прогонов здания

Схематичный чертеж прогонов здания

1. стропило, 2. балка, 3. мауэрлат, 4. коньковый брус, 5. прогон, 6. подкос, 7. затяжка, 8. подпорка

Антикоррозионная обработка прогонов увеличивают срок службы каркаса зданий. При изготовлении прогонов сталь подвергают горячей оцинковке или наносят высокодисперсные металлические порошки, что по-другому называется методом холодного цинкования.

Так как прогоны являются элементами как внешней, так и внутренней стороны каркаса здания, к ним предъявляются особые требования безопасности.

Саратовский резервуарный завод изготавливает металлоконструкции прогонов различной конструкции в зависимости от сейсмический характеристик здания, степени атмосферных и других нагрузок. Производство прогонов осуществляется на основании расчетов и чертежей.

Как заказать изготовление стальных прогонов зданий и сооружений?

Для расчета стоимости изготовления стальных прогонов зданий и сооружений, Вы можете:

Читайте также: